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ABSTRACT 

 

This paper provides analysis and debottlenecking strategies for batch process plants. Operational 

characteristics like shared resources, multiple products and product lines, and process step variability can 

make debottlenecking choices complex. A disciplined methodology for debottlenecking helps an 

improvement team to sift through options efficiently to find cost-effective recommendations that meet the 

desired improvement goals but avoid wasteful or  excessive investment.  

 We take into consideration these challenges and provide a practical methodology for the systematic 

debottlenecking of batch processes through the use of statistical, discrete-event simulation, and 

optimization tools. The analysis and methodology we propose is applicable quite generally to parallel, 

sequential, as well as sequential-parallel multi-product batch plant configurations.  

1 INTRODUCTION 

1.1 Motivation 

Increasing process throughout (debottlenecking) is certainly a familiar subject in industrial engineering 

and previous WinterSim conferences have many fine papers on the topic. However, for chemical batch 

processes, operational characteristics like shared resources, multiple products and product lines, and 

process step variability can make debottlenecking choices complex. We sought to develop a disciplined 

methodology for debottlenecking to aid improvement teams as they sift through options efficiently to find 

cost-effective recommendations that meet the desired improvement goals but avoid wasteful or  excessive 

investment.  Regardless of the throughput increase, the improvement must be able to meet the minimum 

economic return on investment (ROI) set by the company.  

Market forces like increasing demand and market expansion often push required production beyond 

current capability. Increasing throughput may also have operational and supply chain benefits leading to 

increased profitability. Increases in plant throughput enable ramping up production to keep pace with 

demand, and can help drive top line growth. Increases in throughput may also lead to flexible production 

schedules or reduce production makespans and consequently reduce operating costs to improve bottom 

line performance in lower demand periods. Differentiated high-value products are often associated with 

seasonal demands with high variability (Cachon and Terwiesch 2012) so a debottlenecked plant can have 

a positive effect on inventory and delivery lead times,  and is responsive and robust to fluctuations in 

market conditions. 

In what follows we present our approach to successfully debottlenecking a chemical batch plant to 

meet the increased production target, meet the required ROI and capture supply chain synergies.   
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1.2  Literature Review 

In the process engineering literature, debottlenecking opportunities for continuous process plants are 

discussed by Litzen and Bravo (1999) and Litzen and Flanegan (2016). Their work uses a simulation-

based approach to rank unit operations in terms of their distance from target throughput. The unique 

feature with process plants is that unit operations that exceed the target throughput may be modified by 

leveraging reflux ratios, heat duties, column pressures, etc. to afford greater throughput in bottleneck unit 

operations. Several case studies are presented. Other papers take an optimization-based approach (e.g., 

Diaz et al. 1995; Voudouris 1996; Zhang, Zhu, and Towler 2001).  

 Koulouris, Calandranis, and Petrides (2000) provide systematic analysis for batch plants. They use 

processing times and utilizations to define a number of metrics that are useful for characterizing 

bottlenecks. Different equipment are classified based on the relationship between their capacities and their 

uptime. The fundamental premise is that overall throughput improvements can be made by increasing 

batch sizes. Depending on what class the equipment bottleneck belongs to, one may be able to increase 

batch sizes by (1) introducing more cycles per batch for the relevant equipment; (2) reassigning larger 

equipment to bottleneck tasks; or (3) introducing new equipment. The paper considers a single-product 

plant, and the methodology does not incorporate processing time variability.  

 Several other papers in the literature (Tan et al. 2007; Alshekhli et al. 2011) use similar principles for 

different debottlenecking applications. 

1.3 Approach 

Over the last few decades, batch process plants have become prevalent for the production of specialty 

chemicals and other low-volume/high-margin products (Rippin 1993). One advantage of batch approach 

is that multiple products can be produced just by changing the batch recipe. Recipes specify the rations of 

raw materials, operating conditions, feeding sequences, processing times, etc. A consequence of having a 

multi-product plant is that there is not a single product that represents the average performance of the 

plant and the sequence and relative demand of the different products must be considered in the 

debottlenecking analysis.  

 In manufacturing plants the personnel, product mix, operations and state of equipment change 

frequently and having an updated understanding of how these affect current plant capacity can help 

technical teams not only operate better, but respond quickly to calls for production capacity increases. 

