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ABSTRACT 

 

Surgery scheduling has received considerable attention in recent years.  Block schedules, in which surgeon 

groups utilize the OR for whatever surgeries they have scheduled for the day, present additional challenges 

to schedulers.  While mean operation times are often used as the primary factor in scheduling strategies, 

the variability of these operations is not.  Recent research suggests that sequencing surgeries based on their 

variation may decrease the number of late surgery starts.  This article builds upon this emerging 

methodology of variability-oriented sequencing rules for block schedules.  Discrete event simulation was 

used to examine the effectiveness of different sequencing algorithms in reducing the number of behind 

schedule surgeries and their magnitude.  The number and magnitude of tardy surgeries and the patient 

waiting time were significantly improved by an average of 40% with the proposed scheduling strategies.  

Additional simulations explored several variations of the variability-based scheduling methodology. 

 

1     INTRODUCTION 

 

The scheduling problem has received considerable attention from industrial engineering and operations 

research fields.  The ever-growing healthcare system, which represents 18% of the nation’s GDP (Chandra, 

Holmes, and Skinner 2013), is a prime candidate for researchers to apply scheduling strategies in an effort 

to decrease costs.  Within the healthcare field, Operating Rooms (ORs) in hospitals often consume a large 

proportion of hospital resources and attention (Fügener et al. 2014; Niu et al. 2011).  Discrete event 

simulation (DES) is an effective tool for these complex systems and allows researchers to explore 

alternative methods or strategies without impacting patients or providers (Santibáñez et al. 2009). 

While many different scheduling strategies have been explored through simulation, few focus on 

incorporating the variability of surgical procedures into sequencing strategies (Schultz and Claudio 2014).  

This study extends upon this burdgeoning methodology and applies a different variability-oriented 

sequencing rule to a multi-OR suite that uses block scheduling and examines their effect on patient waiting 

time and the number and magnitude of  late surgeries.   

 

2     RELATED WORK 

  

A considerable amount of recent research has focused on improving healthcare systems. This study is 

primarily interested in the use of DES models as a technique to achieve more efficient operating room 

scheduling in a hospital. Simulation is one of the most popular and widely used techniques by healthcare 
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researchers because it is cheap, fast, and simple; it allows researchers to alter and compare different 

scenarios or solution methods and their effect on certain variables of interest or performance metrics 

(Alhaag, Aziz, and Alharkan 2015; Azari-Rad et al. 2014; Chakravarthy 2012; Coelli et al. 2007; Huggins, 

Claudio, and Waliullah 2014; Huggins et al. 2012; Konrad et al. 2013; Lin, Sir, and Pasupathy 2013; Ramis, 

Palma, and Baesler 2001; Shi, Peng, and Erdem 2014; Venkatadri et al. 2011).   

 Simulation also allows researchers to model very complex processes. For example, Huggins et al. 

(2014) developed a DES model to evaluate different scheduling policies in an oncology clinic with the aim 

of increasing the patient output while maintaining the same wait time, patient’s total time in the system, 

and the system’s service level. Their model considered the interactions between patients, information, and 

resources and the relationship between these parameters with the patient’s time in the clinic (Huggins et al. 

2014).  

 Another advantage of simulation in the healthcare system is that it allows researchers to change 

different variables such as resource allocation, patient scheduling, surgical duration, patient arrival and 

departure rates, staff scheduling, etc., without compromising the life and health of patients (Niu et al. 2011).  

This is especially relevant to certain aspects of the healthcare system, such as Emergency Medical Services, 

where researchers can explore “what if” scenarios and their impacts without harming patients. (Knight, 

Harper, and Smith 2012; Maxwell, Henderson, and Topaloglu 2009; Yang et al. 2009; Yue, Marla, and 

Krishnan 2012) 

 Within healthcare operations, the operating room (OR) is an important component of services offered 

in a hospital and is also one of the most expensive and demanding resources in the system (Fügener et al. 

