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ABSTRACT 

To meet the changing demands of operational environments, future Department of Defense solutions 
require the engineering of resilient systems. Scientists, engineers and analysts rely on modeling, 
simulation, and tradespace analysis to design future resilient systems.  During conceptual system design, 
high performance computing clusters and models from multiple domains are leveraged to conduct large-
scale simulation experiments that generate multi-dimensional data for tradespace exploration.  Despite 
recent breakthroughs in computation capabilities, the world’s most powerful computers cannot effectively 
explore a high-dimensional tradespace using a brute-force approach.  This paper outlines a viable 
methodology and process to generate large numbers of variant solutions for tradeoff analysis.  Design of 
experiments is used to efficiently explore a high-dimensional tradespace and identify system design 
drivers.  These drivers are used to identify model inputs that help focus tradespace generation in areas that 
promise viable solutions.  A dashboard illustrates how viable variant exploration can be conducted to 
illuminate trade decisions. 

1 INTRODUCTION 

A system design involves hundreds of tradable variables that must be balanced in order to develop a 
viable system solution that meets the demands of the stakeholders and performs effectively.  
Understanding the key tradable variables that have the most influence on a system design problem is 
critical during the conceptual design of a system.  A tradeoff is a compromise between objectives such 
that improving one requires that we degrade another.  Tradeoff decisions are based on data, information, 
and knowledge acquired from simulation model outputs, developmental and operational testing, subject 
matter expertise, and legacy system architectures.  In this paper, we focus on how we can illuminate 
tradeoffs among multiple simulation outputs by leveraging the methods of experimental design and a 
dynamic dashboard.  
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During the system life cycle, in order to evaluate system effectiveness in an operational context, we 
use a variety of models and simulations that represent different domains; these domains include 
operational effectiveness, physical feasibility, life cycle costing, manufacturability, reliability, and many 
more.  The inputs to these models and simulations represent the system properties that define the 
alternative configurations.  We are most interested in identifying the system design drivers that have the 
highest impact on the model output.  Currently, there is a technical gap with regard to our ability to 
identify and understand the system design drivers when there is a high volume of multi-dimensional data.  
The general state-of-practice for those in the Department of Defense (DoD) system design community 
who use simulation is to conduct a baseline run and a small set of excursions, often chosen by subject 
matter experts—but these do not effectively explore the system alternative design space.  Large amounts 
of time, money, and resources are devoted to building complicated simulation models, and we do not use 
them to the maximum extent possible if we only compare a few excursions from the baseline.  The most 
effective way to determine the system design drivers is to leverage the methods of statistical experimental 
design—by using design and analysis methods developed explicitly for large-scale simulation 
experiments (see, e.g., Sanchez 2015; Kleijnen 2015; Sanchez, Sanchez, and Wan 2014; Sanchez and 
Wan 2015).  The field of design of experiments (DOE) allows the analyst to identify which model inputs 
affect the outputs of interest.  DOE provides a number of benefits that can assist in the design of a system.  
These can include clearly identifying the model inputs that affect the output responses, identifying 
interactions that may exist between model inputs, uncovering detailed insight into the model’s behavior, 
revealing consequences of certain modeling assumptions, framing questions to ask of the simulation 
model, challenging or confirming intuition about the relative importance (and direction) of model input 
effects, discovering which alternatives are robust to uncertainties, and uncovering problems with 
simulation program logic (Kleijnen et al. 2005).  

2 APPROACH 

2.1 Statistical Metamodels and the Dashboard 

In order to identify and understand the system design drivers across several different domain simulation 
models, we propose using statistical metamodeling to approximate the simulations’ behavior.  A 
statistical metamodel is an empirical model, developed from either observational or experimental design 
data, that relates a set of inputs to an output (Grayson and Gardner 2015; Hastie et al. 2009).  Metamodels 
can be built using a number of statistical methods that include stepwise regression, boosted trees, neural 
nets, and bootstrap forests (Grayson and Gardner 2015; Hastie et al. 2009; Kuhn and Johnson 2013). 
Regression metamodels can provide useful insights about the nature of the simulation model behavior 
(see, e.g., Barton 2015), while the other metamodeling methods may be better able to predict 
effectiveness when interpolating between design points without imposing a parametric relationship.  

