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ABSTRACT  
The main goal of this research was to use simulation to compare the performances of three simultaneous 
localization and mapping (SLAM) algorithms and show the superiority of one algorithm’s performance 
over the performance of the other two algorithms. The superior algorithm from the simulation 
experiments may be used to test an unmanned ground vehicle’s (UGV’s) capability to explore the 
complex subterranean environment for various Department of Defense (DOD) missions. 
 Using simulation shows the performance of these algorithms and aids in the development of a robotic 
platform that has the capability to perform the localization and mapping of subterranean environments in 
a cost effect manner. Simulation, using the robotic simulator STAGE, provided a platform to implement 
multiple algorithms easily in multiple topologies and to compare the performance of three algorithms: 
CoreSLAM, Gmapping, and HectorSLAM, in a cost effective manner without an actual robot. 

 
1 INTRODUCTION 

This paper uses simulation results to perform a quantitative evaluation of three laser-based SLAM 
algorithms, i.e., CoreSLAM, Gmapping, and HectorSLAM, implemented in the 2-D Stage simulator. The 
Stage simulator models sensors, cameras, and many features of an actual mobile robot. The simulated 
tele-operated robot explored three ground truth map images, and each produced a generated map image. 
The 2-D simulation environment, Stage, provides users with the capabilities of simulating a robot or a 
variety of robots in an environment or a variety of environments. 

The three SLAM algorithms were tested and compared on three distinct topologies. Each algorithm 
required laser-based inputs as data for the simulation. The tele-operated robot explored three ground truth 
map topologies, and each produced a generated map image. 

2 EVALUATED SLAM ALGORITHMS 

Many types of SLAM algorithms exist. For example, those that are vision-based or laser-based, and those 
that are 2-D or 3-D. The three algorithms that were evaluated, i.e., CoreSLAM, Gmapping, and 
HectorSLAM, were available at www.ros.org. Each algorithm requires laser-based inputs as data for the 
simulation. The three SLAM algorithms collect data via the tele-operated robot within the robotic STAGE 
simulation, each outputting a map image of the navigated environment.  

Each algorithm was used as a black box in this research; however, the underlying details of the 
implementation differ in the following aspects, i.e.,: (1) Both HectorSLAM and CoreSLAM rely on scan 
matching, while Gmapping uses particle filters, (2) CoreSLAM may produce a different map each time 
with the same input dataset, and (3) CoreSLAM requires loop closing while Hector SLAM does not. 
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2.1 CoreSLAM 

CoreSLAM is a version of SLAM that implements tinySlam, requires a mobile robot that provides 
odometry data, and is equipped with a horizontally mounted, fixed, laser range-finder. The 
slam_CoreSLAM node will attempt to transform each incoming scan into the Odom (odometry) “tf” 
frame. 

CoreSLAM relies on a simple Monte Carlo algorithm for scan matching and was developed by Steux 
and El Hamzaoui with the goal of producing a SLAM algorithm with no more the 200 lines of codes. 
CoreSLAM has a particle filter routine, ts_distance_scan_to_map, and a map update function. The 
ts_distance_scan_to_map routine tests each state position, and the map update function updates the map 
as the robot navigates its environment. 

The slam_CoreSLAM node takes as input laser data and pose data collected from the laser range 
finder and outputs a low-quality map, yet a recognizable one.  

Overall, CoreSLAM performed better on a slow robot. 

2.2 Gmapping 

Gmapping is a highly efficient Rao-Blackwellized particle filter that develops grid maps from laser range 
data (Grisetti, Stachniss, and Burgard 2007). Implementation requires a mobile robot equipped with a 
mounted, fixed, laser range finder. Loop closure is the hardest part; when closing a loop, the robot must 
be driven another 5 to 10 meters to get plenty of overlap between the start and end of the loop. 

This package contains Gmapping, from OpenSlam, and a ROS wrapper. The Gmapping package 
provides laser-based SLAM as a ROS node called slam_Gmapping. Using slam_Gmapping, it creates a 
2-D occupancy grid map (like a building floor plan) from laser range finder and pose data collected by a 
mobile robot (Gerkey 2016). 

