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ABSTRACT 

This paper describes the solution of a hybrid flow shop (HFS) scheduling problem of a printed circuit 
board assembly. The production comprises four surface-mount device placement machines on the first 
stage and five automated optical inspection machines on the second stage. The objective is to minimize 
the makespan and the total tardiness. The paper compares three approaches to solve the HFS scheduling 
problem: an integrated simulation-based optimization algorithm (ISBO) developed by the authors and two 
metaheuristics, simulated annealing and tabu search. All approaches lead to an improvement in terms of 
producing more jobs on time while minimizing the makespan compared to the decision rules used so far 
in the analyzed company. The ISBO delivers results much faster than the two metaheuristics. The two 
metaheuristics lead to slightly better results than the ISBO in terms of total tardiness. 

1 INTRODUCTION 

This paper describes the solution of a hybrid flow shop (HFS) scheduling problem with major and minor 
sequence-dependent setup times based on an industrial case of a printed circuit board (PCB) assembly. 
The objective was to minimize the makespan and the total tardiness. An HFS production environment 
consists of s production stages in series. Each production stage comprises m identical parallel machines. 
Each job j has to be processed on each production stage on one of the identical machines (Pinedo 2012). 
This problem is NP-hard (Lenstra et al. 1977). The paper proposes three different solutions to this HFS 
problem: an integrated simulation-based optimization algorithm (ISBO) developed by the authors and two 
widely used metaheuristics, simulated annealing and tabu search. 

Scheduling is the deployment of resources in order to complete a set of tasks during a determined 
time span (Baker and Trietsch 2009). Scheduling problems have been extensively investigated in different 
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fields of academia due to its essential role in manufacturing environments and different service sectors 
(Ruiz and Vázquez-Rodríguez 2010). Efficient allocation of resources supported by the appropriate 
sequencing is considered to be a major mathematical optimization problem (Lenstra et al. 1977). Johnson 
(1954) presented an optimal schedule for the two machine flow shop with sequence-dependent setup 
times, which is not as complex as an HFS problem. Direct optimization approaches have been previously 
implemented to solve HFS problems. Wittrock (1990) adopted a branch and bound algorithm to address 
the problem of identical parallel machines with major and minor sequence-dependent setup times, which 
can be considered as a simplified form of an HFS, and reported a near optimal solution. The branch and 
bound approach requires long computational time, even for small instances. Dynamic programming 
represents another direct optimization approach, which can be applied to solve HFS problems divided into 
smaller sub-problems (Baker and Trietsch 2009). The recursive behavior of a dynamic programming 
approach facilitates the investigation of the whole solution space of a moderate size problem in 
reasonable computational time (Pinedo 2012).  

Heuristics are used to obtain good solutions in reasonable computational time n when the problem 
domain gets more complex (Allaoui and Artiba 2004). Priority Dispatching Rules (PDRs) are widely used 
in practice to define scheduling policies in manufacturing environments. PDRs are the simplest form of 
heuristics due to their ease of use and intuitive nature (Andersson et al. 2008). Shortest Production Time 
(SPT) and Earliest Due Date (EDD) are typical PDRs. They are often implemented to solve problems 
with a single objective function and they lack on solution quality as soon as the objective function gets 
more complex (Andersson et al. 2008). More sophisticated heuristics are adopted to deal with HFS 
scheduling problems. Voß (1993) and Gupta (1988) used heuristics based on local search algorithms to 
solve a special case of an HFS with exactly one machine on the second stage and with the objective to 
minimize the makespan. This problem is still NP-hard (Gupta 1988). Local search algorithms are 
improvement procedures based on an initial feasible solution for the problem. They recursively search in 
the neighborhood of the initial solution for a better solution until a terminating condition is met. 

Metaheuristics are often used to solve scheduling problems and are a powerful solution approach. 
Metaheuristics are guided local search algorithms. They are based on local search improvement 
algorithms and a general optimization or control strategy. The control strategy is used to guide the local 
search algorithms (Voudouris and Tsang 2003). The idea of metaheuristics is motivated by the fact that a 
local search algorithm often only obtains a local optimum from the solution space (Ross 2005). Simulated 
Annealing (Allaoui and Artiba 2004; Mirsanei et al. 2011) and Tabu Search (Wang and Tang 2009) are 
widely used metaheuristics. 