To generate the data needed to fit metamodels, we advocate using space-filling designs because they 
allow construction of a variety of types of metamodels after the experiment is complete.  Space-filling 
designs allow us to determine the driving factors, detect interactions between input variables, identify 
“knees in the curve” corresponding to increasing or diminishing rates of change, and find thresholds or 
change points in localized areas.  In this paper, we generate the design using the genetic algorithm of 
MacCalman, Vieira, and Lucas (2016), enforcing low correlation among all main effects.  These designs 
are efficient, have very low correlations between columns, can handle continuous, discrete, and 
categorical data, and effectively explore the interior of the experimental design region.  Their genetic 
algorithm can also be used to generate designs that have low correlation among second-order terms as 
well (i.e., quadratic effects and two-way interactions) if the number of factors is relatively small. 

We create a dynamic dashboard using the collection of metamodels to help visualize the multi-
dimensional model output landscape using horizontal and vertical cross sections.  These cross sections 
allow us to clearly identify the tradable variables and find viable system variants that met the desired 
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capabilities across multiple viewpoints and are physically feasible.  We can easily visualize the model 
output landscape with a surface plot when there are only three dimensions.  Because there are often 
several more dimensions in a systems design problem, we developed a dashboard that visualizes 
horizontal and vertical cross sections of the multi-dimensional model output landscape.  We use a contour 
profiler that is a two dimensional projection that shows a horizontal cross section of a model output 
landscape within the experimental design region (SAS Institute 2015).  Visualizing the selected 
projections allows the user to interactively explore how multiple model outputs depend on two selected 
model inputs.  The contour profiler allows us to set limits on the model outputs to help define infeasible 
and feasible regions; the shape of these shaded regions is dependent on the functional form of the multi-
dimensional metamodel.  We can also visualize the model output landscape using prediction profilers that 
show vertical cross sections (SAS Institute 2015).  These vertical projections show each model input’s 
effect on the model output; these effects are colored such that green improves the output while red 
degrades it.  These colors allow us to clearly identify the key tradable variables;  when there is a color 
contrast between green and red within a model input’s vertical cross section,  we must make a trade by 
accepting an improvement in one model output while accepting a degradation in another. 

In addition to identifying the key tradable variables, our dashboard uses an optimization algorithm to 
find a solution that balances the established model output limits with a weighted desirability function; the 
desirability function normalizes the model output scale.  When our solution does not meet one or more of 
the model output limits, we then can look to the vertical projections to identify the model inputs that have 
the highest impact on the unfeasible model outputs; changing these model inputs may result in a feasible 
solution.  If we cannot change a model input to find a feasible solution we then must trade off infeasible 
model outputs limits in order to arrive at a viable system variant.  We can arrive at a variety of viable 
system variants by setting different model output limits and weights to each of them. 

To demonstrate our methodology, we consider a representative use case that involves an opportunity 
to invest in new technologies that will increase the capabilities of a U.S. Army Infantry Squad.  The squad 
“system” is the collection of integrated technologies that enhance the squad’s effectiveness (sensors, 
weapons, exoskeletons, radios, UAVs, robots, and body armor).  This use case provides ample 
opportunity to highlight tradeoffs across multiple types of costs, performance, schedule, and risk 
considerations.  It also allows for a wide variety of solutions/alternatives that are comprised of different 
combinations of system components.  

2.2 Simulation Base Case / Inputs and Outputs 

In order to evaluate the Army Infantry Squad system in an operational context, we use an agent-based 
simulation called Map Aware Non-uniform Automata (MANA).  MANA is a stochastic, agent-based, 
time-stepped simulation developed by the New Zealand Defense Technology Agency (Lauren and 
Stephen 2002; McIntosh 2009).  MANA is a low-resolution simulation of combat, intended to “capture 
only enough physics as is necessary.”  For example, range-probability pairs are used to capture sensor, 
weapon and communication device effectiveness, rather than attempting to explicitly simulate the physics 
involved.  MANA has been used for numerous studies of military operations (Sanchez and Lucas 2002).  