The slam_Gmapping node takes as input laser data and poses data collected from the laser range 
finder. It outputs a high-quality map.  

2.3 Hector SLAM  

Hector SLAM relies on scan matching, uses a Gauss-Newton Approach, and is accurate enough that it 
doesn’t require loop closure. The Hector SLAM package consists of three main packages, i.e., 
hector_mapping, hector_geotiff, and hector_trajectory_server.  

The Hector_mapping node is a SLAM approach used with or without odometry on platforms that 
exhibit roll/pitch motion (of the sensor, the platform, or both). It leverages the high update rate of modern 
LIDAR systems like the Hokuyo UTM-30LX and provides 2-D pose estimates at the scan rate of the 
sensors (40 Hz for the UTM-30LX). Although the system does not provide an explicit loop closing 
ability, it is sufficiently accurate for many real-world scenarios. The system has been used successfully on 
Unmanned Ground Robots and Unmanned Surface Vehicles and Handheld Mapping Devices and logged 
data from quadrotor UAVs (Kohlbrecher 2014). 

Hector_geotiff saves the map and robot trajectory to geotiff image files. The hector_trajectory_server 
saves tf-based trajectories files as output. The hector_mapping node’s main input is scan data on the /scan 
topic. The data are then transformed via the /tf topic.  

Overall, Hector SLAM outputs a high-quality map that is recognizable. 

3 GROUND TRUTH MAPS 

Figure 1 displays the three maps chosen as the ground truth maps for the simulation, labeled as Map One, 
Map Two, and Map Three. Each is simple in design and simple to navigate. All three maps were 
downloaded from the web and used with the STAGE simulator as the ground truth map for the simulated 
robot to navigate.  
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Figure 1: Ground Truth Maps. 

4 SIMULATION RESULTS 

Each of the three SLAM algorithms previously discussed was tested using Stage. Stage, an open-source 
software, provides multiple physics-based models for robot sensors and actuators. Some of the currently 
supported models are sonar and infrared rangers, 2-D scanning laser rangefinder, color-blob tracking, 
fiducial tracking, bumpers, grippers, and mobile robot bases with odometric and global localization 
(Kohlbrecher 2014). 

One advantage Player/Stage provides is the ability to move from simulation to the robot by changing 
a few parameters (Staranowicz and Mariottini 2011). The learning curve on the Stage software is a 
disadvantage. 

Stage, used standalone or with ROS, has many versions. This research implements Stage 4.1.1, the 
most recent version and requires ROS Fuerte for implementation.  

The simulated robot completely navigated each of the three ground truth maps with each of the three 
algorithms to produce the three generated maps. Figure 2 shows the ground truth map, labeled Fixed, and 
the three generated maps produced by each algorithm, labeled CoreSLAM, Gmapping, and Hector Slam, 
after navigating the ground truth of Map One. Figure 3 shows the ground truth map, labeled Fixed, and 
the three generated maps produced by each algorithm, labeled CoreSLAM, Gmapping, and Hector Slam, 
after navigating the ground truth of Map Two. Figure 4 shows the ground truth map, labeled Fixed, and 
the three generated maps produced by each algorithm, labeled CoreSLAM, Gmapping, and Hector Slam, 
after navigating the ground truth of Map Three. 

 

 
Figure 2: Map One and Generated Map of Each Algorithm. 
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Figure 3: Map Two and Generated Map of Each Algorithm. 

 
Figure 4: Map Three and Generated Map of Each Algorithm. 

5 IMAGE REGISTRATION  

MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment and fourth-
generation programming language with many functions and libraries (MathWorks 2012). This research 
uses the image registration tool to compare the generated maps to the ground truth map. 

Image registration, the process of aligning two images of the same scene, is then used to align the 
ground truth map image and the generated map image for a multimodal comparison of the two images. 
An intensity-based automatic image registration process requires a pair of images, a metric, an optimizer, 
and a transformation type to align one image with another (MathWorks 2012). The pair of images is the 
ground truth map image and the generated map image. 

The metric defines the image similarity metric for evaluating the accuracy of the registration. The 
optimizer defines the methodology for minimizing or maximizing the similarity metric.  

