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ABSTRACT

Greedy Randomized Adaptive Search Procedures (GRASP) are among the most popular metaheuristics for
the solution of combinatorial optimization problems. While GRASP is a relatively simple and efficient
framework to deal with deterministic problem settings, many real-life applications experience a high level of
uncertainty concerning their input variables or even their optimization constraints. When properly combined
with the right metaheuristic, simulation (in any of its variants) can be an effective way to cope with this
uncertainty. In this paper, we present a simheuristic algorithm that integrates Monte Carlo simulation into
a GRASP framework to solve the permutation flow shop problem (PFSP) with random processing times.
The PFSP is a well-known problem in the supply chain management literature, but most of the existing
work considers that processing times of tasks in machines are deterministic and known in advance, which
in some real-life applications (e.g., project management) is an unrealistic assumption.

1 INTRODUCTION

A large number of decision-making problems in logistics, transportation, and supply chain management
can be modeled as combinatorial optimization problems (COPs). Due to the complexity of modern systems
and processes, most of these COPs are NP-hard in nature, which means that they need to be addressed
with the help of metaheuristics, especially for medium- and large-scale instances. One of the most popular
metaheuristics for solving COPs is the Greedy Randomized Adaptive Search Procedure (GRASP).

GRASP is a multi-start algorithm based on a randomized construction process combined with a local
search (Resende and Ribeiro 2003). A feasible solution is constructed at each algorithm-iteration, before
the neighborhood is investigated to find a local minimum. As a well-known optimization algorithm, the
metaheuristic has been successfully applied to a wide range of optimization problems (Festa and Resende
2009). Like other similar metaheuristics, GRASP constitutes a relatively simple and efficient algorithmic
framework to deal with deterministic problem settings. However, many real-life applications experience a
high level of uncertainty and, therefore, solving deterministic optimization models –as it is usually done
in the optimization literature– is an unrealistic simplification of the real-life system. As depicted in Figure
1, when properly combined with the right metaheuristic, simulation (in any of its variants) can be an
effective way to cope with this uncertainty. Therefore, simheuristics –hybridization of simulation with
metaheuristics– establishes a natural way of addressing realistic and large-scale COPs under uncertainty
scenarios (Juan et al. 2015).

In this paper, we present a simheuristic algorithm that integrates Monte Carlo simulation into a GRASP
framework to solve the permutation flow shop problem (PFSP) with random processing times. The choice
of GRASP is related to its important feature of efficiently allowing the balance between randomness and
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Figure 1: Hybridizing metaheuristics with simulation to solve stochastic COPs.

greediness during the construction phase of a feasible solution. The PFSP is a well-known problem in
the supply chain management literature, but most of the existing work considers that processing times
of tasks in machines are deterministic and known in advance, which in some real-life applications (e.g.,
project management) is an unrealistic assumption. Thus, by integrating simulation into the general GRASP
framework, our approach allows the consideration of the stochastic components in realistic variants of the
PFSP.

This paper is structured as follows: Section 2 reviews solution approaches (with special focus on
simheuristics) to stochastic COPs. Section 3 describes the permutation flow shop problem with stochastic
processing times. The main ideas behind our simulation-optimization approach are outlined in Section 4.
A Java implementation of the proposed algorithm is tested in Section 5 using some benchmarks. Further
possible application areas related to transportation and logistics are discussed in Section 6. Finally, Section
7 concludes this work.

2 SOLVING STOCHASTIC COMBINATORIAL OPTIMIZATION PROBLEMS

New solution methods, enhanced computational possibilities, and the high practical relevance of many
optimization problems has led to an increased interest in solving real-life problem settings. Many practical
problem settings are becoming more and more complex and dynamic, as different input variables experience
some kind of uncertainty. Usually this is represented by including uncertain, stochastic, and dynamic
information in the mathematical model that describes the real-life system (Bianchi et al. 2009). This paper
focuses on a priori stochastic optimization. Unlike dynamic or reactive problem settings –in which input
data is revealed while a established plan is executed and then changes are made on the initial plan–, a
priori optimization assumes that some information (e.g., based on historical data) about the stochastic
variable is already available during the planning phase. That is, random variables have been modeled via
a probability distribution which can be used during the optimization process to establish solutions with a
good expected performance (e.g., solutions aimed at minimizing total expected cost, etc.). Additionally,
it might be desirable that these solutions show some ‘robustness’ or low risk level, i.e., that they are not
likely to require significant or expensive adjustments during the execution process (Ritzinger, Puchinger,
and Hartl 2016).
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Different stochastic COPs have been addressed in the literature. Applications include routing problems
with stochastic demands and/or travel times (Juan et al. 2011), stochastic scheduling problems (Juan et al.
2014a), and other problem settings in which some kind of uncertainty has to be represented, e.g., in the
knapsack- or set-covering problem (Grasas, Juan, and Lourenço 2016, Sahinidis 2004).

