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ABSTRACT 

With the feature size shrinkage in advanced technology nodes, the modeling of process variations has 

become more critical for troubleshooting and yield enhancement. Misalignment among equipment tools 

or chambers in process stages is a major source of process variations. Because a process flow contains 

hundreds of stages during semiconductor fabrication, tool/chamber misalignment may more significantly 

affect the variation of transistor parameters in a wafer acceptance test. This study proposes a big data 

analytic framework that simultaneously considers the mean difference between tools and wafer-to-wafer 

variation and identifies possible root causes for yield enhancement. An empirical study was conducted to 

demonstrate the effectiveness of proposed approach and obtained promising results. 

1 INTRODUCTION 

Driven by Moore’s law (Moore 1965), semiconductor manufacturing technology has evolved continually 

from a mature process to an advanced process. Because complementary metal-oxide-semiconductor 

(CMOS) transistors are scaled to a nanometer feature size range, in-line process control plays a critical 

role from the viewpoint of yield enhancement. Indeed, tool-induced process variations affect parametric 

integrated-circuit (IC) product yield. Parametric yield is a measure of the quality of functioning systems, 

whereas functional yield measures the proportion of functioning units produced by a manufacturing 

process (May and Spanos 2006). In particular, variations in transistor parameters at the wafer acceptance 

test (WAT) stage are the main cause of parametric yield losses.  

In practice, end-of-line quality control at the WAT stage follows a sequential detection and diagnosis 

approach (Fan et al. 2000). Transistor parameters are first monitored in the acceptance sampling test 

module and the statistical process control (SPC) module. If an out-of-spec signal is detected in the 

acceptance sampling test module or an out-of-control signal is detected in the SPC module, a preliminary 

diagnosis is performed, and potential process steps are screened. According to the screening results and 

stratification data from these critical steps, an in-depth diagnosis on the basis of domain knowledge is 

performed. However, this process is time consuming, and its performance varies from person to person. A 

systematic and data-driven tool is required to shorten the response time while maintaining high 

confidence in terms of identification of possible root causes upon the receipt of an alarm. In addition, 

multiple components of variation exist in transistor parameters—lot-to-lot, wafer-to-wafer, site-to-site, 

and residual—which are not considered adequately in traditional analysis of variance (ANOVA) 

techniques. 

Focusing on the needs of digital decisions at the WAT stage, this study proposes a big data analytic 

framework for modeling transistor parameter variations induced by process tools to support yield 

enhancement in semiconductor manufacturing. In particular, the proposed approach integrates forward 
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stepwise screening for heteroscedastic regression, the least absolute shrinkage and selection operator 

(Lasso) (Tibshirani 1996), and bootstrap techniques (Efron 1979; Efron and Tibshirani 1993) to consider 

the mean difference between tools and wafer-to-wafer variation simultaneously with high confidence. An 

empirical study was conducted to validate the proposed approach in a leading semiconductor company in 

Taiwan. The results show the viability of the proposed approach.  

2 LITERATURE REVIEW 

In the semiconductor industry, yield is defined as the fraction of total input transformed into shippable 

output. In practice, total yield loss can be divided into three categories: line yield loss, which is the 

fraction of wafers discarded before reaching the WAT; die yield loss, which is the fraction of dice on 

wafers not discarded before reaching assembly and the final test; and final test yield loss, which is the 

fraction of semiconductor devices that are unacceptable for shipment. In particular, die yield loss can be 

decomposed into functional yield loss and parametric yield loss. Functional yield loss consists of dice that 

do not function, whereas parametric yield loss consists of dice that do function but not according to 

specification. Functional yield losses are usually caused by particulate defects, scratches, and 

contamination during the manufacturing process. By contrast, parametric losses are usually caused by 

process variations that cause the die to perform differently from specifications, including a lower 

frequency, slower speed, and incompatible voltage range (Cunningham et al. 1995; May and Spanos 

2006). With the shrinking feature size of semiconductor devices, manufacturing technologies including 

equipment and environments have advanced considerably to reduce yield loss. Hence, reducing 

parametric yield losses caused by process variations to support yield enhancement is becoming 

increasingly critical in modern semiconductor manufacturing. Because the transistor parameter variation 

at the WAT stage is usually highly correlated with parametric yield losses, modeling and control of the 

transistor parameter variations is important.  

The use of SPC for monitoring transistor parameters at the WAT stage has been reported. Fan et al. 