The transformation type defines the type of 2-D transformation that brings the misaligned image 
(called the moving image or the generated image) into alignment with the reference image (called the 
fixed image or the ground truth image). Four transform types exist, i.e., affine, rigid, similar, and 
translation. 

The image registration process begins with the transform type specified and an internally determined 
transformation matrix. Together, they determine the specific image transformation that is applied to the 
moving image with bilinear interpolation. 

Next, the metric compares the transformed moving image to the fixed image and a metric value is 
computed.  

Finally, the optimizer checks for a stop condition. A stop condition is anything that warrants the 
termination of the process. In most cases, the process has reached a point of diminishing returns or it has 
reached the specified maximum number of iterations (MathWorks 2012).  If there is no stop condition, the 
optimizer adjusts the transformation matrix to begin the next iteration (MathWorks 2012). 

The following sections discuss the resulting aligned images produced with the four transformations, 
i.e., affine, rigid, similar, and translation, and the three algorithms. The maps will contain three colors, 
i.e., magenta, green, and black. The magenta represents the intensity of the ground truth image, the green 
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represents the intensity of the SLAM generated map, and the black represents where both images align or 
are the same. 

5.1 CoreSLAM 

Figures 5, 6, and 7 were produced using two images, (1) the ground truth map images, i.e., Map One, 
Map Two, and Map Three, respectively, and (2) the respective Stage simulated generated map images 
from the CoreSLAM algorithm, as inputs to MATLAB’s image registration function, which was executed 
with the four different transform types, i.e., affine (upper right), rigid (upper left), similar (lower left), and 
translation (lower right). In general, the image registration overlays or aligns the generated map on to the 
ground truth map image to compare the two images. The image registration tool is executed with the four 
different transform types: affine, translation, rigid, and similar.  

The generated maps show up with more intensity than the ground truth maps due to CoreSLAM 
producing multiple edges (green shaded areas) along the exterior portion of the map. While the ground 
truth and generated maps are similar in nature, there are few overlapping points, because there is very 
little black, which shows points where the two images are identical.  

 

 
Figure 5: Image Registration of Map One and 

CoreSLAM Generated Map. 
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Figure 6: Image Registration of Map Two and 

CoreSLAM Generated Map. 

 
Figure 7: Image Registration of Map Three and 

CoreSLAM Generated Map. 
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5.2 Gmapping 

Figures 8, 9, and 10 were produced using two images, i.e., the ground truth map images and the Stage 
simulated generated map images from the Gmapping algorithm in MATLAB’s image registration 
function. The magenta in the image of Figure 8 represents the intensity of the ground truth image, the 
green represents the intensity of the SLAM generated map, and the black represents where the images 
overlap. In Figure 9, all transform types align all most perfectly. Transform type affine (upper left) has a 
small amount of green in the bottom indicating that the ground truth map of Map Two has a slightly 
higher intensity than the generated map. Transform type translation (bottom right) has a small amount of 
green on the left and the bottom of the map, indicating the ground truth map of Map Two has a slightly 
higher intensity than the generated map. In Figure 10, the magenta is stronger in all transformations, 
indicating that the generated map has higher intensity than the ground truth of Map Three. The black 
shows where the images align.  

 

 
Figure 8: Image Registration of Map One and 

Gmapping Generated Map. 
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Figure 9: Image Registration of Map Two and 

Gmapping Generated Map. 

 
Figure 10: Image Registration of Map Three 

and Gmapping Generated Map. 
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5.3 Hector SLAM 

Figures 11, 12, and 13 were produced by using the ground truth maps and the Stage simulated generated 
maps with the Hector Slam algorithm as input in MATLAB’s image registration function. The image 
registration tool was again processed with the four different transform types, i.e., affine, translation, rigid 
and similar. Figure 11 shows the generated map (green) has more intensity than the ground truth map due 
to the alignment being off and the degree of difference in the two maps. While the maps are similar in 
nature, they have few overlapping points. Figures 12 and 13 shows black more than magenta and green, 
indicating that the two images have very little differences. Figure 11 has more green with all transform 
types. Figure 12 shows green around the exterior due to the processing of the image. In Figures 12 and 
13, the rigid (upper right) and translation (lower right) transforms produce near perfect alignments. 