2014; Niu et al. 2011).  Operating room managers face the complex decision of what strategies for surgical 

scheduling should be used to assign surgeries to maintain a certain level of service and maximize efficiency 

and equipment and personnel utilization (Bennis et al. 2013; Cardoen, Demeulemeester, and Beliën 2010; 

Erdogan and Denton 2011).  Since there is limited availability of surgery rooms, the use of sophisticated 

analytical and mathematical tools as well as simulation have been used to design new methodologies and 

conduct studies for surgical scheduling. (Azari-Rad et al. 2014; Bennis et al. 2013; Cappanera, Visintin, 

and Banditori 2014; Choi and Wilhelm 2014; Denton et al. 2006; M’Hallah and Al-Roomi 2014; Persson 

and Persson 2010; Ramis et al. 2001; Schultz & Claudio 2014).  Not all ORs have the same method of 

operations.  Roland et al. (2009) notes that most researchers agree that there are three main assignment 

models for an OR:  

 

 Open scheduling: A blank schedule is filled on a first-come-first-serve order, by a negotiation 

process, or as more important information arises. 

 Block scheduling: schedules are based on area of surgery or particular surgeons reserving the 

same day of week, time slot, and OR.  Portions of on OR are given to a particular surgeon group 

or surgery on the same day/hour time slot each week.  

 Modified block scheduling: reallocates unused time to other surgeries not previously included in 

the block. It is a more flexible method as it provides the opportunity to rearrange or to free 

previously allotted slots in the operating schedule.  Unused surgery time within blocks can be 

given to other surgeries or surgical groups.  It is more flexible than the block scheduling model. 

 

 Open scheduling used to be more common in the 1960’s and 1970’s but has been replaced by block 

scheduling because it makes better use of surgeons’ times (Blake, Dexter, and Donald 2002). Recent 

literature reviews of surgical scheduling articles consolidate, analyze, and organize the developments made 

in this field and discuss how this may lead to future research.  Cardoen et al. (2010) present a literature 

review organized by six different categories, while Erdogan and Denton (2011) structure their review by 

type of operations research methodology.  These studies demonstrate simulation’s effectiveness in 

improving performance or defining ideal operating room conditions. 

 The variability of a process is a very critical element in a stochastic setting and has a large role in the 

behavior of a system.  Choi and Wilhelm (2014) prove that the smallest-variance-first rule is the optimal 
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way to sequence surgical blocks assuming that surgeries are independent and normally distributed and that 

a surgery will start immediately after the previous one even if it finishes ahead of schedule.  A recent study 

by Schultz et al. (2014) used simulation to examine a variability-oriented surgery sequencing technique in 

a multi-OR suite that uses block scheduling.  Procedures were categorized into low or high variability.  

After calculating an adjusted mean and standard deviation, a sequencing rule was proposed in which low 

variability procedures were performed prior to high variability procedures.  The performance metrics of 

interest were tardiness and average lateness for each group. The variability oriented model achieved 

significant improvements, decreasing the number of surgeries that start late by 18% and the number of 

surgeries with more than a thirty-minute delay by 11%. This study showed the importance of including 

variability in order to account for uncertainty into the simulation model.   

 Similarly, Smith et al. (2013) proved that considering the variability of the patient flow through the OR 

can improve the system both operationally and financially. The authors worked with a variability 

methodology which implicates separate cases according the nature of the variability (either artificial or 

natural).  The results obtained in the study were considerably encouraging: a decrease in staff overtime by 

27%, a decrease in the day-to-day variability of the number of cases by 20% and a 22% decrease in time, 

and a staff turnover decrease of 41%.  The hospital achieved an overall better performance while 

maintaining enough operating rooms for emergency cases and increased the number of surgical cases 

performed.   

 The simulation model we describe in this article is built upon this emerging variability-oriented 

methodology in a multi-OR setting with block scheduling by focusing on variability by surgical procedure 

versus a more general classification system.  Furthermore, this article examines what would happen if 

surgical blocks were rearranged according to historical variability, all the while trying to maintain realistic 

assumptions such as surgeries not starting early if the previous surgery finished ahead of schedule. 