2  SYSTEM DESCRIPTION AND PROBLEM FORMULATION 

Any scheduling problem can be described and classified based on the machine environment and 
configuration, the job characteristics and the objective function (Graham et al. 1979). 

2.1  Machine Environment and Configuration 

The analyzed production system is a hybrid flow shop, which consists of two production stages (see 
Figure 1). The first production stage comprises four identical parallel surface mount device (SMD) 
placement machines, which are usually the critical resources in the observed production system (Csaszar 
et al. 2000). Consequently, the analysis was focused on the SMD placement machines. The second 
production stage consists of five identical parallel automated optical inspection (AOI) machines. Each job 
j has to be processed on each production stage s on one of the identical machines m. 
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Figure 1: Two stages hybrid flow shop. 

2.2 Job Characteristics 

Jobs of the analyzed HFS scheduling problem have the following characteristics: 
 
• The number of jobs in a certain time period and the number of products per job are known and 

fixed.  
• Part types are very heterogeneous. 
• The family type of a job depends on the used raw materials. 
• The processing time of each job on a certain machine and production stage is known and fixed. 
• The priority of a job represents its desired delivery date. 
• The sequence-dependent setup time is the time to setup the machine when changing jobs. 
• Machine breakdowns are modelled indirectly through reduced available machine time. 
• The buffer size between production stages is unlimited. 
 
On the first production stage (SMD), jobs are scheduled with sequence-dependent major and minor 

setup times. On the second production stage (AOI), jobs are scheduled with sequence-independent setup 
times. Wittrock (1990) as well as by So (1990) introduced the concept of major and minor setup time to 
describe sequence-dependency. Jobs which share common raw materials are grouped into product 
families. The setup within a product family leads to a minor setup time. Whereas the setup between two 
different product families induces a major setup time. On the first production stage job splitting is not 
permitted, which means that a job’s production process cannot be stopped to produce a different job due. 
Job splitting is allowed on the second production stage. 

2.3 Objective Functions 

Accomplishing a balance between production system efficiency and the job’s due-date is a trade-off 
decision. For this reason, tardiness has been frequently used as a major supplementary performance 
criterion along with the makespan (Lenstra et al. 1977). The objective functions of the analyzed HFS 
problem are to minimize the makespan 𝐶!"# (1) and the total tardiness 𝑇 (2). The makespan is the 
necessary time to complete all released jobs (Wittrock 1990). To minimize the makespan it is important to 
minimize the number of major setups. Tardiness is the difference between the completion time of a job 𝐶! 
and its due date 𝑑! as shown in (2). 
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3 SOLUTION APPROACHES AND IMPLEMENTATION 

The problem to minimize the makespan of a two stage hybrid flow shop is NP-hard (Gupta 1988). The 
development of a polynomial algorithm, which can provide an optimal solution in a reasonable time, is 
unlikely possible. Thus, breaking down the problem could be the key to obtain a near optimal solution by 
solving smaller sub-problems. It is often easier to solve the allocation and the sequencing independently 
(Baker and Trietsch 2009). Initially, jobs are allocated to the machines on each production stage. Four 
single machine problems with sequence-dependent setup times emerge on the first production stage and 
five single machine problems with sequence-independent setup times arise on the second production stage. 
A heuristic and metaheuristics were used to solve the allocation problem. A dynamic programming 
approach was used to develop a sequencing algorithm that builds a near optimal sequence of jobs on each 
machine. 

The first solution strategy presented is an integrated simulation based optimization (ISBO). The ISBO 
integrates a heuristic and a sequencing algorithm into a simulation model. The second and the third 
approach use a metaheuristic: simulated annealing and tabu search. Both metaheuristics are combined 
with a sequencing algorithm. A simulation model was used to assess the quality of the metaheuristics’ 
solutions. 