 

 
Figure 11: Image Registration of Map One and 

Hector SLAM Generated Map. 
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Figure 12: Image Registration Map Two and 

Hector SLAM Generated Map. 

 
Figure 13: Image Registration of Map Three and 

Hector SLAM Generated Map. 

6 COMPARISON 

For a quantitative measure between the ground truth maps and the generated simulator maps, Hausdorff 
Distance is calculated. The Hausdorff distance, by definition, is as follows: Given two finite sets A = 
(a1….ap) and B = (b1…bp), the distance is calculated as  
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 H(A,B) = max(h(A,B), h(B,A)) (1) 
 
where 

 h(A, B) = sup inf‖a − b‖
 a∈A   b∈B                  

 (2) 
 
‖ ‖ represents some underlying norm defined in the space of the two point sets, which is generally 
required to be an Lp norm, usually the L2 or Euclidean norm. The function h(A, B) is called the directed 
Hausdorff distance from A to B. If A and B are compact sets, then 
 
 ℎ(𝐴𝐴, 𝐵𝐵) = max

𝑎𝑎∈𝐴𝐴
min
𝑏𝑏∈𝐵𝐵

‖𝑎𝑎 − 𝑏𝑏‖ (3) 
 

The Hausdorff Distance is calculated with the function h(A,B), which returns the distance of matrix A 
from matrix B. It identifies the point an element of A that is the farthest from any point in B and measures 
the distance from A to its nearest neighbor in B (Zhang, Han, and Wo 2005). 

Tables 1, 2, and 3 show the values returned from using the Hausdorff function for comparing the two 
images, the ground truth maps (Map One, Map Two, and Map Three), and the generated maps from 
CoreSLAM, Gmapping, and HectorSLAM. The lower the Hausdorff Distance, the better the alignment of 
the two maps.  

Table 1 shows the HectorSLAM algorithm has the lower values of 15.5885, in the Hausdorff Distance 
Column. CoreSLAM has the second lowest value of 16.55. Gmapping has the highest value if 22.7156.  

Table 2 shows the CoreSLAM algorithm has the lower value of 15.5563, in the Hausdorff Distance 
Column. HectorSLAM and Gmapping have an equal value of 16.8523.  

Table 3 shows the HectorSLAM algorithm has the lower values of 14.1067, in the Hausdorff Distance 
Column. CoreSLAM having the second lowest value of 18.13857. Gmapping has the highest value of 
19.2354.  

Based on all the results, HectorSLAM outperforms both CoreSLAM and Gmapping for Map One and 
Map Three. CoreSLAM outperforms HectorSLAM and Gmapping for Map Two while HectorSLAM and 
Gmapping are tied for Map Two. 
 

Table 1: Hausdorff Distance for Map One. 

 Map Size Hausdorff 
Distance 

CoreSLAM 600 × 500 16.55 

Gmapping 600 × 500 22.7156 

Hector SLAM 600 × 500 15.5885 

 
Table 2: Hausdorff Distance for Map Two. 

 Map Size 
Hausdorff  
Distance 

CoreSLAM 500 × 500 15.5563 

Gmapping 500 × 500 16.8523 

Hector SLAM 500 × 500 16.8523 
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Table 3:  Hausdorff Distance for Map Three. 

 Map Size 
Hausdorff 
Distance 

CoreSLAM 500 × 500 18.13847 

Gmapping 500 × 500 19.2354 

Hector SLAM 500 × 500 14.1067 

 

7 CONCLUSIONS 

In conclusion, the robotic simulator STAGE explored three topologies to produce three generated maps 
which provided a repeatable, cost-effective method to evaluate topologies without an actual robot. 
Simulation provided a means to evaluate and compare three SLAM algorithms in a cost-efficient and 
cost-effective manner with three different topologies. HectorSLAM performed best with Map One and 
Map Three when using the Hausdorff Distance, and CoreSLAM performed better with Map Two.  
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