(2000) proposed a methodology for generating robust design parameters to simultaneously apply 

Shewhart and Exponentially Weighted Moving Average (EWMA) control charts to WAT data. Currently, 

data mining and big data analytics approaches have been developed to extract potentially useful 

information and manufacturing intelligence from massive data in semiconductor manufacturing, including 

demand forecasting (Chien et al. 2010), human resource management (Chen and Chien 2011), 

troubleshooting (Chien et al. 2007; Chien and Chuang 2014), advanced process control/advanced 

equipment control (Chien et al 2013; Chien et al. 2015), and wafer bin map/defect image classification 

(Chien et al. 2013; Liu and Chien 2013; Chen et al. 2013; Chen et al. 2016). In particular, Hwang and Lee 

(2014) proposed the use of hidden variable logistic regression to identify critical process variables and 

address missing observations for modeling parametric yield. Pan et al. (2011) developed a virtual 

metrology system for predicting end-of-line electrical properties by using a multivariate analysis of 

covariance (MANCOVA) model with tools clustering. However, little research has been conducted to 

address issues related to the modeling of transistor parameter variations induced by process tools from the 

viewpoint of reducing parametric yield loss. 

3 PROPOSED APPROACH 

3.1 Problem Definition 

A typical semiconductor manufacturing process contains a WAT stage at the end of the process line to 

ensure outgoing quality. At the WAT stage, more than 100 transistor parameters are required for 

inspection. Such parameters are usually associated with electronic properties, and variations in them 

cause yield loss. Such loss is termed parametric yield loss (Agarwal et al. 2007). To reduce parametric 

yield loss, it is critical to effectively and efficiently identify process tools that cause variations by using 

big data analytics for further decision making. 
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For each transistor parameter, the contributors to variation can be decomposed into several levels: 

within-die variation, die-to-die variation, wafer-to-wafer variation, lot-to-lot variation, and tool-to-tool 

variation. Indeed, process tools usually have their own characteristics, and tool misalignment 

considerably affects process variations in semiconductor manufacturing (Chien et al. 2015). In addition, 

wafer-level is the most commonly used granularity for analyzing advanced process data in practice; 

therefore, wafer-to-wafer variation is critical and should be addressed. Hence, the present study focuses 

not only on tool-to-tool variation but also on wafer-to-wafer variation. Furthermore, this study defined the 

following terminologies: 

 A process tool has a location effect if it is one of the root causes of tool-to-tool variation. 

 A process tool has a dispersion effect if it is one of root causes of wafer-to-wafer variation.  

 A transistor parameter follows a location-dispersion model if there exist process tools with 

location and/or dispersion effects.  

 A transistor parameter follows a location-only model if there exist process tools with location 

effects. 

3.2 Data Preparation 

In the data preparation phase, users must first choose a target transistor parameter as the response variable 

for analysis and the query-related process stages as features, on the basis of domain knowledge. Two key 

data preparation issues were addressed in this study for categorical features: missing value imputation and 

collinearity exploration to enhance data quality and model results. 

Although modern semiconductor manufacturing fabs are fully automated, process tool values are 

usually missing according to a nonrandom missing mechanism and time-domain missing patterns. In 

advanced semiconductor processes, the data volume is usually small because of ramping, and elimination 

of data containing missing values may result in a scenario in which no available data can be used. To 

resolve this difficulty, this study proposes a forward k-nearest neighbor algorithm for the effective 

imputation of categorical data as follows: 

1. Compute the similarity matrix between observations for the original data set.  

2. Compute the number of missing values for each observation and arrange them in ascending order.  

3. According to the order, follow sequentially the following steps for each observation: 

(a) Obtain stage names with missing values. 

(b) Obtain the descending order of observations according to similarity. 

(c) Take k nearest neighbors and use majority vote to impute missing values for each stage.  

In addition, v-fold cross validation can be employed to validate the proposed imputation algorithm. 

Fixed process tool combination in short loops is another common situation in the ramping phase of 

advanced processes, and this is attributed to yield concerns. This situation causes stage collinearity in data 

structures and renders statistical models unreliable. We propose the use of a hierarchical clustering 

approach based on Cramer’s V coefficient (Cramer 1946) to provide an overview of stage collinearity 

before model construction. Given the threshold of Cramer’s V coefficient, we automatically combine 

stages that are highly correlated and use process tool combination for further analysis to enhance model 

reliability. Indeed, engineers must endeavor to distinguish the most likely root causes among stages with 

collinearity. The tool with the most observations is the baseline (golden tool) for each stage. 