Once the MANA base case was developed, we designed and executed an experiment that consisted of 
38 inputs (factors) and 40 outputs (responses); see MacCalman et al. (2015a,b) for more details.  For this 
paper, however, we will illustrate our techniques with just a small subset of the original inputs and 
outputs consisting of four inputs and six output measures.  Each input (potential improvement) was 
mapped to real world system and sub-system components, and represents a decision factor in our 
experiment.  The four inputs we refer to in this paper are the Sensor Detection Range, Sensor 
Classification Range, Rifle Range for the M4 rifle, and Radio Delay.  The first three inputs are varied in 
the experiment with multipliers that represented the increase in capability, from the baseline.  For 
example, in Figure 3, the lower and upper bounds for Sensor Classification Range and Rifle Range are 1.0 
and 2.0, respectively, indicating that these ranges vary from 100% to 200% of the baseline capability. 
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Our use case employs the following output measures to evaluate each alternative: Awareness (a 
measure of how well Blue (friendly forces) is aware of the location of Red (enemy forces) over the 
interval [0,1]), Lethality (a measure of how quickly Blue is able to inflict casualties upon Red over the 
interval [0,1]), Casualties (Blue), and the physical weights of the sensors, rifle, and radio, respectively.  
High values of Awareness and Lethality are desirable, as are low values of the other output measures. 

3 DASHBOARD COMPONENTS 

The basis of our dashboard is the set of six metamodels that relate four inputs to the six responses.  
Simple polynomial metamodels do a reasonable job of characterizing the model behavior in this example, 
although other metamodel forms can be readily incorporated if they are more suitable.  We implement our 
dashboard in JMP (SAS Institute 2015) because of its built-in, interactive capabilities, but similar 
dashboards could be constructed using other programming languages. 

3.1 Prediction Profiler Dashboard Component 

The prediction profiler component (Figure 1) contains a color-coded grid.  The row and column with 
white backgrounds relate to desirability functions, while each of the other columns represents a model 
input and each of the other rows represents a response.  Every other cell in the grid shows a cross section 
of the row’s response as the column factor changes, holding all other factors at designated levels.  Two 
key features of the prediction profiler are: (i) it identifies tradable variables with a color profiler 
algorithm, and (ii) it optimizes solutions to find input settings that perform well across multiple responses.  
  

 
Figure 1: Prediction profiler dashboard component showing vertical cross sections. 

.  Goal may be set to one of       
   {min, max, middle}

Number of runs:

Awareness
Lethality
Casualties
Sensory Weight
Rifle Weight
Radio Weight

Set Desirability Functions

Update Weights
Simulate
Color Profiler 

5000

Response           Weight   Proportion  Goal
10

1
1
1
1
1

max
max
min
min
min
min

0.6667
0.1667
0.1667
0.1667
0.1667
0.1667

Aw
ar

en
es

s
Le

th
al

ity
C

as
ua

lti
es

Se
ns

or
y

W
ei

gh
t

R
ifl

e
W

ei
gh

t
R

ad
io

W
ei

gh
t

D
es

ira
bi

lit
y

1.5
Rifle
RNG

7.5
Radio
Delay Desirability

1.5
SensorClassify

RNG

2
SensorDetect

RNG 

 1                  2

 0.10 

0.04

 0.42 

0.30

 6 
1

 3.2 
1.6

 15.5 

12.5

 26 
16

 1 
0

 0.362

1.961

1.989

13.15

25.58

0.534

 0.070

 1                  2  0                   16 1.6           2.4 0                   1

3066



MacCalman, Sanchez, McDonald, Goerger, and Karl 
 

3.1.1 Color Profiler Algorithm 

The lowest section on the dashboard menu (Figure 1, left) allows the user to specify whether to maximize, 
minimize, or seek a specified target for each of the responses, and to weight the responses according to 
their relative importance.  Except for the last row and column, the grid cells in the prediction profiler are 
color coded so that green indicates a positive impact of the input on the response, red indicates a negative 
impact, and black indicates no impact.  A color gradient is automatically applied so the cells with higher 
impacts are darker and those with lower impacts are lighter, based on the magnitude of the response 
change between the low and high settings of the model input.  