2.1 Exact and metaheuristic methods to solve stochastic COPs

In the case of NP-hard COPs (as the one considered in this paper), exact solution approaches can only be
applied to solve small- and medium sized instances. Christiansen and Lysgaards (2007) solve the vehicle
routing problem (VRP) with stochastic demands by using a branch-and-price algorithm. A similar approach
combined with column generation is used by Tas et al. (2014) to address the VRP with stochastic travel
times. The arc routing problem (ARP) with stochastic demands is formulated as a set partitioning problem
and solved with a branch-and-price algorithm in Christiansen et al (2009). The main advantage of applying
exact methods to optimization problems is that they can guarantee the optimality of the obtained solution.
However, these methods tend to be computationally expensive, making them mainly applicable to small
sized problems or as building blocks for other approximate methods (Dumitrescu and Stützle 2010).

For larger problem instances, optimal solutions cannot be calculated efficiently in practice. Therefor
optimality is usually traded for efficiency by applying metaheuristic methods, which can obtain near-optimal
(but not necessarily optimal) solutions in reasonable computing times. Bianchi et al. (2006) employs and
compares five different metaheuristics (simulated annealing, tabu search, iterated local search, ant colony
optimization, and evolutionary algorithms) for solving the VRP with stochastic demands. A more general
overview over different metaheuristics to solve stochastic COPs is given by Bianchi et al. (2009) and van
Hentenryck and Bent (2010).

2.2 Solving stochastic COPs through simheuristics

Simheuristics allow the consideration of stochastic objective functions and constraints by including simulation
in a metaheuristic-based framework (Juan et al. 2015). In its most basic form, it works as follows: Given
a stochastic problem setting, the random variables are transformed into their deterministic counterpart by
considering expected values, which can be solved using efficient metaheuristics for deterministic COPs.
In the following, the constructed a priori solution is evaluated in a stochastic scenario by running several
simulation runs in which the stochastic variable is depicted from a given (theoretical or empirical) probability
distribution. The results from these simulation runs provide feedback to the metaheuristic itself, so that
the search process is better guided.

Some successful implementations of simheuristic approaches to different COPs under uncertainty have
been presented in recent years. The effect of using safety stocks in VRPs with stochastic demands is
discussed by Juan et al. (2011). Gonzalez et al. (2012) address the ARP with stochastic demands by
combining a randomized routing algorithm with Monte Carlo simulation. Cabrera et al. (2014) combine
discrete-event simulation with metaheuristics to address the problem of minimizing service deployment
cost over non-dedicated computer resources to deploy Internet services in large scale systems. Furthermore,
simheuristics have been applied to tackle the inventory routing problem with stochastic demands (Juan et al.
2014b), scheduling problems with random processing times (Juan et al. 2014a), and dynamic home-service
routing problems with synchronized ride-sharing (Fikar et al. 2016).

3 THE STOCHASTIC PERMUTATION FLOW SHOP PROBLEM

The classical PFSP is a well-known COP that can be described as follows: a set J of n jobs has to be
processed by a set M of m machines. Each job i ∈ J is composed by an ordered set of m operations, Oi j,
that must be sequentially performed by the m machines (one operation per machine). The processing order
of operations in machines is the same for all jobs –i.e., all jobs are processed by all machines in the same
order. Each operation Oi j requires a processing time, pi j, which is assumed to be known in advance. The
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goal is to find a sequence (permutation) of jobs so that a given criterion is optimized (Ruiz and Maroto
2005). The most commonly and studied criterion is the minimization of the completion time or makespan,
i.e., the time it requires to process all the jobs throughout all the machines (Juan et al. 2014c). Other goals
can also be considered, e.g., the minimization of the total processing time –i.e., the sum of the individual
processing times of each job in each machine–, or the total tardiness of jobs with respect to their scheduled
deadlines (Vallada, Ruiz, and Minella 2008).

Figure 2 illustrates a simple PFSP with three jobs and three machines, where Oi j represents the operation
of job i in machine j (1 ≤ i ≤ 3,1 ≤ j ≤ 3). Notice that, for a given permutation of jobs, even a single
change in the processing time of one job in one machine (O21 and O22 in the Figure, respectively) can
have a noticeable impact on the value of the final makespan. Notice also that, since processing times are
random variables, the makespan associated with a given solution will be also a random variable.

