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ABSTRACT

We propose a methodology to provide real-time assistance for outpatient scheduling, involving multiple
patient types. Schedulers are shown how each prospective placement would impact the day’s operational
performance for patients and providers. Rooted in prior literature and analytical findings, the information
provided to schedulers about vacant slots is based on the probabilities that the calling patient, the already-
existing appointments, and the session-end time will be unduly delayed. The information is dynamically
updated after every new booking; calculations are driven by historical consultation times and no-show
data, and a simulation tool that implements the underlying analytical methodology. Our findings lead to
practical guidelines for constructing templates that provide allowances for different service time lengths
and variability, no-show rates, and provider-driven performance targets for patient delays and providers’
overtime. Extensions to OR scheduling are viable as avoiding session overtime and procedures’ completion
time delays involve similar considerations.

1 INTRODUCTION

The process of scheduling service appointments is a game in which customers negotiate with schedulers
for time slots that satisfy each party’s particular needs (Herrler et al. 2002). Schedulers engage in this
negotiation with a partially-filled appointment book and “must schedule clients dynamically. . . as they
receive calls without knowing what type of clients will call in the future for that session” (Klassen and
Rohleder 1996, p. 84). The general scheduling literature calls such a process online scheduling, but the
literature on ambulatory care management has given alternative scheduling names such as “dynamic”
(Klassen and Rohleder 1996, Liu et al. 2010), “myopic and sequential” (Muthuraman and Lawley 2008),
and simply “sequential” (Turkcan et al. 2011, Gupta and Wang 2012). We use sequential to avoid confusion
between online scheduling and web-based self-scheduling.

We posit that schedulers have an accommodation problem, not an optimization problem. That is,
the scheduling of a patient calling to request a reservation (who is typically on the telephone, seeking
an accommodation in the provider’s appointment book) is done without full knowledge of the remaining
number or type of patients who will eventually be scheduled within that session. At its core, the problem
in such an environment is that assigning “any available slot” to “any patient” who prefers it may result in
crowded sessions that incur provider overtime and patient delays.

Human schedulers are deft at managing the reservations of diverse customers who differ disparately
by clinical needs and by consultation times. For example, Huang and Verduzco (2015) describe a women’s
clinic that classifies eight distinct customer types by consultation duration means and variances where new
obstetric patients require three-times longer consultations than returning obstetric patients; similarly, the
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standard deviation of postpartum consultation times is nearly three times that of birth control management
patients.

Under such heterogeneity of service times, the patient type sequence impacts an outpatient clinic
session’s operating characteristics dramatically (Klassen and Rohleder 1996, Cayirli et al. 2006). This is
due to the accumulation of variation as a session evolves; templates that sort customers by the smallest-
variance-first rule accumulate variation in customer finish times more slowly than other sequences, yielding
minimum patient waiting and provider overtime (Wang 1999, Millhiser et al. 2012, Mak et al. 2014b). If
the customer types seen on a given day are identified before their appointments are scheduled—known as
offline scheduling—then their sequence and schedule can be optimized to minimize customer waiting and
provider idle and overtime (Oh et al. 2013, Berg et al. 2014, Mak et al. 2014a, 2014b).

There are three barriers to the forgoing research making an impact on practice, however. First is
that clinic managers are interested in balancing multiple conflicting operational and financial performance
objectives simultaneously. For instance, the patient encounter should not be hurried for quality of patient
care and clinical outcomes; waits should be controlled and fair; the clinic session should not run into
overtime too long or too often; the clinic should serve as many people as possible to provide access and
drive revenues; providers should not find themselves with chronic wasted idle times. Gupta and Wang
(2012) acknowledge that mathematical models that optimize all criteria become intractable, and indeed we
are aware of no model that optimizes these criteria for multiple patient types as satisfactorily as a human
scheduler might. The motivation for our proposed decision support tool is to acknowledge the ability of
human schedulers, and to give them new information to enable more effective balancing of these tradeoffs.