Within each column, the responses that have opposite green and red colors show where the key 
tradable variables are with respect to each model input.  For example, in Figure 1, the column that 
represents RifleRNG has a red cell for Rifle Weight and green cells for the Casualties and Lethality 
responses.  Increasing the rifle range has a positive impact on our operational measures (Casualties and 
Lethality) but has a negative impact on a physical consideration (Rifle Weight). Therefore, we must trade 
off weight to achieve a higher operational effectiveness.  The model input columns are ordered from left 
to right in decreasing order of impact across all responses (holding other factors at their mean levels).  In 
this way, we can more readily identify the most impactful model inputs across all responses. 

3.1.2 Multiple Response Optimization 

The prediction profiler component has a built-in optimization feature that allows the user to specify a 
weighted desirability function for each response and find a balanced solution (SAS Institute 2015; Myers 
et al. 2009).  The desirability function translates the response scale to a value between nearly zero and 
nearly one, where zero indicates the least desirable value and one indicates the most desirable value.  The 
user specifies a response goal to maximize, minimize, or achieve a specified target value for each 
response.  Figure 2 shows three types of desirability functions that translate response values along the 
vertical axis to desirability values along the horizontal axis. 
 

 
Figure 2: Desirability function types (adapted from SAS Institute, 2015). The red line indicates the 
response outcome for the current model input settings. The three points on each desirability function can 
be manually moved to other values within the region, changing the shapes of the desirability functions. 

The purpose of desirability transformation is to allow the user to specify the returns to scale along the 
range of response outcomes, and to establish a common scale across all responses.  The common scale 
allows us to aggregate all responses using a weighted total desirability function.  The total desirability 
function, D*, has the following form: 

 
𝐷∗ = 	 %

&
𝑤%𝑙𝑛 𝑑% + 𝑤,𝑙𝑛 𝑑, + ⋯+ 𝑤&𝑙𝑛 𝑑& ,                                             (1) 
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where k is the number of responses, dk is the desirability function for response k, and wk is the importance 
weight for response k.  Equation (1) is the objective function for the optimization algorithm that finds 
desirable solutions across multiple responses.  

3.2 Contour Profiler Dashboard Component 

The contour profiler dashboard component shows a collection of contour profilers categorized within 
different output metric domains. Each contour profiler has one or more responses that pertain to each 
domain category.  Each profilers shows a two-dimensional projection of responses.  The two dimensions 
are displayed along the vertical and horizontal axis and represent two model inputs.  The crosshairs inside 
each contour profiler reflect the current settings for the model inputs.  A slider bar above each contour 
profiler allows the user to set low and high limits (constraints) on the response.  These limits represent 
desired effectiveness and constraints that shade the profilers to indicate infeasible areas of the design 
space.  If the crosshairs fall within a response’s shaded region, then the current model input settings will 
not satisfy the desired effectiveness or constraint for that response. The left portion of Figure 3 shows a 
screenshot of the contour profiler dashboard component, with the following output domains: Situational 
Awareness, Lethality, Casualties, and Weight.  The first three domains have a single response, while the 
fourth (Weight) has three responses for each of three components.  The top right of Figure 3 shows an 
expanded version of the floating control panel that allows the user to specify the two model inputs that are 
shown in each of the contour profilers, and set the levels for all inputs using slider bars. By selecting 
different model inputs, we can see different parts of the multi-dimensional response surfaces. The bottom 
right shows a consolidated listing of the responses and their position within ranges either observed from 
the experiment, or restricted by the user; these listings also appear above their associated contour profiler 
graph components, but are shown separately for greater readability.   
 

 
Figure 3: Contour profiler dashboard components. 