 

3 METHODOLOGY 

  

The DES model in this paper used the same database as Schultz and Claudio (2014).  The database 

contained three years of historical data to include 18,071 unique surgeries and 567 different types of surgical 

procedures.  Schultz and Claudio (2014) examined ten specific weeks that had a higher number of surgeries 

than average.  Weeks are referred to by sequential number (1-156).  This study examined the same ten 

weeks.  These busier weeks often had 5 to 6 surgeries per day per OR and 4 to 5 different surgery types per 

day per OR.  While these 10 weeks did not necessarily represent a typical week in this hospital, the intent 

was to test the algorithm under the most stressful conditions.  Furthermore, given the growing population 

and demand the hospital faces, these busier weeks may start becoming more frequent. 

 Of the 567 different types of surgical procedures, 242 occurred at least once during the weeks examined 

in the study.  The mean duration, standard deviation, and squared coefficient of variation (CV2) were 

calculated for each of the 242 surgical procedure types.  Probability distributions were fitted to each of the 

surgical procedure types.  In the case where a surgical procedure only occurred once during the entire three 

year period, the duration of the sole surgery was used in lieu of a probability distribution.  In the case where 

a surgical procedure occurred only two or three times, the average duration was used if the standard 

deviation was relatively small.  If a surgery occurred only two or three times during the three year period 

and the standard deviation was not small, then the duration of the surgery that occurred during the examined 

ten weeks was used.  

 A surgery turnover distribution was calculated using the entire three year period of data.  Turnovers 

greater than one hour were excluded because the dataset did not contain enough information to determine 

if the time between the end of a surgery and the beginning of the next surgery was caused by an excessively 

long turnover or other factors.  Weeks with unusually high or low turnovers were assigned a unique 

probability distribution.  Of the ten weeks examined, five used the general turnover distribution and five 

used distributions unique to that week. 
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 There were six different ORs in the suite.  Surgeries generally started at 07:30 with the final surgery 

scheduled no later than 16:30, though there were some exceptions.  If a surgery started before its scheduled 

time, then it was adjusted to start at its scheduled time.  The model recorded the number of tardy surgeries 

and the magnitude of the tardiness.  The total number of surgeries with lateness greater than 30 minutes 

was also recorded.  If a surgery was the first scheduled surgery in an OR for the day and it started late, it 

was not counted as late because the model would not capture such an event.  Subsequent surgeries that were 

tardy because the first surgery was tardy were not counted if the amount of lateness was less than the 

original.  For example, a surgery scheduled for 7:30 that started at 7:35 was not counted as late and a second 

surgery starting at 9:30 was not counted as late if it started prior to 9:35.  It would be counted as late if it 

started after 9:35. 

 A model was built using Arena version 14.7 to represent the OR suite.  The model was run so that the 

half width percentage of the average number of tardy surgeries per week would be no more than 10% from 

the mean.  A significance level of 0.05 was used in the number of replications, resulting in 50 replications 

in each iteration.  Figure 1 illustrates the conceptual model for one OR.  Individual surgeries are created 

through the read file and assigned a scheduled start time, surgery procedure type, and OR.  After seizing 

the OR, the surgery is delayed according to the surgical procedure distribution and then the turnover 

distribution.  Then, the OR is released and statistics about whether the surgery had a tardy start and the 

magnitude of the tardiness are recorded.   

 

 

Figure 1: Conceptual Model of a Single OR. 

  

 To validate the model, the actual number of tardy surgeries was compared to the average number of 

tardy surgeries in the model for each of the ten weeks using the schedule from the dataset.  Table 1 

summarizes the validation statistics for the model.  In eight of the ten weeks the actual number fell within 

the 95% confidence interval of the model, as did the aggregated average.  The other two weeks saw a lower 

number of tardy surgeries in the model than the actual number.  Much like Schultz and Claudio (2014), the 

model’s underestimating of some weeks was anticipated because the dataset did not contain other 

information that may contribute to late surgeries (e.g. low number of staff for the day).   