Mathematical models of plant operation are often the easiest and best way to describe current operations. 

These are typically categorized as either simulation models or optimization models. Each has its pros and 

cons, and our experience suggests that they are best used in a complementary manner; simulation models 

enable high fidelity descriptions of operations, rules, and variability, while optimization models 

effectively manipulate high-dimensional degrees of freedom over abridged model representations. Our 

debottlenecking strategy incorporates an optimization sub-step, as described in later sections. 

 Production systems with significant variability in processing times are modeled easily in discrete-

event simulation environments. A debottlenecking case study using discrete-event simulation, and 

involving a sequential-parallel multi-product production process is presented in Sharda and Bury (2010). 

The work performed bottleneck analysis within the DMAIC (define, measure, analyze, improve, control) 

framework of Six Sigma project management system (Breyfoggle III 1999). In this paper we build and 

expand upon that approach. 

 Within the ‘define’ phase of the project,  market conditions are analyzed to set new production 

targets, the available improvement budget and the current understanding of operations can determine how 

much improvement in throughput is required and theoretically possible. The updated knowledge of 

operations would also be part of the ‘control’ phase, once improvements have been made. The ‘measure’, 

‘analyze’, and ‘improve’ phases are part of the iterative debottlenecking scheme we propose in this paper.  
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 The methodology we present eliminates bottlenecks in a systematic manner with consideration of 

costs and practical improvement constraints; considers variability in processing times; is applicable to 

multi-product batch plants with general configurations – sequential, parallel, or sequential-parallel; and 

combines the relative advantages of discrete-event simulation and mathematical optimization. The 

method may also be extended to be applicable to both flowshop and jobshop plants.  

 Section 2 defines the problem we consider, including the scope and pre-analysis of data; Section 3 

outlines the analysis and debottlenecking method that we propose; and Sections 4 and 5 illustrate and 

discuss results on an example case study at The Dow Chemical Company. 

2 PROBLEM DEFINITION AND PREPROCESSING 

2.1 Process Description 

The plant layout for the case study we consider is shown in Figure 1. The four production trains are 

shown. Each train is a sequential sequence of operations and each train may be in a different state. The 

blue boxes indicate the major processing equipment. The grey boxes are shared resources between the 

trains. Arrows indicate direction of material transfer. As this is a batch process, the material flows occur 

at discrete time intervals. As products are recipe-based, raw material tanks are resources that are shared 

among the trains. Manpower and other mechanical operations may also be shared among the trains.  

 Raw materials are loaded sequentially onto a particular train, and can also be loaded simultaneously 

on the four trains. In addition, required resources may be captured by a train making them unavailable  

and causing a delay in the other trains. This adds to the overall processing times. The equipment is not 

identical in size or throughput across trains, and this is taken into consideration while allocating batches 

to trains in the batch scheduling phase.  

   

 

Figure 1: Four parallel production trains are shown (1, 2, 3, 4). Blue boxes are processing equipment, and 

grey boxes denote shared resources (equipment or manpower). 

2.2 Schedule Conversion 

We use a high-fidelity simulation that has the operational logic and fitted probability distributions to 

analyze scenarios that will deliver the required production capacity increase. The first step is to translate 
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this monthly production target into a form that can be used in the simulation. Given an improvement 

target in the form of an absolute annual throughput goal, or a percentage increase from current production 

levels,  we scale this for one month’s worth of production as in Figure 2.  

 As illustrated in Figure 2, the production plan target (step 1) may be divided into the fractions that 

represent a forecast of the relative production volumes of the different products—a product wheel (step 

2). We then divide these volumes into individual batch sizes (step 3), assign these batches to different 

trains (four, in our case), and specify a batch/campaign sequence (step 4).  At this point the makespan will 

exceed 30 days because of current production bottlenecks. We can then complete step 4 by examining a 

proposed set of improvements (debottlenecking) to reduce the makespan to 30 days on all trains.  

 The division of volume into batches is really more involved, as batch size will depend on the 

equipment used to process it or the train it is assigned to—this will be discussed in more detail in the next 

section. We assume that we have already determined maximal batch sizes for each product on each 

train/set of processing equipment (through, say, a similar method to that proposed in Koulouris, 

Calandranis, and Petrides (2000)), and focus on improvements beyond batch size increases.  