3.3 Monte Carlo Filtering Component 

The purpose of the Monte Carlo Filtering component is to find a collection of feasible alternatives that 
satisfy all response limits specified in the contour profiler component.  A powerful benefit of the response 
metamodels is that they can act as surrogates to the simulation.  Rather than having to run a lengthy 
simulation to obtain the results of a new system configuration, we can leverage the metamodels to obtain 
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approximate results in a matter of seconds instead of hours, days or weeks.  These approximations can 
save a tremendous amount of time, especially for a system design problem that relies on several complex 
models with lengthy run times.  The Monte Carlo Filtering dashboard component allows the user to 
generate thousands of system design configurations using a Monte Carlo simulation.  Each simulation run 
creates a unique system design alternative by drawing a uniform random variate between the low and high 
settings of each model input.  Within the Prediction profiler dashboard component, the user enters the 
number of simulations and presses the “Simulate” button (see Figure 1, left).  A scatter plot matrix 
appears with a floating response data filter. Each dot in the scatter plot matrix represents a single system 
alternative.  The user can apply the data filters to the responses in order to eliminate alternatives (dots) 
from the scatter plot.  In addition, the user can import and export the response limits set in the contour 
profiler.  After exporting the response limits from the contour profiler to the scatter plot, the alternatives 
that remain become the feasible set that resides within the white region of the contour profilers.  The more 
Monte Carlo simulations the user specifies, the more solutions there will be within the white region.  The 
end result is a reduced set of viable system variants that satisfy all desired effectiveness constraints.  
Figure 4 shows a screen shot of the scatterplot matrix for the Monte Carlo Filtering component (on the 
left) along with the adjustable filtering ranges (on the right).  In an interactive mode, the scatterplot 
updates as the filters are adjusted, showing only those points that simultaneously satisfy all filters ranges.  
 

 

Figure 4: Monte Carlo filtering component, for 5000 random alternatives evaluated via metamodels. 

4 VIABLE VARIANT EXPLORATION 

We will now walk through potential steps to find viable system variants.  Our goal is a set of alternatives, 
rather than a single solution.   

4.1 Step 1: Set Acceptable Response Ranges 

Initially, our contour profilers have no set ranges for the responses.  When using the dashboard to find 
viable variants, we first set the desired constraints on the responses.  These are not hard constraints, but 
are used to shade the infeasible regions on the contour profiler components. 
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4.2 Step 2: Set Response Importance Weights and Run the Optimization Algorithm  

At the left of the Prediction profiler component in Figure 1, the user can specify the importance weights 
for each response.  A system design problem has several stakeholder views and scenarios that prioritize 
the responses differently.  The dashboard allows the user to explore system design solutions with different 
response prioritization schemes to account for different stakeholder views and scenarios.  To run the 
optimization algorithm, the user clicks the red triangle at the top next to the Prediction Profiler title and 
selects “Maximize Desirability.”  After the optimization algorithm completes, the dashboard displays the 
input settings of the solution.  Note that “optimization” is a bit of a misnomer.  Even with desirabilities 
that are all monotonic, slight changes in the desirability functions can change the input settings associated 
with the maximum desirability solution.  The purpose of this step is to generate an alternative that can be 
added to a set of candidate system variants (if feasible), or explored further or discarded (if infeasible). 

4.3 Step 3 (Optional): Explore Changes to Model Input Settings to Find Feasible Solutions  

Because the contour profilers are linked to the prediction profilers, we can use them to identify where the 
optimized solution does not meet the desired effectiveness or feasibility constraints; this occurs where 
some contour profiler crosshairs fall in a shaded region.  Figure 5(a) shows the contour profiler dashboard 
component with the optimized solution from Step 2.  The crosshairs are positioned over two shaded 
regions, indicating that this solution does not satisfy the Radio Weight and Sensor Weight responses.  

 

Figure 5: Two examples of contour profiler dashboard components.  In (a), the alternative is feasible in 
three of the four domains, but violates two constraints in the fourth (lower right).  In (b), the contour 
profiles have changed after manually manipulating the RadioDelay and SensorDetectRNG factor settings; 
the crosshairs are now barely feasible (according to the metamodel) in all four domains. 