The second barrier is that the literature on optimal appointment template design is based on cost-based
objective functions where costs increase linearly in the expected delays. Economists have estimated the
cost of waiting per ambulatory care visit (Ray et al. 2015a) and by demographic (Ray et al. 2015b) in
the United States. Similarly, Robinson and Chen (2010) suggested a novel way to estimate waiting costs
per unit time, but empirical studies repeatedly show that customers are insensitive to short waits and grow
increasingly sensitive to long waits, suggesting waiting costs grow exponentially in the delay (see Millhiser
and Veral 2015 for references). Operational metrics such as the probability of delays and the probability
of overtime capture nonlinear delay disutilities, alleviate the need to value the doctor’s time (vis-à-vis the
patient’s) and as our informal interviews of ambulatory care managers in two large hospital systems in
the New York Metropolitan Area suggest, are more intuitive for decision makers. Rather than scheduling
to trade off difficult-to-estimate costs, scheduling to achieve probabilistic delay targets allows a clinic to
space customer arrivals so that each customer enjoys about the same fair chance of waiting as every other
customer (Turkcan et al. 2011, Huang et al. 2012, Sim and Qi 2012, Millhiser et al. 2012, Millhiser and
Veral 2015). Scheduling with delay targets is more easily explained to the broad array of stakeholders
including customers, schedulers, administrators, and clinicians. Furthermore, delay targets are akin to the
widely-accepted service level agreements in other service industries (Millhiser and Veral 2015).

A third barrier is the reality that a small number of vendors dominate the electronic health record
market (McCormack 2014). For example, consider Epic Systems which has the greatest market share (Gregg
2014). Given that Epic has an appointment-scheduling feature, and given how the dominance of Epic can
slow IT innovation (Koppel and Lehmann 2015), the reality is that the foregoing scheduling algorithms
will not replace the human scheduler who is increasingly supported by large, outsourced IT system. Even
web-based self-scheduling services such as Zocdoc.com will not replace the ubiquitous human scheduler
in the foreseeable future (Francis 2014).

To circumvent these barriers, we propose a decision support tool that informs the scheduler—at the
moment a new customer calls to request an appointment—how that caller’s service type affects the following
session operating characterizes for every available slot within every day within the booking horizon: (a) the
provider’s probability of incurring overtime, (b) the calling patient’s probability of incurring a service delay,
and (c) the probability that the calling customer imposes a delay on existing customers in the appointment
book. The decision support tool dynamically updates these probabilities after every appointment is added
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or subtracted (due to cancelations). The knowledge of (a), (b), and (c) informs the scheduler during each
negotiation, and this information benefits both the clinic and the customer. In other words, rather than
forcing a scheduling template upon a provider, the tool allows the scheduler to sequentially build the
template, customer-by-customer, with the needs of the clinic and the needs of the customer in mind. It
allows the scheduler to simultaneously manage the appointment delay and within-day waiting.

We submit that these three metrics are sufficient. We do not include the probability of provider idle time
because idle time is corrected by scheduling more patients (and the scheduler is already able to trade-off the
number of patients scheduled in a session and the conflicting goal of managed wait times). In other words,
our decision support tool allows the scheduler to focus on the metrics that matter—the number of patients
in the appointment book (i.e., revenue and access), the probability of overtime (i.e., operating cost), and
the probability of patient delays (i.e., customer service) without distracting with additional information.
Particularly noteworthy is the fact that this approach strips away the inherent subjectivity in traditional cost
optimization approaches as delay costs must be subjectively and often arbitrarily assigned to both provider
and patient delays.

The contribution of this work is new insights on sequential outpatient scheduling when (i) there are
multiple customer types that differ by consultation time and duration, (ii) the clinic has collected empirical
data on each type’s historical service times and no-show probabilities, (iii) a clinic’s strategic goal is to
maximize customer choice in terms of allowing patients of all types to be booked at all times, (iv) a clinic’s
operational goals are to maximize fairness in customer waits while limiting session overtime and customer
waiting, (v) and a human scheduler assigns customers times in the appointment book sequentially as they
call (before the total session demand is known), and (vi) customers may be offered slots within a day or
across multiple days. Furthermore, this paper is a first step at generalizing Millhiser and Veral (2015) in
the case of multiple patient types.

2 LITERATURE REVIEW

The study of sequentially booking appointments is rooted in the so-called online scheduling theory; Sgall
(1998) and Pruhs et al. (2004) summarize prior work in this area. In the healthcare application area, the
dynamics and components of a sequential booking process are summarized in Gupta and Wang (2012).