3.3 Model Construction 

The model construction process involves two subprocesses: stage-level screening and effective tool 

identification. The objective of stage-level screening is to narrow down the range of suspected stages that 

could contain misaligned process tools from the entire data set. Effective tool identification is then 

employed to further identify specific tools with significant evidence. In this phase, two possible models 

are derived, namely a location-dispersion model and location-only model, and the model used depends on 
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whether the dispersion effect exists. In particular, the location-only model is equivalent to a classical 

linear regression model under the following assumptions: 
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That is, the residual is independently and identically distributed normally. By contrast, the location-

dispersion model is a heteroscedastic linear model with the following assumptions: 
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To model nonconstant variance in the location-dispersion model, a generalized linear model (GLM) with 

Gamma distribution and log link (Myers et al. 2010) is proposed for parameter estimation. To inspect 

potential dispersion effects in the data set, the Breusch-Pagan test (Breusch and Pagan 1979) is performed 

after the construction of a classical linear regression model. 

3.3.1 Stage-level Screening 

Semiconductor manufacturing contains hundreds of process stages with parallel process tools; the sample 

size is quite small in the ramping phase. In other words, it is an ultrahigh dimensional data structure, and 

stage-level screening is highly difficult. Forward stepwise regression is a frequently used and classical 

variable screening method, and it has been shown to identify all relevant predictors consistently, even if 

the predictor dimension is substantially larger than the sample size (Wang 2009). Hence, the forward 

stepwise strategy is applied to screen active stages with the Akaike information criterion (AIC) and 

Bayesian information criterion (BIC) as follows: 

 

pL  2log2AIC  (4) 

  pNL  loglog2BIC  (5) 

 

where L represents the likelihood function based on the location-dispersion model, as given by (6); N 

represents the sample size; and p represents the number of parameters in the model. 
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Indeed, the BIC has a higher penalty than the AIC does on a number of parameters. Hence, the BIC 

tends to entail selecting several active stages with fewer process tools, whereas the AIC usually includes 

stages containing minor-effect tools that may not be adequately significant in the regression model. This 

implies that the BIC is a conservative criterion for achieving a lower false alarm rate of selected stages, 

whereas the AIC may detect a greater number of actual root causes. Given the trade-off between the AIC 
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and BIC, it is necessary to consider decision makers’ preference when judging which criterion would be 

more suitable in practice. 

3.3.2 Effective Tool Identification 

If the dispersion effect is not significant, a typical linear regression is constructed for the location-only 

model, and the proposed method calculates a signal-to-noise index (SNI), according to Equation (7), to 

examine the fitness of the linear regression. When the SNI exceeds the specified threshold, the regression 

is considered to have adequate capability for the location-only model. Thus, statistical inference with the 

derived confidence interval provides evidence to support the decision of identifying effective tools among 

selected stages. Conversely, random forest (RF) (Breiman 2001), a machine learning–based approach, is 

used to identify effective tools among all stages because the linear regression lacks evidence of screening 

results. 
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RF is an ensemble learning method that can handle a multivariate problem with high dimensionality 

and collinearity by aggregating several decisions or predictions of weak learners (Breiman 2001; Verikas 

et al. 2011). RF is appropriate for evaluating factor importance in semiconductor data because it can 

achieve a favorable trade-off between the explanationability and singularity of factors on the basis of the 

measurement of the increase in the mean square of predicted errors (Chien and Chuang 2014; Chien, Liu, 

and Chuang 2015). The present study proposes a hybrid RF–AIC procedure for identifying effective tools.  

Regarding the location-dispersion model after stage-level screening, an iterative Lasso procedure is 

proposed for identifying effective tools and estimating tool effects. The Lasso procedure is vital for 

variable selection and estimation in high dimensions by shrinking coefficients in a linear model to achieve 

a trade-off between diminished variance and increased bias. Therefore, the Lasso approach can be 

computed efficiently even when p is extremely high, and it often improves the accuracy of predictions 

(Hastie et al. 2009). The Lasso approach can be extended to heteroscedastic regression, as has been 

conducted in the context of bioinformatics (Daye et al. 2011). 

Equation (8) shows Lasso estimators considering heteroscedasticity in the location-dispersion model. 
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where L is given by Equation (6), and 1t and 2t are tuning parameters pertaining to location and 

dispersion, respectively. If the tuning parameters are infinity, the Lasso estimators are equivalent to the 

result of stage-level screening. By contrast, the Lasso estimators tend to shrink the estimated results in 

stage-level screening toward zero when the tuning parameters are small. Therefore, only a subset of 

coefficients is nonzero when tunning parameters are given. In particular, with the shrinkage of the tanning 

parameters, minor effects are more possibly restricted to zero, whereas only significant effects are 

presented.  