 

 

Figure 2: Translation of a monthly production target to simulation input in the form of a monthly 

production schedule. 

 

 

 

 

2927



Amaran, Sharda, and Bury 

 

 

2.3 Data Analysis and Key Metrics 

Process monitoring systems are often set up to capture individual step times in a batch process. From a 

simulation point of view, it is important to segregate the independent data from the dependent data to 

avoid double counting. We may only need to consider certain processing times; some wait times may 

only be a consequence of the processing times.  

 Next, we collect relevant historical data in order to understand the nature, distribution, and 

correlations in the data. As mentioned earlier, the plant operation may constantly be changing, and it is 

important to use data that bests represents both current operation and future product mix.  The 

understanding of step time variability is improved by extracting data from periods of operation where (1) 

the product mix is representative of forecasted demand; (2) the step times are not time-varying; (3) there 

is no process idling. Of course, best practices for data analysis such as removal of outliers, use of 

appropriate product substitutes in case of limited historical data, and use of empirical distributions when 

no parametric distribution is appropriate should be employed. We use the JMP statistical software (SAS 

Institute 1989-2015) for visualization and analysis of data and the ExpertFit
®
 distribution fitting software 

(Law 2006) to fit the data as it provides output in the syntax of the simulation software specified.  

 Further, it may be helpful to narrow the scope to portions of the production process that are going to 

impact the analysis. For instance, an auxiliary production process that produces a precursor to the plant 

under consideration may be left out if, historically, there has never been lack of supply—it will not affect 

the bottleneck analysis. With an understanding of the processing logic, relevant scope, and the relevant 

step time distributions, a discrete-event simulation can be built; we use the ExtendSim® software 

(Imagine That Inc. 2013) for this. 

 To validate the simulation, a comparison of inter-batch start times, overall production times, queue 

lengths, and individual processing and wait times may be useful. If the match is not satisfactory, a review 

of the simulation setup and details of operations and data must be done. Gaining confidence in the 

simulation and its ability to reproduce historical data is often a time-consuming step.  

 From a debottlenecking point of view, it is useful to aggregate individual step time data to compute 

equipment utilizations. The equipment utilization point of view is useful, as it makes it easier to identify 

bottlenecks in the system. A piece of equipment that is used all of the time (100% utilization) is clearly 

the rate-limiting step, and therefore is a bottleneck in the process. Reducing the time in this equipment 

speeds up the overall process, and increases the utilizations in the other pieces of equipment as well. This 

pre-processing of data forms part of the measure/analyze step in the Six Sigma DMAIC process. 

3 DEBOTTLENECKING STRATEGY 

A multi-product, sequential-parallel production scheme provides for flexible manufacturing operation is 

harder to analyze than a single batch train. In a sequential-parallel process plant, multiple trains or 

processing steps may involve shared resources. For instance, a step may involve the injection of a 

polymer into the vessel. This polymer may come from a common reservoir that can service only one 

vessel at a time. As this is an activity common to multiple parallel processes, an improvement in the 

injection time may affect all parallel processing trains. Another factor in process plants is the nature of 

material flows between equipment. If a viscous liquid or solid is involved, multiple pieces of equipment 

may be involved in the same processing step. Similarly, if operating protocol says that a batch has to wait 

for a downstream vessel as it prepares for material transfer, both vessels are being utilized at the same 

time. Again, an improvement in this step could positively impact utilizations in both pieces of equipment.   

 For a multi-product plant, it may not be straightforward to determine what the bottleneck is, let along 

the extent to which the bottleneck process must be improved, as is illustrated in Figure 3. In Trains 1 and 

3, the utilizations in Units II and III (which are a combination of load, process, and unload operations) are 

in the high 90s, indicating that they represent the bottleneck, although not all of the time. In Trains 2 and 

4, this is less clear. This is due to both processing time variability as well as product mix, and warrants a 
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closer look. Variability in processing times further confounds production and bottleneck analysis, and a 

product-wise look at equipment utilization times is required (Figure 4).  