For sequentially scheduling multiple patient types, it may be useful to review the performance of
different rules toward this end. Walter (1973) demonstrated how clustering different patient types into
homogeneous groups improves appointment system performance. Klassen and Rohleder (1996) studied
customer types that differ by service time variances (with identical means), and confirm the efficacy
of the smallest-variance-first rule (Pinedo and Wie 1986) for jointly minimizing customer waiting and
provider idleness. Cayirli et al. (2006) expand Klassen and Rohleder’s (1996) study across a wider range
of environmental factors and customer types. Appointment slot durations are constant (not adjusted for the
customer type), and so they find that placing returning patients first (i.e., padding the beginning of a session)
yields less patient waiting and that placing new patients first (i.e., overbooking the beginning of the session)
keeps provider idle time low. Cayirli et al. (2008) adjust the slot lengths to each type’s mean consultation
duration. A fixed service time coefficient of variation of 0.35 (not reported; verifiable in Cayirli 2004, pp.
107-108) implies that returning customers have smaller service time variance than new customers. They
found, like Klassen and Rohleder (1996), that smaller-variance-first sequences minimize overall patient
waiting and provider idle and overtime. They also show that if the value of the provider’s time relative
to the customers’ time is sufficiently large, then the optimal sequence flips to new-customers-first without
slot adjustment, i.e., starting the session with overbooking.

The foregoing studies fix the customer sequence prior to the booking period. In the present paper our
sequential scheduling approach relaxes this requirement in favor of assigning customers to slots as they
call in. In this case,“the best slot” is dynamically identified after every booking, but without considering
future bookings.
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The following five related papers model sequential scheduling under the assumption that customers
are differentiated in their propensity to not show and are identical otherwise. Muthuraman and Lawley
(2008) introduce sequential scheduling in a multiple-block scheduling system where customer assignment
optimizes profit (rewards for each customer less costs of expected waiting and expected provider idle and
overtime). The model was subsequently extended with other algorithms (Zeng et al. 2010), general service
time distributions (Chakraborty et al. 2010), and dynamic programming models (Lin et al. 2011). Turkcan
et al. (2011) employ an alternative objective that maximizes revenue subject to fairness constraints. They
accept as many reservations as possible and assign every caller the appointment that yields the most even
waiting experience of all patients scheduled so far. They stop accepting reservations when one of the
following metrics exceeds a threshold: expected provider overtime, customer waits, or system congestion.
Our metrics are similar, but we differ in that we classify patients by clinical needs (i.e., patient types/service
time distributions) rather than no-show probabilities.

Zacharias and Pinedo (2014) extend the foregoing sequential scheduling models by differentiating
customer types by their cost of waiting per unit time and their no-show probabilities. A heuristic identifies
slots for overbooking to minimize expected customer waits and provider idle and overtime.

Our decision support tool is rooted in two assumptions about customer service—providers want to
deliver fair within-day waiting and want to manage the appointment delay across days (say, such metrics
as “time until first appointment,” “3rd-day out,” etc.). Toward the first end, Millhiser et al. (2012) assessed
the fairness of common scheduling rules when customer types differ by mean and standard deviation of
service durations. Introducing delay targets as a metric of operational performance, they show that common
rules in the literature for scheduling multiple patient types lead to unfair waiting that accumulates at the
end of a session, even when slot lengths are adjusted for customer type. As mentioned earlier, Turkcan et
al. (2011) consider fair patient waits. So do Sim and Qi (2012) who propose assigning arrival times to a
single class of customers so that a so-called “tardiness aware punctuality measure” keeps each customer’s
Conditional Value at Risk below a threshold. In a different direction, Millhiser and Veral (2015) provide a
simulation methodology that allows schedulers to build templates that offer each patient the same chance
p of waiting at most t time units.

Toward the second end (managing appointment delays), several authors have considered the day (of
multiple available days) as the decision variable. Patrick et al. (2008) propose a model for directing calling
patients to the day that gives the fairest appointment delay for all. In a different direction, Liu et al. (2010)
model this day choice to maximize a “net reward” when no-show rates are correlated with appointment
delays. While there is intense pressure on schedulers to accommodate patients as soon as possible to
minimize appointment delays, our tool allows them to see the operational impact of such decisions for the
first time.

3 ANALYTICAL METHODOLOGY

We now describe the analytical framework and simulation methodology that underlie the decision support
tool; our notation unifies that of Kaandorp and Koole (2007) and Liu et al. (2010). An outpatient clinic
uses a separate appointment book for each physician. The scheduling horizon is of length D and at any
moment appointment requests are being booked on days d = 1,2,3, . . . ,D into the future. We assume there
is a single session on day d that consists of Td slots of duration ∆ (∆ is set in most scheduling software,
and thus the same every day). For example, a 4-hour session 3 days from now could be T3 = 48 slots of
length ∆ = 5 minutes. There are J patient types, each with a unique service time distribution with mean
duration µ j and standard deviation σ j. The service time distributions are general and may be continuously
or discreetly defined. A patient j’s type is further differentiated by the probability ρ j of not showing,
j = 1, . . . ,J. (Note that while the decision support tool we shall demonstrate at the conference uses the
special case ρ1 = · · ·= ρJ , this limitation can be easily accommodated by the simulation model.)