Figure 2: The permutation flow shop problem with random processing times.

The PFSP with stochastic processing times (PFSPST) can be seen as a generalization of the PFSP
in which the processing time of each job i in each machine j is not a constant value. Instead, it is a
random variable, Pi j, following a non-negative probability distribution such as the log-normal, Weibull,
etc. Since uncertainty is present in most real-life processes and systems, considering random processing
times represents a more realistic scenario than simply considering deterministic times, especially whenever
the so-called ‘human factor’ is involved in the process, e.g., project management. Therefore, one goal that
can be considered when dealing with the PFSPST is to determine a sequence (permutation) of jobs that
minimizes the expected makespan or mean time to completion of all jobs.

As with other COPs, a number of different approaches and methodologies have been developed to
deal with the (deterministic) PFSP. These approaches range from exact optimization methods to heuristics
and metaheuristics. However, the situation with the PFSPST is different. To the best of our knowledge,
there is a lack of methods able to provide high-quality solutions to the stochastic version of the PFSP.
Most of the existing approaches are quite theoretical and require many assumptions on the probability
distributions that model job processing times, while other approaches seem to be valid only for small-size
instances. Thus, for instance, in the articles by Gourgand et al. (2005), and Baker and Altheimer (2012),
simulation-based techniques have been used to get results for the PFSPST. However, simulation is mainly
used as a backup method to validate the results generated by other analytical methods. Consequently, only
normal or exponential probability distributions were employed to model processing times. Moreover, these
papers made strong assumptions on the size of the instances being analyzed. More recently, Juan et al.
(2014a) proposed a simheuristic approach, based on the combination of simulation with an iterated local
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search metaheuristic, to efficiently deal with the PFSPST. Our work extends their paper by hybridizing
simulation with a GRASP metaheuristic framework and then compares both approaches using a common
set of benchmarks.

4 OVERVIEW OF OUR SIMHEURISTIC APPROACH

GRASP is based on a multi-start process with two main steps at each iteration: the solution construction
and the following local search procedure (Figure 1, left). During the construction phase, a feasible solution
is iteratively constructed by adding solution elements one at a time. At each step, the next element to
add to the current solution is determined by ordering all candidate elements (that is, all elements that can
be feasibly added to the solution) according to a greedy function g : C→ R. This function measures the
(myopic) benefit of including an element in the currently constructed solution. Hereby, the benefits are
typically recalculated at each iteration of the construction phase. The probabilistic component of GRASP
consists of randomly choosing one of the most promising candidates, but not necessarily the top one. That
is, the most promising elements (according to the associated benefits of including it in the current solution)
are stored in a Restricted Candidate List (RCL), from which the next element to be added to the solution is
chosen. Notice that this technique tends to generate different solutions every time the multi-start procedure
is run, which helps the algorithm to avoid getting trapped into a local minimum.

Figure 3: Basic GRASP vs. hybrid GRASP-simulation approach.

Once a feasible solution s has been constructed, it is locally improved with respect to a neighborhood
definition. As the initial solution is not guaranteed to be optimal after the construction phase, a local
neighborhood search typically allows for further solution improvements. The neighborhood structure N of
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problem P consists of a subset of solutions N(s). If there is no better solution within N(s), s is said to be
locally optimal.

In its most basic form, the general framework of the hybrid GRASP-simulation approach is also outlined
in Figure 3 (right). A stochastic COP with random variables is hereby transformed into its deterministic
counterpart by considering expected values. The multi-start GRASP metaheuristic is started to create
new feasible deterministic solutions. If the deterministic costs of new solutions improve the current best,
the solution is considered promising and is simulated to evaluate its behavior with random variables.
Accordingly, the current best deterministic and stochastic solutions are updated when necessary. Once
the GRASP termination criterion (e.g., iterations or execution time) is met, the most promising solutions
undergo a long simulation run to get a more detailed estimate of the expected objective function considering
stochastic variables.

During the metaheuristic stage, we apply a low number of simulation iterations to avoid the simulation
procedure jeopardizing the exploration of the solution space. While these initial simulations provide
only rough estimates of the stochastic solutions, they are sufficient to identify ’promising’ results under
uncertainty. Once a reduced number of promising solutions has been identified, they are more closely
explored through a more extensive simulation, giving a more accurate estimation.