The prediction profiler identifies the model inputs that have the highest impact on the responses, so 
we can use it to decide which model input to change.  Model inputs represent value properties of a system 
block.  As a result, we must consider the practical design implications of changing the value properties 
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that coincide with a model input change.  We may find that the highest impacting model input represents 
a value property that is too costly or impractical to change.  

The prediction profiler in Figure 1 indicates that RadioDelay is the model input that has the highest 
impact on Radio Weight.  A floating window (not shown) allows us to manually change the two 
dimensions shown in the contour profilers, using slider bars.  Changing the vertical axis to RadioDelay 
and moving the slider bar in the floating window allows us to find a solution that remains feasible for the 
Awareness, Lethality, and Casualties domains, and meets the Radio Weight limit, although it is still 
violates the Sensor Weight constraint.  The prediction profiler is automatically updated based on the 
current input settings, and indicates that the inputs with the greatest effects on Sensor Weight are 
SensorDetectRNG and SensorClassifyRNG.  Reducing the SensorClassifyRNG to 1.7 in the contour 
profiler satisfies the Sensor Weight limit, without causing violations to other response constraints.  Figure 
5(b) shows the contour profiler after these changes to RadioDelay and SensorClassifyRNG have been 
made.  According to the metamodels, the alternative corresponding to the crosshairs is now (barely) 
feasible in all dimensions.   

The interactive approach in this step is not always a good idea.  For example, we must have a very 
small number of factors—if not, then a trial-and-error approach for searching through the landscape will 
be time-consuming and ineffective.  It is precisely for this reason that we advocate designed experiments, 
instead of trial-and-error approaches, in the first place!  We must also have fairly simple metamodels, 
unless responses are all highly correlated so that systems that perform well on one metric perform well on 
all.  If we have strong interactions, then the question of whether changing certain inputs improves or 
degrades certain performance measures depends on the settings of other system components. 

4.4 Step 4 (Optional): Trade Off Infeasible Response Limits  

Figure 5(b) shows a feasible solution, where all contour profiler crosshairs are in the white region, and 
therefore we may not need to trade off responses.  (A cautionary note: the constraint boundaries do not 
account for the uncertainty in metamodel estimates.)  When no viable variant solution is found by 
changing model inputs, decide which shaded region response constraint must be relaxed to achieve a 
feasibility.  Modifying the acceptable response ranges can also be useful if new information comes to 
light.  For example, if a new composite material means that other gear carried by the Soldiers becomes 
lighter, that could mean that the Sensory Weight restriction could be increased to (say) 2.25 pounds from 
2.0 pounds.  The desired end result is a white region within each contour profiler domain that represents a 
set of viable system variants that (according to metamodels) satisfy all effectiveness constraints.   

4.5 Step 5: Generate Viable Variant Solution Candidates using Monte Carlo Filtering  

In order to acquire a set of viable variants within the white region of the contour profilers, we use the 
Monte Carlo Filtering component.  Figure 4 is a scatterplot matrix that shows the alternatives generated 
by the Monte Carlo simulations.  A similar matrix (not shown) is generated after the contour profiler 
response limits are exported to the data filter.  Out of the 5,000 simulations summarized by Figure 4, only 
four alternatives remain when the filters are applied.  After running 100,000 simulations with the same 
response limits and filters, 69 alternatives remain.   

4.6 Step 6: Confirm Viability of Solution Candidates  

At this stage, it is important to assess the quality of the remaining metamodel-based alternatives by 
making confirmation runs.  If alternatives are close to the edge of the feasible region in the metamodeling 
domain, then even small amounts of lack-of-fit from the metamodels may mean they are truly infeasible.  
If alternatives that meet the response limit filters are restricted to small regions of the input space, these 
may be regions where the overall metamodels do not fit as well.  Similarly, the simplification done to 
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keep the number of metamodel factors small enough to allow for some interactive manipulation means 
that omitted factors might play an important role.   