3.4 Result Evaluation and Interpretation 

To validate the reproducibility of effective tool identification using Lasso, the bootstrap technique, a 

general tool for assessing statistical accuracy, is used to provide more evidence for effective tools. The 

basic idea of the bootstrap technique is to create m replications with the same sample size by using 
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sampling with replacement at first, and then fit the proposed iterative Lasso model with the same 

parameter setting for each replication. If a tool is identified by the Lasso model in each bootstrap 

replication, we can conclude that the tools have location effects or dispersion effects with strong 

evidence. In addition, a scatter plot between actual values iy  and fitted values iŷ with an adjusted R-

squared is used for the location-dispersion model (LD-adj. R2) index to present the fitness of the location-

dispersion model for overall model assessment. In particular, the fitted values of the location-dispersion 

model are defined by Equation (9). 
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represents the fitted value from the location model and i
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represents the fitted value from 

the dispersion model. Therefore, LD-adj. R2 is defined as Equation (10). 

 

   

   1

ˆ

2

2

2











Nyy

qNyy

adj. RLD

i

i

i

ii

 (10) 

 

If 
2adj. RLD
 
is close to one, a major variation in the data set can be modeled by process tools, and 

engineers should focus on tools that have high reproducibility in bootstrapped Lasso for troubleshooting 

and process control; otherwise, domain knowledge should be engaged to explore latent root causes that 

are not included in the model. 

4 EMPIRICAL STUDY 

This study analyzed a real case to demonstrate the proposed approach. The entire data set contained a 

given transistor parameter as the analysis target, 29 stages derived after domain knowledge screening, and 

5500 wafers with a missing rate of approximately 40%. The distribution of the transistor parameter was 

approximately normal, with a mean of 0.5363 and standard deviation of 0.0244. Domain experts believe 

that tool-induced variation exists in the transistor parameter; therefore, the objective was to identify 

possible root causes for decision support. 

For data preparation, this study used the proposed forward k-nearest neighbor algorithm with 10-fold 

cross validation to impute missing values. The results showed that the imputation accuracy for this data 

set was 82.5%. In addition, this study applied the hierarchical clustering approach on the basis of 

Cramer’s V coefficient to provide an overview of stage collinearity. As shown in Figure1, the data set 

used herein did not have a severe stage collinearity issue; hence, no transformation to reduce the 

collinearity effect was required. 

2517



Chien, Chen, and Wu 

 

 

Figure 1. Collinearity exploration. 

For model construction, this study applied the location-dispersion model to the data set because a 

significant dispersion effect was detected by the Breusch-Pagan test. This study involved four stages 

(Stage_F, Stage_N, Stage_P, and Stage_S) for location effects and two stages (Stage_U and Stage_Z) for 

dispersion effects after stage screening. Furthermore, this study used the proposed iterative Lasso 

approach with the bootstrap technique to identify effective tools for location and dispersion, as shown in 

Figures 2 and 3, respectively. In particular, tools denoted by red points have 100% reproducibility in 

every bootstrap replication, whereas those denoted by orange points have 70% reproducibility. In addition, 

Figure 4 presents the overall model assessment in terms of a scatter plot of the actual values and the 

predicted values in Figure 4(a) and a normal Q-Q plot of model residuals in Figure 4(b). 

Since the LD-adj. R2 is 0.692 and the Q-Q plot satisfies the normality assumption, the analysis results 

can provide reliable evidence for making domain judgments. Regarding location, 6 effective tools were 

identified from 58 tools in 4 stages. Tool_N6 and Tool_N5 had the highest positive effects, whereas 

Tool_P7 had a negative effect for mean shift. By contrast, regarding dispersion, 3 effective tools were 

identified among 22 tools in 2 stages. Tool_U11, Tool_Z5, and Tool_Z9 may be assignable causes for 

variance shift. On the basis of these results, domain experts can trace the historical events of these tools 

and fix the problem quickly. 

 

Figure 2. Visualization of location-effective tools. 
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Figure 3. Visualization of dispersion-effective tools. 

  
Figure 4(a). Scatter plot.  Figure 4(b). Normal Q-Q plot. 

5 CONCLUSION 

Because wafer fabrication is reaching nanotechnology nodes, developing data-driven tools to support 

yield enhancement decisions effectively and efficiently is necessary. Moreover, modeling of transistor 

parameter variation at the WAT stage is critical for reducing parametric yield losses. Therefore, this study 

proposes a big data analytic framework that integrates various tools including forward stepwise, Lasso, 

and RF to derive appropriate models for identifying effective tools for location and dispersion. Through 

an empirical study and experimental design based on a real data set collected from a leading 

semiconductor manufacturing company, this study validated the proposed approach and showed that it 

outperforms the individual methods. As semiconductor fabs become more intelligent, future studies can 

focus on developing fab-wide advanced process control and advanced equipment control techniques 

based on the results extracted from big data analytics to empower manufacturing intelligence. In addition, 

the use of more complex statistical models such as generalized linear mixed models (GLMMs) is 

suggested for modeling die-level data without violating model assumptions (Krueger and Montgomery 

2014). 
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