 The figure shows the processing time spent by all products in each of the major equipment units on 

Train 1. Error bars show the variability across batches. The products, along with the number of batches in 

parenthesis is shown on the horizontal axis. This serves to further explain what we see in Figure 3, where 

the bottleneck seems to be Unit III. Product B has most number of batches, and, on average, spends most 

processing time in Unit III. However, Unit I spends most time processing Product A and, even in the case 

of Product B, some batches may spend more processing time in Unit I due to variability (as indicated by 

the overlapping error bars).  

In this case, most impact would be made if we focused on Product B as it is the most-produced 

product by far. In order to remove the bottleneck for Product B, we improved the processing time in Unit 

III by 45 minutes, so that Product B would take as much time in Unit III as in the other Units.   

 

 

 

Figure 3: Illustrative example of utilizations in the major equipment on each train.  
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Figure 4: Time utilized by major equipment units in processing each product on Train 1. 

3.1 Classification of Process Improvement Options 

Improvements may be classified as: Type 1—operational improvements by removing slack and 

uncovering hidden capacity with current infrastructure; Type 2—upgrades to current equipment, planning 

and scheduling improvements and improvements in operating discipline; Type 3—fundamental 

improvements in operating policies; and Type 4—investment in new pieces of equipment/trains. This 

classification represents the relative ease with which these improvements may be implemented, with Type 

1 being the easiest, and Type 4 being most difficult, as it involves significant capital investment. 

 Type 1 improvements are low-hanging fruit that should become apparent with a close look at step 

time data. Unnecessary wait times for downstream equipment that are coded in to plant control logic are 

an example of this.  

 Examples of Type 3 improvements may involve combining two steps in a piece of equipment by 

carrying them out simultaneously, or modifying the recipe to add ingredients in a different sequence, or 

changing ingredient loading operation to complete loading a batch on one train before moving to the next 

(conversion from parallel to sequential operation in the loading sub-process). These changes may require 

a more involved study by the research or operations teams before they can be implemented. 

 Type 4 improvements involve the most capital expenditure, and involve investment in entirely new 

pieces of equipment (e.g., larger processing vessel, intermediate storage), or in entirely new trains. This 

type of improvement is less common, and takes place only when there is a need to significantly increase 

capacity. 

 Type 2 improvements will be the focus of this work. Upgrades to equipment may include, for 

example, replacing an existing pump with one that can pump at a higher rate, or introducing an online 

measurement device to avoid having to do a manual sampling step. Planning and scheduling improvement 

opportunities can be discovered through the use of mathematical programming models. The models could 

be used, for instance, to determine the number and size of batches, their train allocation in order to 

balance overall processing times across trains, and the processing sequence that minimizes average wait 

times, product changeovers and cleaning rinses between campaigns. In our case study, transitions and 

cleaning add significant processing time, and the focus is on minimizing these. These recommendations 

may be brought back to the simulation environment for rigorous analysis. Improvements in operating 

discipline involve reducing the variability around manual tasks by implementing training programs or 

updating work processes.  
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 Prior to debottlenecking, it is important to distinguish between improvements that can guarantee a 

certain improvement in processing time (e.g. Type 1, Type 2 (equipment upgrades), Type 4), and those 

that can improve a certain processing time in theory (e.g. Type 2 (operating discipline, planning and 

scheduling), Type 3). The extent of operating discipline improvements is inherently hard to guarantee, as 

they involve imperfect human involvement. The precise magnitude of planning and scheduling 

improvements may also be difficult to guarantee due to a certain supply chain or inventory policy in 

place, or due to changing product mix that will change batch-train allocation.  

 It is also important to specify the maximum speed-up that is technically possible with the 

improvements that can guarantee processing time reduction. When going after a certain production target 

in the debottlenecking process, we stack guaranteed improvements while respecting this technical 

constraint, and then implement theoretical improvements on top of these. Different theoretical 

improvement scenarios can be analyzed by appropriately rolling back the guaranteed improvements.  

3.2 Debottlenecking Decision Sequence 

The approach we propose is to first see whether these improvements are enough to achieve the target. If 

they are, then we need to specify which improvements will achieve the target exactly. By doing this, in 

combination with targeted debottlenecking study, we ensure that (1) the investments or improvements we 

propose are most effective and not wasteful; and (2) we do not invest excessively by overshooting our 

target. The debottlenecking procedure includes iterated measure, analyze, and improve steps of the Six 

Sigma DMAIC process.  