On day d of the booking horizon, the vector xd = (xd1,xd2, . . . ,xdTd ) describes the current reservations
in the appointment book where xdt = 0 if there are no reservation on day d, slot t, and xdt = j if the
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reservation in slot t is a type- j patient. The sequence of vectors x1, . . . , xD describes the current state of
the appointment book across the scheduling horizon. In summary, the pair (d, t) denotes slot t on day d,
and xdt denotes the type of patient assigned to that slot, if any. The notation is summarized subsequently.

• D = the number of days in the booking horizon.
• d = 1,2, . . . ,D indexes the days within the booking horizon.
• ∆ = length of a scheduling slot, in minutes.
• Td = number of slots of length ∆ available for bookings on day d.
• (d, t) = slot t on day d.
• J = number of customer types.
• j ∈ {1,2, . . . ,J} indexes the customer type.
• µ j = mean service time of customer type j.
• σ j = service time standard deviation, customer type j.
• ρ j = probability that customer type j will not show with 0≤ ρ j < 1.
• xdt ∈ {0,1,2, . . . ,J} = type of customer assigned current to slot (d, t) with xdt = 0 if vacant.
• xd = vector of assignments xd = (xd1,xd2, . . . ,xdTd ) on day d.
• x1, . . . ,xD = current state of the appointment book.

This notation does not allow the double-booking of slots; we posit this is reasonable when the objective
is fair and consistent wait times that achieve some targeted level of service. Numerical experiments suggest
that slots as short as ∆ = 5 minutes are sufficient to achieve realistic delay targets.

Three events update the state of the appointment book x1, . . . , xD. First, upon the end of the day, the
index advances such that xd = xd+1 for d = 1, . . . ,D−1 and xD = (0, . . . ,0). Second, xdt increments from
xdt = 0 to xdt = j the moment a type- j patient books an appointment in slot (d, t). Finally, if the patient
scheduled in slot (d, t) calls to cancel, then we set xdt = 0.

Upon any appointment book state change, the probabilities of patient delays and provider overtime are
reassessed. If arrivals were equally-spaced with no no-shows (i.e., ρ1 = · · · = ρJ = 0), and service times
Markovian and i.i.d., then Jansson (1966) derives the necessary patient delay probabilities. During the
booking period, however, the appointments in a partially-filled reservation book will not be equally-spaced,
will have a propensity to not show, and will experience service times from non-identical and non-exponential
distributions. For such generalizations, Millhiser and Valenti (2012) derive the probability distribution of
each patient’s finish time; from the cumulative distribution function (CDF) of any patient’s finish time, one
can compute the probability that the next scheduled patient will be delayed, say, 20 minutes. Similarly,
the probability that session overtime will not exceed, say, 30 minutes, can be derived from the finish-time
CDF of the last scheduled patient. They show that an arbitrary patient’s finish-time CDF is a conditional
sum of convolutions, namely, convolutions of service time distributions in a provider’s “busy period” (the
time of continuous service between successive idle times), conditioned on when each busy period started.
With this stochastic model, one may assess the probability of delay for each patient in any appointment
book on any day of the booking period.

4 IMPLEMETATION VIA SIMULATION

The aforementioned analytical model, due to its need for numerical integration of the convoluted finish-
time distributions, faces implementation challenges. Numerical integration allows performance analysis
of a given template, but does not lead to the development of templates that adhere to the operational
performance goals. In other words, numerical integration calculates overtime and delay probabilities given
a fixed schedule, whereas finding a schedule that achieves desired delay probabilities requires tedious
numerical methods that cannot be run in real time. This problem was averted in previous research via an
inverse simulation modeling approach that sequentially assigns patients, adjusting the slots so that each
successive patient has a predetermined chance of a wait exceeding a targeted duration (Millhiser and Veral
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2015). This leads to a set of arrival slots for homogenous patients. The problem was also averted in
a prior simulation study by assigning arrival times based on individuals’ (non-convoluted) service time
distributions, rather than finish time distributions (Huang et al. 2012).