5 COMPUTATIONAL EXPERIMENTS

5.1 Experimental settings

To test our approach, we base our experiments in a randomly selected subset of the benchmark instances
provided by Taillard (1993). This benchmark consists of 12 sets of 10 instances each, ranging from 20 to
500 jobs to be completed on 5 to 20 machines. In particular, we randomly chose 30 instances of these
benchmarks. The original processing times of the deterministic instances were used as expected values
of the random processing times in the generalized instances, i.e., E[Pi j] = pi j. Also, we assumed these
times to follow a log-normal distribution. The constructive and local search procedures used during the
generation of the deterministic solutions are described in Juan et al. (2014c).

In order to allow a comparison with the results of Juan et al. (2014a), we have used the same
experimental settings. As termination criteria for the multi-start procedure, maxTime seconds is defined
by the product of the number of jobs, n, the number of machines, m, and a time factor t = 0.03, such that:
maxTime = n∗m∗0.03. This leads to very short computation times, ranging from only a few seconds to a
maximum of 5 minutes for the largest instances. Similar to the experiments proposed in Juan et al. (2014a),
for each log-normal distribution the variance level is given by: Var[Pi j] = k ∗E[Pi j], where k is a positive
parameter representing different variance levels. In our case, several variance levels are considered: k = 0.0
(deterministic scenario), k = 0.1 (low-level variability), k = 0.5, k = 2, and k = 5 (high-level variability). For
the ’fast’ simulation we run shortSimIter = 200 iterations, while we use longSimIter = 1,000 iterations for
the in-debt estimation of stochastic makespans. The low number of iterations for the fast simulation enables
the evaluation of a large number of solutions in the stochastic scenario without too much computational
effort. This has proven to be a good trade-off between solution quality and computational times.

The algorithm has been implemented as a Java application. It was run on Eclipse on an Ubuntu
operating system with a personal computer with a Intel i7 Quad core, 2.67 GHz clock and 6 GB RAM.
For each instance, 10 different seeds (for the pseudo-random number generator) have been used.

5.2 Analysis of results

The best solutions found after running our algorithm with 10 different random number seeds are listed in
Table 1. Next to the instance name showing the considered number of jobs and machines, our best solution
(BS) with a deterministic makespan (DM) and their stochastic counterparts (SM) with difference variability
levels can be seen. As expected, the total makespan increases with increasing values of k. This effect is
visualized in the boxplot shown in Figure 4, in which the percentage gaps between the best solutions found
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for each of stochastic scenario and the best solution found for the deterministic scenario over all instances
are compared. It can be concluded that expected makespans increase with higher variances of processing
times, leading to larger gaps between the lower-bound makespan (the one for the deterministic scenario)
and the expected makespan in any of the stochastic scenarios. One important consequence can be derived
from this result: the best solutions found for the deterministic scenario might perform poorly in stochastic
scenarios with a high variability in the processing times, thus making the use of approaches such as the
one presented in this paper necessary.

Table 1: Results for 30 Taillard instances with different variability levels.

Instance DM-BS
(k = 0)

SM-BS
(k = 0.1)

SM-BS
(k = 0.5)

SM-BS
(k = 2)

SM-BS
(k = 5)

tai007 20 5 1234 1246.74 1248.49 1251.22 1258.7
tai009 20 5 1230 1247.65 1252.67 1260.9 1268.51
tai010 20 5 1108 1126.18 1128.91 1135.86 1142.21
tai011 20 10 1582 1600.33 1601.06 1618.14 1622.42
tai013 20 10 1496 1512.19 1518.8 1525.13 1537.46
tai027 20 20 2273 2291.72 2291.72 2302.74 2304.57
tai036 50 5 2829 2836.93 2845.71 2836.67 2855.87
tai040 50 5 2782 2782.62 2791.41 2797.03 2810.9
tai044 50 10 3064 3081.22 3088.16 3097.24 3106.82
tai045 50 10 3008 3041.1 3041.1 3072.05 3066.98
tai046 50 10 3023 3059.37 3059.37 3086.1 3083.53
tai047 50 10 3124 3164.59 3164.63 3188.04 3188.76
tai052 50 20 3764 3779.45 3779.45 3797.38 3798.52
tai055 50 20 3669 3693.03 3709.93 3711.72 3723.03
tai062 100 5 5268 5274.83 5277.37 5312.29 5314.92
tai067 100 5 5246 5283.76 5298.62 5309.86 5325.27