After the model was validated, a new scheduling algorithm that incorporated the variability of a surgical 

procedure was used.  Variability was defined as the squared coefficient of variation (CV2), which is equal 

to the square of the standard deviation divided by the square of the mean (Hopp and Spearman 2008).  

A surgery could only be scheduled on the same day and same OR that it actually occurred.  Within 

those restrictions, surgeries were then ranked according to variability by surgical procedure.  Surgeries with 

a low variability were scheduled first.  Generally, the first surgery of the day was scheduled at the same 
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time as the original first surgery of the day.  Ties between surgeries of the same procedure type were broken 

randomly.  

 

Table 1: Validation of Current State. 

Week 

Current state 

Original 

# Tardy Surgeries 

Current state 

Simulation Model 

# Tardy Surgeries 

95% Confidence Interval 

for # Tardy Surgeries 

62 35 34.68 (31.21 , 38.15) 

91 47 36.34 (32.71 , 39.97) 

100 35 35.76 (32.18 , 39.34) 

101 40 38.20 (34.38 , 42.02) 

102 43 39.74 (35.77 , 43.71) 

110 37 37.12 (33.41 , 40.83) 

129 49 42.72 (38.45, 46.99)  

137 34 37.64 (33.88 , 41.40) 

143 40 37.48 (33.73 , 41.23) 

150 42 46.30 (41.67 , 50.93) 

Average 40.2 38.60 (34.74 , 42.46) 

 

 In addition to surgery sequencing, variability was also factored into calculating the length of time that 

occurs between surgeries, or scheduled buffer time.  This buffer time plays an important role.  Surgeries 

scheduled too close together will result in numerous late starts and patient frustration while surgeries 

scheduled too far apart will reduce late starts but may result in too much overtime or an unsustainable 

schedule that does not contain enough surgeries in a day given a certain demand.  The scheduled buffer 

time that would occur between successive surgeries was calculated according to the surgical procedure 

mean, variability, and the turnover distribution.  Surgeries were given a different buffer to account for their 

variability.  Low variability procedures (CV2<0.3) were given a 10% buffer to the expected duration, 

medium variability procedures (0.3<CV2<0.6) were given a 20% buffer to the expected duration, and high 

variability procedures (CV2>0.6) were given a 30% buffer to the expected duration.  The mean turnover 

time plus approximately one standard deviation was added to scheduled buffer time regardless of the 

category of variability.  The addition of one standard deviation is to allow for variability.  Figure 2 displays 

the sequencing algorithm. 

 After the proposed algorithm was simulated, two variations of the methods were run to determine what 

aspects of the proposed algorithm contributed most to the performance metric improvement.  The proposed 

algorithm is essentially composed of two parts: the in-between time buffer and the shortest variability first 

rule.  To determine the contribution of the first, a simulation of the current baseline order of surgeries with 

the proposed in-between buffer rule was conducted (second method).  In this simulation, the exact same 

order of surgeries was kept as the current state (baseline) and the starting time of the first surgery of the day 

remained the same.  The only aspect that changed was the starting time of the subsequent surgeries of the 

day, which was calculated using the in-between buffer rule of the proposed algorithm.  To determine the 

contribution of the shortest variability first rule, a simulation of the proposed algorithm modified to do the 

largest variability first was conducted (third approach).  Essentially, this simulation followed the same 

procedures as figure 2 except for the third step, in which the surgeries were scheduled with the largest 

variability first.  The results from these two additional methods were then compared to the shortest 

variability simulation (initial proposed algorithm). 
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Figure 2: Sequencing Algorithm. 

  

  

4 RESULTS 

  

Similar to the validation portion, each week was run for 50 replications, which was the value that gave, 

with 95% confidence, a half width no greater than 10% from the mean of the total number of tardy surgeries.  