Millhiser and Veral (2015) adjust the arrival slots to the multiples of 5, 10, or 15-minute slots (e.g.,
∆ = 5, 10, or 15 minutes). The result is an “ideal” template based on the assumption that the schedulers
will be able to fill all slots with the designated homogenous class of patients. Figure 1 depicts one such
template, where rounded slots are adjusted so that all patients have 80% or higher chance of waiting for
no more than 20 minutes. The bars in Figure 1 depict the slot length between successive arrivals, and the
superimposed line graph shows the associated probability that each scheduled patient will wait at most 20
minutes.

Figure 1: Operational performance of a template when service times are gamma-distributed with mean 30
minutes and coefficient of variation 0.2. The left axis denotes the probability of 20-minute delays indicated
by the solid line (source: Millhiser & Veral 2015, Figure 4b.).

Outpatient clinics that schedule appointments via telephone, however, serve numerous types of patient
classes with differing consult lengths, and the patient preferences preclude providers’ ability to populate
each session slot sequentially, without gaps between successive appointment requests.

The proposed decision support tool takes advantage of Millhiser and Veral’s (2015) simulation-based
probability analysis, and extends it to partially-booked sessions of heterogenous patient types. We assume
that the moment a patient calls to request a booking, the scheduler and patient have designated a mutually
agreeable day d ∈ {1, . . . ,D} (e.g., the provider is in, the patient has available time, and the template is
partially filled with unreserved slots) and the scheduler can ascertain the calling patient’s type (e.g., service
time characteristics of the type of consultation required). Equipped with this information, the simulator
checks the start time of every available slot (i.e., every slot (d, t) with xdt = 0) and simulates R replicates of
the entire session, with the patient calling for the reservation request placed in each of the available slots.

For each patient type j, we assume that there is a history of n j historical service times, and so for every
simulation run we draw each booked patient’s random service time using the well-known bootstrapping
method. (Alternatively, fitted historical service time distributions that pertain to the corresponding patient
type can be used for random number generation.)

4.1 The probability of the next calling patient’s delay

We assume that the provider has specified a target probability of delay denoted [P,M] where P is the desired
probability that a patient waits at most M minutes from the scheduled time of arrival until the time the
patient is actually seen by the provider. First, the simulation computes the probability that the delay does
not exceed M minutes for every unbooked slot into when the next calling patient may be placed. Let
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Ad = {t : xdt = 0} be the set of available (unreserved) slots on day d. On a given day d, we specifically
denote the probability pt = Pr(delay≤M) for all t ∈ Ad . Note that pt is a function of the booked patients
in the appointment book, not the type of the calling patient, and so pt can be computed immediately after
any change in appointment book state.

4.2 The probability of existing reservations’ delays

When the next calling patient’s type is revealed, the probability of delays for existing reservations may be
computed via simulation. We let Bd = {t : xdt > 0} be the set of slots on day d that are booked with a prior
reservation. The probability of delay of an existing reservation depends on which available slot the next
calling patient is placed. On day d, let qs|t be the probability that the existing reservation in slot s ∈ Bd be
delayed at most M minutes given that the new calling patient is assigned to slot t ∈ Ad .

We exemplify in Figure 2 with a simple one-hour session on some future day d consisting of 12 slots of
∆ = 5 minutes. The session ends at 9:00 at which time overtime may be incurred. There are five reservations
in he appointment book; they called in the order A, B, C, D, and E, and made reservations for the slots
indicated in column (a). That is, column (a) depicts the initial session profile and available slots prior to the
arrival of the 6th reservation request, i.e., Ad = {1,5,7,8,9,11,12} and Bd = {2,3,4,6,10}. Column (b)
gives the delay probabilities pt for each available slot t ∈ Ad . Column (c) gives the delay probabilities qs|t
for each booked slot s ∈ Bd given every possible “next” reservation in slot t ∈ Ad . These probabilities are
extended to the session end with pse denoting that the probability that the existing bookings incur overtime
of at most Mse minutes, and the related probabilities of overtime qse|t if the next caller is assigned to slot
t ∈ Ad .

Pr(delay ≤M minutes)
Interval Time (a) Reservation (b) New Patient (c) Existing Reservations

1 8:00 p1 = 1
2 8:05 Patient E q2|1, q2|5, q2|7, q2|8, q2|9, q2|11, q2|12
3 8:10 Patient A q3|1, q3|5, q3|7, q3|8, q3|9, q3|11, q3|12
4 8:15 Patient D q4|1, q4|5, q4|7, q4|8, q4|9, q4|11, q4|12
5 8:20 p5 < 1
6 8:25 Patient B q6|1, q6|5, q6|7, q6|8, q6|9, q6|11, q6|12
7 8:30 p7

8 8:35 p8

9 8:40 p9

10 8:45 Patient C q10|1, q10|5, q10|7, q10|8, q10|9, q10|11, q10|12
11 8:50 p11

12 8:55 p12

End 9:00 Session End pse qse|1, qse|5, qse|7, qse|8, qse|9, qse|11, qse|12

Figure 2: A sample template with 5 existing bookings.