3.1 Integrated Simulation based Optimization 

In the integrated simulation Based Optimization (ISBO) (see Figure 2), the simulation is a part of the 
solution rather than an evaluation method for it. The allocation and sequencing algorithms are integrated 
in the simulation model. The simulation model was built with ExtendSim 9. The discrete-rate and 
discrete-event simulation-libraries were used to implement a hybrid mesoscopic simulation approach to 
avoid a long computation time (Reggelin and Tolujew 2011). The SMD and AOI production processes 
are modelled using the discrete-rate library. Flow rates differ depending on the current part type, being 
produced by the machines. The dispatching and decision making processes are modelled using the 
discrete-event library in order to ensure a high level of accuracy. The flow of a job is changed to a single 
object at decision points. When a job is released for processing, it is again modelled with a flow rate. 

Product families and their jobs are initially allocated to the machines before the simulation starts. The 
shortest process time (SPT) rule determines the initial allocation of the product families on the first 
production stage SMD. The earliest due date (EED) rule initially allocates the jobs on the second 
production stage AOI. During the simulation, the interaction between the allocation and the sequencing 
algorithm leads to a sustainable production strategy with a near optimal sequence being continuously 
generated on each machine. The allocation algorithm ensure a balance of the production load between the 
machines. 

 In order to minimize the makespan, all jobs of a product family should ideally be manufactured 
successively on the same SMD machine to avoid major setups. However, this would lead to delivery time 
violations of many jobs. The sequencing algorithm operates on two levels, the product family level and 
the job level (see Figure 3). On the family level, the smallest family which contains at least one of the 
highest job priorities is chosen. Then, the sequencing algorithm switches to the job level. On the job level, 
the algorithm tends to choose jobs from the same family according to the priority of jobs using the EDD 
rule. The sequencing algorithm keeps operating on the job level until jobs of the family are completely 
produced or a critical point is met. The critical point describes a situation, when it is no longer possible to 
produce a job from the same product family without violating the delivery date of other jobs from 
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different families. Choosing the smallest family increases the chance that the chosen family is completely 
produced before reaching a critical point. This behavior avoids a later major setup. 

 
 

Figure 2: Integrated Simulation Based Optimization. 

The allocation algorithm tries to sustain a balance of the production load between the machines on 
each production stage. It performs two types of allocation, event-based allocation and pre-defined 
allocation. The event-based allocation is triggered by the sequencing algorithm (see Figure 2 and Figure 3) 
when critical points are reached. It checks for the least loaded machine and reallocates the remaining jobs 
of the family to this machine. The pre-defined allocation is performed each day to balance the production 
load of the next highest three priorities. All families except the one in production are deallocated. The 
allocation algorithm starts reallocating families to the least loaded machines during the next three 
simulated working days. It tends to balance the amount of must-be-produced jobs in the next three days 
according to their delivery date between the machines. The pre-defined allocation processes tries to avoid 
major setups by sustaining a balance of the must-be-produced jobs between the machines by avoiding 
critical points. Manipulating the allocation of families during the simulation better explores the solution 
space of the problem after significant changes in the production load. Producing from different families 
changes the form of the production load and therefore, finding an enhancement in the allocation is 
possible during the simulation despite a perfect initial allocation. 

3.2 Simulated Annealing 

Simulated annealing was combined with a discrete-event simulation model to solve the allocation. For the 
sequencing, the algorithm shown in Figure 3 was used again. Simulated annealing is derived from the 
concept of physical annealing of a solid substance. It was first introduced in the early eighties by 
Kirkpatrick et al. (1983) to solve combinatorial optimization problems. Annealing is the process of 
melting a solid substance and cooling it slowly down until the particles arrange themselves in the solid 
state (Aarts et al. 2005; Kirkpatrick et al. 1983; Mirsanei et al. 2011). When the temperature is high the 
particles are free to move randomly since they hold a high energy. In this state, the simulated annealing 
shows a very random behavior and is more likely to accept a worse solution than the current best solution 
(Mirsanei et al. 2011). When the cooling process starts, the solid state reduces the random behavior of the 
simulated annealing. The algorithm starts to search for a better solution in the same region of the solution 
space, rather than jumping from one region to another region. 
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Figure 3: Sequencing Algorithm. 