tai078 100 10 5640 5699.97 5699.66 5744.75 5741.79
tai082 100 20 6292 6316.63 6329.4 6335.38 6353.5
tai087 100 20 6389 6437.8 6441.48 6453.65 6453.65
tai094 200 10 10893 10904.24 10924.09 10946.27 10981.14
tai097 200 10 10882 10922.13 10915.82 10948.44 10997.43
tai102 200 20 11425 11505.69 11515.97 11565.6 11581.26
tai103 200 20 11513 11559.49 11560.82 11602.2 11636.95
tai104 200 20 11470 11486.6 11481.3 11514.21 11514.21
tai105 200 20 11380 11494.34 11486.91 11493.4 11493.4
tai107 200 20 11517 11591.14 11583.61 11656.62 11654.64
tai108 200 20 11536 11606.51 11611.28 11666.63 11643.94
tai112 500 20 26810 26930.58 26930.58 27022.15 27003.24
tai113 500 20 26613 26667.02 26702.72 26744 26748.28
tai118 500 20 26767 26892.89 26885.86 26998.93 26995.51
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Figure 4: Comparison of gaps between stochastic and deterministic solutions.

6 FURTHER POSSIBLE APPLICATION AREAS IN TRANSPORTATION AND LOGISTICS

Our simheuristic approach is not limited to solve the PFSPST. Indeed, it is flexible enough to address a
range of COPs under uncertainty in the field of transportation and logistics, often characterized by some
level of randomness concerning customers, processing and/or travel times, as well as customer demands.
As the stochastic solution quality obtained by the presented algorithm is directly related to the quality
of the underlying metaheuristic, especially the application areas in which GRASP has been successfully
implemented to deterministic COPs as outlined by Festa and Resende (2009) is thinkable. In particular
scheduling and routing problems can be highlighted in this context. The results reported in this paper
promise an easy-to-implement simheuristic approach with only few parameters, which is able to efficiently
consider different types of variables under uncertainty in low computational times.

7 CONCLUSIONS

In this paper, we have discussed the importance of considering uncertainty in realistic combinatorial
optimization problems, and have proposed the use of simheuristics (combination of simulation with
metaheuristics) as one of the most natural way to deal with complex, large-scale, and stochastic combinatorial
optimization problems that are frequently encountered in real-life applications of logistics, transportation,
and supply chain management activities.

In particular, the paper proposes the use of GRASP as the base metaheuristic, since it is a relatively-easy to
implement, efficient, and well-tested framework with a number of applications in the aforementioned fields.
To illustrate these ideas, we have chosen the permutation flow-shop problem with stochastic processing
times and have developed a hybrid simulation-optimization algorithm to solve it. The algorithm has been
tested over a set of stochastic instances based on the classical ones for the deterministic version of the
problem. The results show that our algorithm is able to provide good solutions in very short computing
times. Also, the computational experiments show how the expected makespan associated to each instance
grows as the variability of the random processing times is increased.
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González, S., D. Riera, A. Juan, M. Elizondo, and P. Fonseca. 2012. “Sim-RandSHARP: A Hybrid
Algorithm for Solving the Arc Routing Problem with Stochastic Demands”. In Proceedings of the 2012
Winter Simulation Conference, edited by C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and
A. Uhrmacher, 3123–3133. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers,
Inc.

Gourgand, M., N. Grangeon, and S. Norre.. 2005. “Markovian Analysis for Performance Evaluation and
Scheduling in m Machine Stochastic Flow-shop with Buffers of any Capacity”. European Journal of
Operational Research 161:126–147.

Grasas, A., A. Juan, and H. R. Lourenço. 2016. “SimILS: a Simulation-Based Extension of the Iterated
Local Search Metaheuristic for Stochastic Combinatorial Optimization”. Journal of Simulation 10 (1):
69–77.

Juan, A. A., B. B. Barrios, E. Vallada, D. Riera, and J. Jorba. 2014a. “A Simheuristic Algorithm for Solving
the Permutation Flow Shop Problem with Stochastic Processing Times”. Simulation Modelling Practice
and Theory 46:101–117.

Juan, A. A., J. Faulin, S. Grasman, D. Riera, J. Marull, and C. Mendez. 2011. “Using Safety Stocks and
Simulation to Solve the Vehicle Routing Problem with Stochastic Demands”. Transportation Research
Part C: Emerging Technologies 19 (5): 751–765.

Juan, A. A., J. Faulin, S. E. Grasman, M. Rabe, and G. Figueira. 2015. “A Review of Simheuristics:
Extending Metaheuristics to Deal with Stochastic Combinatorial Optimization Problems”. Operations
Research Perspectives 2:62–72.

2213



Ferone, Gruler, Festa, and Juan

Juan, A. A., S. E. Grasman, J. Caceres-Cruz, and T. Bektaş. 2014b. “A Simheuristic Algorithm for the
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