With the proposed sequencing algorithm, the total number of tardy surgeries, total number of surgeries that 

were tardy by more than 30 minutes, and the average lateness of tardy surgeries all significantly decreased 

in each of the ten weeks.  The total average number of  late surgeries decreased by approximately 45%, the 

number of surgeries tardy by more than 30 minutes decreased by approximately 55%, and the average 

lateness of tardy surgeries decreased by approximately 31%. Average waiting time in the system was also 

reduced by approximately 16 minutes compared to approximately 42 minutes in the current state model 

while keeping the same percentage of OR utilization.  These results were greater than those reported in 

Smith et al. (2013) and Schultz and Claudio (2014), where the proposed strategies improved the system by 

at most 35%.  It was also possible to identify the surgery categories with a greater number of tardy surgeries 

such as general surgery, orthopedic, and urology.  

 A confidence interval was calculated to compare the two system configurations (Baseline vs. Shortest 

variability first) and check if improvements by the proposed schedule were statistically significant.  Table 

2 presents a complete summary of the simulation results in which it can be seen that all the total number of 

tardy surgeries, total number of surgeries with lateness greater than 30 minutes, and the average lateness 

magnitude were significantly lower with the new proposed algorithm. 

 The results suggest that sequencing surgeries based on lowest variability first and factoring in the 

variability when calculating times between surgeries is a methodology that should be considered in 

generating the surgery schedule in hospitals.  This methodology results in a decrease in the number of tardy 

surgeries, their magnitude, and waiting time in the system and increases the efficiency of the system as well 

as the quality of service offered by hospitals. Although only ten weeks were simulated, these ten weeks 

represented some of the highest demand weeks in the three year period. 
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Table 2: Simulation Results. 

 Total number tardy Number Tardy > 30 min 
Avg. Lateness Magnitude 

(min) 

Week Baseline Proposed 

95% 

Confidence 

Interval on 

difference 

Baseline Proposed 

Confidence 

Interval on 

difference 

Baseline Proposed 

95% 

Confidence 

Interval on 

difference 

62 34.68 18.86 (14.10, 

17.54) 

25.70 11.06 (12.89, 

16.39) 

90.43 69.37 (12.36, 

29.75) 

91 36.34 20.26 (14.31, 

17.85) 

27.42 12.60 (13.35, 

16.29) 

96.44 70.75 (16.85, 

34.53) 

100 35.78 18.8 (15.34, 

18.62) 

24.64 10.30 (12.80, 

15.88) 

79.63 60.03 (11.43, 

27.77) 

101 38.20 21.18 (15.17, 

18.87) 

28.50 13.72 (13.12, 

16.44) 

102.88 70.07 (23.96, 

41.66) 

102 40.22 23.92 (14.49, 

18.11) 

30.16 15.42 (12.95, 

16.53) 

98.29 76.73 (12.15, 

30.97) 

110 34.20 20.36 (12.25, 

15.43) 

24.80 12.52 (10.73, 

13.83) 

96.80 68.28 (19.80, 

37.34) 

129 42.72 21.72 (19.30, 

22.70) 

34.02 13.66 (18.71, 

22.01) 

100.43 63.77 (30.27, 

43.05) 

137 37.64 19.76 (16.18, 

19.58) 

29.12 12.84 (14.58, 

17.98) 

128.79 79.52 (37.31, 

61.23) 

143 37.58 20.66 (15.24, 

18.60) 

28.68 13.60 (13.36, 

16.80) 

116.23 81.14 (23.17, 

47.01) 

150 42.62 23.00 (17.79, 

21.45) 

33.70 14.72 (17.11, 

20.85) 

126.38 76.65 (39.08, 

60.38) 

Avg. 37.99 20.85 (16.18, 

18.12) 

28.67 13.04 (14.60, 

16.65) 

103.63 71.63 (27.19, 

36.81) 

  

 The two additional simulations helped to provide insight into the contribution of the two aspects of the 

proposed algorithm.  When compared to the baseline, the second method significantly improved the three 

performance metrics in all ten weeks.  The smallest-variability first with in-between buffer rule (proposed 

approach) had a significantly better average number of tardy surgeries in 5 of the 10 weeks when compared 

to the second method.  The smallest variability first was significantly better than the largest variability first 

in eight of the ten weeks for average lateness, three of the ten weeks for average number of late surgeries, 

and one of the ten weeks for number of surgeries later than 30 minutes.  Interestingly, the largest variability 

first simulation (or third method) did perform significantly better in one of the ten weeks for average 

lateness and number of surgeries later than 30 minutes.   