Simulated annealing is used to solve the allocation problem on the SMD placement machines. The 
approach starts with a feasible solution to the problem as depicted in Figure 4. Then, the neighborhood 
search of the simulated annealing tends to find randomly a better solution in the current region of the 
solution space. The neighborhood search is based on a random single point operator (Naderi et al. 2009), 
in which a random family is picked and reallocated randomly to a different SMD placement machine. The 
number of changes (number of reallocated families) was restricted to one to avoid the simulated annealing 
behaving like a random search. After all families being allocated, the sequencing algorithm starts to build 
the production schedule of each SMD placement machine. After that, the jobs are allocated to the AOI 
machines based on their expected finishing time on the SMD placement machines. The allocation to the 
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AOI machines tries to achieve a balanced production load between the machines and tries to consider the 
priorities of the jobs (due dates). The generated schedule is evaluated by using the discrete-event 
simulation model. The production sequences on the AOI machines are determined with the help of the 
EDD rule during the simulation run. 

After passing the result of the simulation run back to the simulated annealing algorithm, three cases 
can be differentiated: 

 
1. The new schedule dominates the old one in both objective values. The solution is accepted and 

used as the next start solution. 
2. The old schedule dominates the new one. 
3. Neither the old schedule nor the new one dominates. 
 
For case two and case three, the Boltzmann distribution is used to decide whether to accept a new 

solution or not (Naderi et al. 2009). A weighted sum of the observed objective values was used since the 
Boltzmann distribution contains only one value. The probability of accepting a worse solution depends on 
the current temperature of the simulated annealing. The setup of the parameters of the simulated 
annealing strongly impacts its quality (Pirlot 1996). The parameters are initial temperature, the number of 
iterations before changing the temperature and the cooling rate. In this implementation, the simulated 
annealing starts with an initial temperature between 20 and 30 degrees. Each temperature contains 10 to 
20 iterations. The implemented cooling schedule is linear and the cooling rate deviates between 0.1 and 
0.25 degrees. 

 
 

Figure 4: Metaheuristic approach. 

3.3 Tabu Search 

The tabu search algorithm was combined with the same discrete-event simulation model, which was used 
for the simulated annealing. For the sequencing, the algorithm shown in Figure 3 was used again. Tabu 
search is one of the oldest metaheuristic approaches, which was introduced by Glover (1986) to solve 
combinatorial optimization problems. In contrast to simulated annealing, tabu search is based on a 
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deterministic solution mechanism, in which the neighborhood of the initial solution is build based on a set 
of specific moves, which are conducted on the initial solution to obtain new solutions. The current 
neighborhood is then investigated to identify the best solution. The initial solution is replaced by the best 
solution found, before starting the next iteration. The move which led to the current solution is stored in 
the tabu list. The aspiration function of the tabu search is used independently to evaluate the quality of the 
generated solutions of the moves from the tabu list (Nowicki and Smutnicki 1996). 

The implementation of the tabu search in this paper is based on a single point operator neighborhood 
search. A single move is committed by picking a family and reallocating it to another machine. Each 
family is associated with three moves that generate three different solutions in the neighborhood. The 
solutions represent the possible allocations of each family to all considered SMD placement machines. 
For each generated new allocation, the sequencing algorithm is used to build the new production schedule 
on each SMD placement machine. Then, the jobs are allocated to the AOI machines, based on their 
expected finishing times on the SMD placement machines. Finally, the quality of each production 
schedule is evaluated using simulation. The results of the simulation runs are stored to identify the best 
solution and add its SMD allocation to the tabu list. The length of the tabu list is limited either to 10 or 15 
solutions. Since two objective functions (makespan, tardiness) are considered, a weighted sum was used 
to identify the best solution before starting the next iteration. The forbidden schedules from the tabu list 
are evaluated using the aspiration function. If a dominant solution is found, it is used to start a new 
iteration. 

4 COMPUTATIONAL RESULTS 

The experiments were performed on four different real datasets. The datasets are heterogeneous in terms 
of the number of product families, the number of jobs and their associated part types as shown in Table 1. 
The major setup time averages 65 minutes and the minor setup time 20 minutes. 

Table 1: Input datasets. 