Note that p1 = q2|5 = q2|7 = q2|8 = q2|9 = q2|11 = q2|12 = 1 as the first patient experiences no delay.
However q2|1 < 1 as assigning the calling patient to slot 1 would delay Patient E (slot 2) with positive
probability. If the calling patient reserves slot 5, then p5 < 1 as there would be considerable likelihood that
three consecutive consultations staring at 8:05, 8:10, and 8:15 would create an excessive delay for slot 5;
furthermore, if slot 5 is booked by the 6th patient (“F”), then Patient B in the 6th slot would have even a
higher probability that his/her wait would exceed M minutes.

A user-friendly presentation of the resulting probabilities is implemented through color-coding to
indicate those probabilities that are between P and P−10% (yellow); and less than P−10% (red). This
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information allows the scheduler to deny the “red” slots and use discretion about populating the “yellow”
slots while negotiating with the patient.

4.3 Summary of simulation procedure

Summarizing the above discussion, we use the following simulation routine for reporting the operational
characteristics of the current appointment book.

1. Suppose a type- j patient calls to request a reservation, j ∈ {1, . . . ,J}.
2. For every day d and every available slot t̂ ∈ Ad , repeat the following steps.

(a) Initialize a counter Cdt = 0 for every slot (d, t), t = 1, . . . ,Td .
(b) Temporarily force the next caller to be assigned slot t̂ and update the set of booked slots

B̂d = Bd ∪{t̂}.
(c) Assume that patients and providers arrive punctually such that the first scheduled arrival of

each day starts on time.
(d) For every booked slot (d, t) with t ∈ B̂d with an assigned patient of type xdt > 0, draw a binomial

random variable with probability ρxdt of not showing, and if the patient shows, then draw a
random number from the service time distribution of a type-xdt patient.

(e) Compute the delay for every slot (d, t) with xdt > 0 (and the patient showing), given each
prior patient’s finish time. For every slot (d, t) where the delay does not exceed M minutes,
increment Cdt =Cdt +1.

(f) Repeat steps 2(c) to 2(e) for R simulation replicates.
(g) For every slot (d, t) assigned patient type xdt > 0, compute the probability Cdt/R. Let pt̂ =Cdt̂/R

and qt|t̂ =Cdt/R for all t ∈ B̂d \{t̂}.
3. At the scheduler’s discretion, assign the calling patient of type j to a slot in set Ad using the

information in step 2(g) as a guide.
4. Go to step 1.

The decision support tool reports the information given in step 2(g) to inform the decision in step 3. We
coded the simulation in Java; run times to executive the above steps using 1 million simulation replications
on 8-hr sessions has not exceeded 5 seconds on a 2.7 GHz Intel Core i7 processor; the time to rerun the
simulation after every patient booking is not a hindrance in practice.

5 EXAMPLE AND DISCUSSION

We give an illustrative example of the foregoing methodology using a data set reported by Huang and
Verduzco (2015): 8 patient classes whose mean and standard deviation of consultation times at a women’s
health clinic are summarized in Figure 3. Note how expected service times conveniently fit into traditional
15- and 30-minute slots with minimal rounding. Suppose that the provider stated performance targets
of 90% of sessions experiencing less than 30 minutes overtime, and 80% of patients waiting less than
20 minutes to be seen. For demonstration purposes, we assume a 5% no-show rate for all patient types.
Consider a 4-hour session from 8:00 AM to 12:00 PM on Wednesday, March 15, 2017, and suppose at
this moment (prior to March 15) there are 5 existing reservations shown in Figure 4 and a Level 2 patient
is calling to request a March 15 appointment. Upon identifying the patient type, the decision support tool
simulates the session and reports the probabilities shown in Figure 5(a). The following interpretations of
Figure 5(a) may be useful.