 The debottlenecking strategy is as follows: 

 

Step 1. Analyze operations – Run simulation to obtain step times by product and by train (as in  

 Figure 4). 

Step 2. Identify improvement opportunities – Determine the average gap between largest and  

 smallest  step times on high volume products on each train. If guaranteed improvement  

       (Phase I) opportunities have  been exhausted, consider theoretical improvements (Phase II). 

Step 3. Determine improvement scenarios – With consideration of feasibility, narrow down on  

  a specific cycle time improvement or change in operations on each train, and choose the  

 most economical investment option that delivers this improvement. If budget is already 

      exhausted, elmininate improvement options that involve capital.  

Step 4. Implement improvement – Code in improvements in the simulation, and if all  

 improvement opportunities are not exhausted return to Step 1 to investigate a new 

   improvement scenario; else proceed. 

Step 5. Target progress check – If production targets are not achieved, deem it infeasible and  

 exit, reporting the best possible improvement, cost, and shortfall.  

Step 6. Backtrack – Roll back most recent set of cycle time improvements in simulation. 

Step 7. Simulate – Simulate; if production targets are still achieved, return to Step 6, else  

  proceed. 

Step 8. Meet target – Use a binary search to converge to precise cycle time improvement  

 recommendations for each train. Ensure that the 30-day target is met with high  

  probability. 

 

For each of the simulation scenarios, we compute the number of replications required (Law and 

Kelton 2000) through 

𝑛(𝛽) = min {𝑖 ≥ 𝑛0 | 𝑡𝑖−1,1−𝛼/2√
𝑆2(𝑛0)

𝑖
≤ 𝛽}, 
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where 𝛽 is the absolute error desired, and 𝛼 is the confidence level. 𝑆(𝑛0) is the standard deviation 

obtained using 𝑛0initial replications.  

 The reason this ‘incremental improvement followed by backtracking’ strategy shines is that when we 

backtrack, we have a roadmap as to which improvements to be more conservative about at each 

backtracking step. Once we have done Phase I, different Phase II scenarios can be tested on top of these. 

Once plant personnel narrow down on the specific Phase II (thoeretical) scenario that they feel is most 

realistic, we now have a method to roll back Phase I improvements to determine the precise set of cost-

effective cycle time improvements that we need to invest in.  

4 CASE STUDY AND RESULTS 

The iterations of the algorithm described in the previous section result in the waterfall step times shown in 

Figure 5. Iterations 1—5 represent guaranteed improvements. The cycle time improvements in these five 

iterations are shown at the top of Figure 6.  

Iteration 6 represents improvements in operating discipline, and Iterations 7 and 8 represent balancing 

of batches on trains and rescheduling to minimize transitions and rinses between campaign respectively. 

Iteration 9 is the final backtracking step which we implement when we see that the implemented 

improvements overshoot the target production level in Figure 5.  

At the outset, it was given that it is not feasible to improve cycle times in Units II and III beyond 45 

minutes. An example of bottleneck improvement hitting a constraint is in Iteration 3 at the top of Figure 

6. In Iteration 3, Unit III is still the main bottleneck in Train 1. However, the 45 min improvement limit 

has been hit in Iteration 2, so Unit II is improved instead. This still delivers a 1 day overall time 

improvement as can be seen in Figure 5. 

 

 

Figure 5: Total production times for all trains after Phases I and II (Avg. = 29.9 days). 
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Figure 6: Cycle-time improvements for debottlenecking iterations (top and bottom right figures). Bottom 

left figure shows extent of roll back.  

5 CONCLUSIONS 

The debottlenecking method we propose is very generally applicable. Given an target throughput and a 

set of improvement options, the decision sequence sifts through a set of improvement options efficiently. 

It considers costs, process time variability, and feasibility of improvements to cost-effectively improve 

capacity in a multi-product sequential-parallel batch process plant.  

The classification of process improvement types, the use of mathematical optimization as a sub-step, 

and the backtracking method facilitate the recommendation of specific improvements while avoiding 

wasteful expenditure. The method is illustrated through a sequential-parallel batch plant case study. 
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