 Dataset 1 Dataset 2 Dataset 3 Dataset 4 
Number of jobs 164  170 175 143 
Number of families  41 37 36 35 
SMD processing time per job (min) 4 - 3,142 2 - 3,736 4 - 3,293 4 - 3,209 
Accumulated SMD processing time (min) 54,685 62,345 61,274 56,250 
AOI processing time per job (min) 4 - 4,351 3 - 5,590 5 - 3,528 3 - 4,300 
Accumulated AOI processing time (min) 72,528 88,702 74,738 79,294 
Quantity of parts (PCBs) per job 40 - 109,920 20 - 143,040 21 - 186,960 20 - 216,000 

 
Table 2 shows the computational results of the approaches used to solve the HFS problem. The family 

production (FP) scenario is a batch production strategy, which has been used so far by the company to 
determine the scheduling policies for their production. In the FP, a machine, producing jobs from a family, 
is not allowed to be switched to another family until the current family is completely produced. This 
strategy leads to a minimum number of major setups and many jobs being late. The standard priority 
dispatching rules (SPT and EDD) lead to bad results in terms of generating many major setups and for the 
SPT also in terms of many jobs being late. 

The integrated simulation based optimization (ISBO), the simulated annealing (SA) and the tabu 
search (TS) show significant improvements in terms of makespan and total tardiness in comparison to the 
scheduling policies used in the company. The ISBO slightly outperforms the simulated annealing and 
tabu search in terms of the makespan. This is caused by the dynamic behavior of the allocation algorithm 
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implemented in the ISBO, which tends to balance the critical jobs and their families instantly during the 
simulation. Simulated annealing and tabu search show a similar behavior for the analyzed problem. 

Table 2: Computational results of the different solution approaches. 

 
Makespan 
(minutes) 

Major-Setups 
(number) 

Penalty 
(number) 

Average 
Tardiness  
(minutes) 

Dataset 1 
FP 23,513 37 39 5,097 
SPT 23,586 126 30 2,883 
EDD 21,154 104 0 0 
ISBO 19,354 43 1 148 
SA 21,930 45 0 0 
TS 19,669 45 0 0 
Dataset 2 
FP 25,447 33 52 5,225 
SPT 26,662 135 31 4,811 
EDD 26,226 136 9 537 
ISBO 21,819 53 0 0 
SA 23,108 55 0 0 
TS 25,142 55 0 0 
Dataset 3 
FP 23,626 32 62 5,060 
SPT 25,756 131 36 4,143 
EDD 22,603 139 8 750 
ISBO 19,979 56 2 268 
SA 23,059 59 0 0 
TS 22,507 60 0 0 
Dataset 4 
FP 23,539 31 48 5,362 
SPT 20,507 113 26 4,430 
EDD 21,145 113 2 482 
ISBO 18,806 42 3 213 
SA 20,562 58 0 0 
TS 21,610 57 0 0 

 
The results from the ISBO were obtained from a single simulation run, which took approximately 30 

seconds computation time. The simulated annealing was configured to have 1,500 simulation runs and 
delivered results after approximately 3 hours computation time. The tabu search was  configured to run 
between 20 and 30 iterations, which corresponds to about 2,100 and 3,150 simulation runs. The number 
of simulation runs in the tabu search depends on the number of product families in the dataset. The 
experiments were conducted on a computer with the following characteristics: CPU 4 x 2.6 GHz, RAM 8 
GB and windows operating system. 
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5 CONCLUSION 

Three applied solution approaches integrated simulation-based optimization (ISBO), simulated annealing 
and tabu search solved the hybrid flow shop (HFS) scheduling problem better than the decision rules used 
very often in practice in the printed circuit board assembly. All three solution approaches led to an 
improvement in terms of minimizing the makespan and producing more jobs on time. The ISBO delivers 
results much faster than the two metaheuristics. The metaheuristics lead to slightly better results in terms 
of total tardiness. The dynamic allocation  used in the ISBO allows for a very deep investigation of the 
solution space during the simulation. This leads to very good results in terms of minimizing the makespan 
compared to the two metaheuristics. The experiments with four real data sets have revealed one major 
challenge of solving HFS problems: large jobs can lead to difficulties in finding a good solution. 
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