1. The left column in Figure 5 gives times in 5-minute increments (we assume the scheduling software
can accommodate such slots).
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Code Patient Type Mean Std. Dev. N

A Birth Control Mgmt 14.3 3.7 20
B Follow-up 16.1 11.3 22
C Level 1 25.0 7.4 39
D Level 2 37.1 10.3 32
E New Obstetric 37.1 10.9 38
F Postpartum 26.1 12.1 17
G Physical Exam 33.7 11.8 50
H Routine Obstetric 13.0 5.7 207

Figure 3: Consultation time distributions in minutes for 8 patient types (source: Huang & Verduzco 2015).

8:00 AM 8:30 AM 9:00 AM 10:00 AM 11:00 AM
New Obstetric Postpartum Physical Exam New Obstetric Level 1

Figure 4: Five existing reservations used in numerical example.

2. Any 5-minute slot with an existing reservation is “greyed-out” and displays the patient type and the
probability that this patient incurs at most 20-minutes’ wait given the existing 5 reservations. This
prevents the scheduler from double-booking any one 5-minute slot. For example, the scheduled
Postpartum patient at 8:30 presently has a 90% chance of waiting less than 20 minutes.

3. Empty cells are those with probability greater than 0.9 for the OT column, and 0.8 for the two
patient wait columns (hidden to simplify the output).

4. The second column (“Pr(OT ≤ 30 min)”) gives for each slot the probability that the session incurs
at most 30 minutes’ overtime if the calling Level 2 patient is assigned to that slot. Reservations
at 11:45 or later violate the 90% target and are hence colored light red. On this basis only, it is
advised that the Level 2 patient be assigned 11:40 or earlier.

5. The third column (“Pr(next wait ≤ 20 min)”) indicates for every available slot the chance that
the existing reservation immediately following the slot waits at most 20 minutes if the Level 2
patient were assigned that slot. For example, if the calling Level 2 patient is given 9:30, then 10:00
Obstetric patient will have 56% chance of waiting at most 20 minutes. On this basis, inserting
the Level 2 patient prior to 11:05 will cause an existing reservation a delay that does not meet the
performance target (and such cells are hence coded red).

6. The fourth column (“Pr(wait ≤ 20 min)”) indicates for each slot the probability that the calling
Level 2 patient will wait at most 20 minutes if assigned to that slot. Slots that miss the target by
no more than 10% (i.e., 70% to 80%) are shaded yellow; slots that miss the target by more than
10% are shaded light red.

7. The gray shaded cells show the feasible slots with respect to each constraint independently. Only
slots 11:15 to 11:40 satisfy all three criteria, as indicated with the green cells with red outlining,
prompting the scheduler to assign the calling Level 2 patient to one of these 6 slots if possible.

8. While the decision support tool does not allow double-bookings on top of an existing reservation,
two bookings 5 minutes apart are possible, and the decision support tool indicates that in this case
one would not do this in the interest of the performance goals.

Figure 5(a) is meant to exemplify that value of the decision support tool. Most likely, in practice, such
a clinic would work with 15- and 30-minute slots. A scheduler in a traditional scheduling system would
likely offer 9:30, 10:30, and 11:30 as viable times. However, the decision support tool makes it clear
that the patient should be directed to the 11:30 slot or a different day. Moreover, the software gives the
scheduler full information—that any slot from 11:15 to 11:40 (not only 11:30) allow all three performance
criteria to be met.

Another benefit of the software is that as it dynamically recalculates the probabilities with each
subsequent reservation, and it also dynamically recalculates the probabilities for every patient type. For
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Time Pr(OT≤30min) Pr(next wait≤20min) Pr(wait≤20min)

08:00 New Obstetric Reservation (1.00)
08:05 0.10 0.23
08:10 0.09 0.28
08:15 0.09 0.41
08:20 0.07 0.59
08:25 0.05 0.72
08:30 Postpartum Reservation (0.90)
08:35 0.12 0.24
08:40 0.11 0.37
08:45 0.11 0.50
08:50 0.08 0.66
08:55 0.05 0.78
09:00 Physical Exam Reservation (0.87)
09:05 0.57 0.15
09:10 0.56 0.23
09:15 0.57 0.36
09:20 0.56 0.51
09:25 0.56 0.62
09:30 0.56 0.72
09:35 0.51
09:40 0.43
09:45 0.36
09:50 0.20
09:55 0.08
10:00 New Obstetric Reservation (0.99)
10:05 0.65 0.21
10:10 0.65 0.27
10:15 0.64 0.39
10:20 0.64 0.56
10:25 0.64 0.69
10:30 0.64
10:35 0.58
10:40 0.50
10:45 0.42
10:50 0.23
10:55 0.09
11:00 Level 1 Reservation (1.00)
11:05 0.55
11:10 0.72
11:15
11:20
11:25
11:30
11:35
11:40
11:45 0.79
11:50 0.61
11:55 0.49

(a) A “Level 2” patient is calling.