These results suggests two things.  First, the variability oriented in-between buffer rule plays a role in 

system improvement.  Second, the smallest variability first rule does appear to perform better than the 

largest variability first rule, but its contribution to overall performance in this situation was not as large as 

the variability oriented in-between buffer rule.  This may have resulted for a couple of reasons.  First, 

because the same type of surgery was repeatedly performed multiple times on the same day in the same 

OR, the actual difference between the shortest variability first schedule and the largest variability first 

schedule was often not very large.  Second, the variability oriented in-between buffer rule helps mitigate 

the chain reaction of late surgeries that may start at the beginning of the day.  In other words, because the 

variability is already being incorporated into the buffer time between surgeries, the actual effect of having 

the variability in the order of the surgeries may not be as significant.  To test this theory, the in-between 

2036



Nino, Harris, and Claudio  

 

buffer rule could be reduced or eliminated and then the smallest variability first and largest variability first 

rules could be compared to one another. 

 There are a few shortcomings with the model.  While unscheduled, add-on surgeries that occurred in a 

certain OR had to occur at the same time and OR, there were no constraints on scheduled surgeries for only 

certain parts of a day.  For example, a surgery may have had to occur at a certain time of the day due to 

patient or surgeon availability, but the dataset did not include that level of detail and thus this could not be 

considered.   

 The proposed model also did not take into account other constraints such as instrument availability.  

For example, the hospital may only have one of a certain specialized instrument that precludes certain 

surgeries from being scheduled on or near the same date and time.  Again, the dataset did not have this level 

of detail.  Similarly, the staffing schedule was not known, which may contribute to the turnover 

distributions.  Five of the ten weeks displayed a turnover distribution that deviated from the average enough 

so that the model could not validate these weeks at first.  The model could only be validated after fitting 

specific turnover distributions to those five weeks.  Finally, future research could also examine the balance 

between having enough scheduled buffer time to reduce late surgery starts while also minimizing the 

amount of overtime. 

 

5 CONCLUSIONS 
  

The proposed scheduling strategy, which is a combination of a sequencing algorithm and a variability buffer 

algorithm, resulted in an improvement over the current system.  The proposed model significantly reduced 

the number of tardy surgeries, number of surgeries tardy by more than 30 minutes, the average lateness of 

tardy surgeries, as well as the average waiting time.  Two more algorithms were generated to examine the 

impact that the two aspects of the proposed scheduling strategy had on system improvement.  While both 

aspects played a role in the improvement, the in-between buffer rule appeared to have a larger effect.  

Because of the characteristics of the data set and the number and of types of surgeries that occurred, 

however, this cannot be known for certain. Further research lies in reducing or eliminating the in-between 

buffer rule and comparing the smallest variability first rule against the largest variability first rule.  

Comparing these results would help determine this dynamic of what aspect contributed most to the overall 

improvement. 

 As was previously mentioned, there are a number of factors that must be considered to develop a more 

realistic model.  These include: 

 

 Incorporating the staffing schedule which may affect surgery time availability and turnover 

distributions 

 Accounting for unique instruments or other resources that my affect certain surgeries from 

occurring within a certain time of one another 

 Taking into account the surgeon’s preferences for surgery times.  Although the model maintains 

blocking surgeries into a specific OR, it focuses solely on improving the system through the patient 

perspective.  The proposed model also may not be realistic to implement if it gives too much 

padding into the schedule, which may result in the surgery schedule being increasingly backed up 

and ultimately unsustainable.   

 Exploring the balance between having enough scheduled buffer time to reduce late surgery starts 

while minimizing the amount of overtime and maintaining a sustainable surgery schedule given a 

certain demand. 

 

Finally, implementing such a change in scheduling strategy requires organization buy-in from all 

members.  The human factors element in optimization is an important consideration, and further research 

in this area is needed. 
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