Confirmation runs may be made in different ways.  We use the following for illustration purposes:  (i) 
explore the 69 alternatives for the four metamodel factors while setting the other 34 factors at their 
baseline (middle) levels; (ii) explore the 69 alternatives while treating the other 34 original factors as a 
single factor at two levels, all simultaneously set at “maximum capability” or “minimum capability” 
according to the analyst’s opinion; (iii) explore using a resolution III fractional factorial (64 design 
points) over the other 34 original factors for some or all of the 69 alternatives.  Option (ii) provides an 
optimistic and pessimistic case for each of the 60 alternatives, and indicates whether or not it suffices to 
focus on the four most important performance drivers, or whether the metamodels should be expanded.  
Option (iii) can require more design points (and run time) than our original experiment, but has the 
potential to yield greater variety in the set of viable alternatives.  

Our three confirmation experiments (each based on 100 replications) result in 32, 60, and 670 
variants, respectively, where the average performance measures meet all six response constraints.  The 
Casualties metamodel performs poorly for (ii) and (iii); it tends to underestimate the average casualties 
from the simulation, and causes more alternatives to be eliminated than the other five responses.  Once 
the confirmation runs are tested, the revised set of alternatives is a set of viable system variants that 
satisfy the specified constraints of the responses.  In order to narrow down the reduced set of solutions 
further, we can select the most affordable solution, the solution with the least amount of variation, or use 
other qualitative criteria such as the ease of implementing the solution. 

One way to acquire additional viable variants is to repeat steps 1-6 with different sets of response 
limits and importance weights, representing the perspectives of different stakeholders. 

5 CONCLUSIONS AND FUTURE WORK 

This paper outlines a process to generate viable variant solutions for tradeoff analysis.  It focuses on how 
to illuminate tradeoffs among multiple simulation outputs by leveraging designed experiments and a 
dynamic dashboard.  This work is essential for engineers and analysts working in the DoD acquisition 
process, who must use models and simulations from multiple communities of interest to generate 
alternatives.  The need to simultaneously satisfy requirements from multiple domains (such as operational 
effectiveness, physical feasibility, manufacturability, reliability, and life-cycle cost), by choosing 
appropriate settings for a large number of system component characteristics, is a very complex problem.  
We use DOE to specify combinations of simulation inputs that facilitate metamodel creation after the 
simulation runs are complete.  The resulting metamodels identify the system design drivers—those factors 
having the highest impact on the model output performance—and help focus tradespace exploration in 
areas that show the promise of generating viable solutions.  A dynamic dashboard illustrates an interactive 
approach to variant exploration that can help identify viable variants and illuminate trade decisions. 

This process further allows us to perform additional designed experiments within the region we find 
in the dashboard in order to confirm the results and develop more detailed metamodels, much like we do 
during response surface design methods.  This adds fidelity to our analysis and allows for more refined 
analysis of variants in the region or regions of interest.  Although this process helps to generate viable 
variant solutions for tradeoff analysis for numerous tradeoff efforts, its application is constrained by the 
availability of appropriate models and simulations—as well as the time required to create, verify, and 
validate a base case and conduct the simulation runs required to perform a designed experiment. 

Efforts are under way to include this methodology into a tradespace tool set for the DoD acquisition 
community.  Future work in this area includes assessing the scalability of the process to systems with 
hundreds to thousands of factors/attributes.  Designs are already available (see Kleijnen 2015 or Sanchez 
and Wan 2015 for references)—but unless the responses are relatively simple, an interactive search 
approach is problematic if the number of key drivers becomes much larger than our illustration.  One-at-
a-time changes to inputs in the contour profiler will be ineffective if there are many key drivers and strong 
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interactions, just as one-at-a-time variation from a baseline is far less effective than a designed 
experiment.  Consequently, scaling the process means that we will rely less on using the interactive 
aspects of a dashboard to identify good solutions, than to visualize tradeoffs associated with minor 
changes to specific solutions.  Other methods like subset selection might be used to augment (or replace) 
the “maximum desirability” approach for generating potential starting solutions.  Nonetheless, this 
research provides a tangible benefit to those seeking to design future resilient systems.  
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