Time Pr(OT≤30min) Pr(next wait≤20min) Pr(wait≤20min)

08:00 New Obstetric Reservation (1.00)
08:05 0.52 0.23
08:10 0.52 0.28
08:15 0.52 0.41
08:20 0.52 0.59
08:25 0.52 0.72
08:30 Postpartum Reservation (0.90)
08:35 0.57 0.24
08:40 0.57 0.37
08:45 0.57 0.50
08:50 0.57 0.66
08:55 0.57 0.78
09:00 Physical Exam Reservation (0.87)
09:05 0.15
09:10 0.23
09:15 0.36
09:20 0.51
09:25 0.62
09:30 0.72
09:35
09:40
09:45
09:50
09:55
10:00 New Obstetric Reservation (0.99)
10:05 0.21
10:10 0.27
10:15 0.39
10:20 0.56
10:25 0.69
10:30
10:35
10:40
10:45
10:50
10:55
11:00 Level 1 Reservation (1.00)
11:05 0.55
11:10 0.72
11:15
11:20
11:25
11:30
11:35
11:40
11:45
11:50
11:55

(b) A “Routine Obstetric” patient is calling.

Figure 5: The decision support tool when there are five existing bookings and the patient calling to request
an appointment is of type (a) “Level 2” and (b) “Routine Obstetric.”

instance, rather than a Level 2, suppose that a Routine Obstetric patient is on the phone requesting a March
15 appointment, given the same existing 5 reservations as before. The decision support tool would give
different probabilities shown in Figure 5(b). The second column now indicates that a Routine Obstetric
patient (with short service times of mean 13.0 and standard deviation 5.7 minutes) does not jeopardize the
30-minute overtime target, even if assigned 11:55. The third column in Figure 5(b) shows 22 more slots
where the Routine Obstetric patient has an 80% or better chance of not delaying an existing reservation
20 minutes. In other words, it is possible to “squeeze in” a Routine Obstetric patient anywhere between
the 3rd and 4th reservations or between the 4th and 5th reservations, whereas a Level 2 patient cannot.
Finally, the fourth columns of Figures 5(a) and 5(b) are identical, as one expects given that the calling
patient’s delay is due to the existing reservation types.

While the decision support tool aids the scheduler in not violating service level targets, it does not
attempt to optimize the schedule with respect to throughput or utilization. Most notably, it does not prevent
the scheduler from inserting unnecessarily long gaps between successive appointments. To exemplify, in
Figure 5(a), the “recommended” slots for a calling Level 2 patient are 11:15 through 11:40. If the scheduler
places the patient in the 11:20 slot, then the 11:15 slot will not accommodate any future patient (as any
placement would violate the waiting time target for the 11:20 slot), resulting in a 5-minute gap that is
“wasted”. Likewise, if this future calling patient were scheduled in the 11:25 slot, the 11:15 and 11:20
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slots would not be adequate for longer consult types (e.g., codes C-G in Figure 3). To ameliorate the
inefficiencies that may arise from this dynamic, schedulers should be urged to place patients in the first
(i.e., 11:15) or the last (i.e., 11:40) slot in any block of multiple contiguous available slots.

Even though this is a shortcoming from scheduling theory perspective, it is more reflective of operational
reality in real-time appointment scheduling. Future work in this field may incorporate optimization efforts
for static scheduling environments where demand is known in advance. Examples may include elective
surgeries that are scheduled for the relatively distant future or inpatient radiology scheduling where most
physicians request service in the early morning, and the requests may be batched prior to scheduling.

6 SUMMARY

At the time of this writing the authors are preparing to pilot the decision support tool in July-August
2016 at a major New York City healthcare network. The presentation given at the December 2016 Winter
Simulation Conference will summarize the foregoing research and simulation methodology. We will give a
demonstration of the decision support tool and share results and insights from the pilot study (if available).

In summary, we have presented a simulation methodology that we believe is the first of its kind to
allow schedulers in ambulatory care services to dynamically monitor the affect of booking heterogeneous
calling patients on a scheduling template’s operational performance. Based on prior research, we have
expressed those performance measures as probabilities of delay and overtime which we believe to be a
natural/intuitive way to express risk and uncertainty.
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