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ABSTRACT

One of the most critical and costly decisions made in emergency departments (EDs) is whether to admit
a patient into the hospital. These decisions require investment in time for patient testing and treatment,
delaying care to other patients. Short-stay units (SSUs) are an alternative to discharging or fully admitting
ED patients, allowing extended patient observation. However, little is understood about the design of an
SSU and its impact on outcomes and congestion. Here, we introduce a discrete-event simulation model of a
hospital system (ED, inpatient units, and SSUs). By analyzing records from a tertiary teaching hospital, we
determine realistic parameters and identify important features, such as triage level and processes depending
on triage level, time, and congestion. We contend that performance metrics, e.g. time to first contact,
critically depend on downstream hospital units. To demonstrate utility, we use the simulation model to
assess bed occupancy over time.

1 BACKGROUND

Increasingly in the United States, most patients requiring unscheduled admission are hospitalized through
the emergency department (ED). EDs are primarily designed for short-term acute care needs while inpatient
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hospital units are designed for acute needs requiring longer term care. Admitting patients to a hospital
unit is one of the most expensive routine decisions made in healthcare (Sabbatini, Nallamothu, and Kocher
2014). Ideally, patients would be admitted or transferred only when needed and discharged as soon as
they are stable enough to go home. However, this clinical assessment is not always immediately obvious
and may be better revealed with additional time as the patient’s medical condition progresses and results
from further diagnostic testing are returned. EDs may respond to these situations by seeking a setting
that provides a period of observation. Complicating the process, EDs commonly encounter episodes of
crowding that can lead to long waits for care and adverse patient outcomes. Better informed admission
and transfer decisions may improve outcomes and reduce costs without sacrificing timely access to care.

To address this problem, medical short-stay units (SSUs) have been proposed as a way to reduce
crowding in EDs, while improving admission decisions (Centers for Medicare and Medicaid Services 2011,
Damiani et al. 2011, Lovejoy and Desmond 2011). SSUs are a formal alternative to an admission to
inpatient hospital units. They are designed to provide extended evaluation for up to 24 to 48 hours in order
to determine if a patient is stable enough to be discharged home or requires admission to the inpatient
hospital for additional treatment (Centers for Medicare and Medicaid Services 2011, Damiani et al. 2011,
Lovejoy and Desmond 2011). SSUs provide an alternative disposition decision for ED patients who may
benefit from further observation, such as those are not ill enough to be admitted, but not well enough to
be discharged. However, whether SSUs improve outcomes, efficiency, or costs remains an open-ended
and hotly-debated topic with important policy implications (Noel-Miller and Lind 2015, Zuckerman et al.
2016).

2 OBJECTIVE

To analyze the impact of SSUs on patient flow in the hospital, we introduce a robust discrete-event simulation
of a stochastic service network motivated by the University of Michigan hospital system (UMHS). While
our network model is based on our experience with UMHS, it includes many features common to hospitals
elsewhere and can be tailored to a specific hospital system with ease. Certain features that distinguish our
model from other hospital simulations (c.f. Saghafian et al. (2012), Saghafian et al. (2014), Shi et al.
(2015)) include

1. The interaction between the ED and inpatient units such as SSUs.
2. Boarding: preparing patients or waiting for a transfer between units.
3. Overflow: transferring patients to a unit other than the one designated for their condition to reduce

crowding.
4. Patient classes: designations used to determine decisions, processes, routing, among others.
5. Priority: prioritizing patients that are waiting for service based on their class.
6. Blocking: keeping a patient in a unit rather than transferring due to overcrowding.
7. Service times, arrival times, and transfers that depend on congestion, time, patient class, and the

units.

To demonstrate the utility of the model, we use the simulation model to determine beds occupancy over
time in the ED and in the SSU. Bed occupancy over time can be used to determine how to size SSUs by
choosing the number of beds that achieves some target probability of delay (c.f. (Green 2006)). Clinical
data from electronic healthcare records at the UMHS is analyzed to specify patient classes and realistic
parameters in the simulation.

3 HOSPITAL PATIENT FLOW

Patients typically come to the ED without advance notice, and move into, through, and out of the ED
according to needs and resource availability. Figure 1 (top) depicts an example of a patient journey at the
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Figure 1: (A) An example of a patient journey arriving to the ED. As he/she travels to receive treatment
between units and phases of service (ED triage and treatment, observation or SSU, and inpatient unit), a
patient may also have to wait in a queue, board (i.e. prepare for a transfer), or be blocked from a transfer.
(B) Typical routes patients can take within the UMHS. Each node represents a hospital unit, and arrows
into and out of a node represent the flow of patients into and out of a unit. Patients can arrive to any
hospital unit from outside the system, can move from the ED to the SSU, IU, or home, from the SSU to
any IU or home, and from any IU to another IU or home.

UMHS starting from the ED. Although variations occur depending on the needs of the patients and the
specific hospital under consideration, the patient flow starting in the ED can be described as follows.

The patient arrives to the ED, registers and immediately proceeds to triage, where she/he is assigned an
acuity level by a triage nurse based on severity of illness. Acuity is typically assigned using the emergency
severity index (ESI), a five-level triage algorithm. Higher acuity patients (1 or 2) are almost immediately
brought to a bed for treatment. Lower acuity patients wait for treatment until either she/he leaves the ED
without receiving treatment or is brought to a bed.

Once a lower-acuity patient is assigned to a room/bed within the department, they are visited by a
provider. The providers then determine a plan of care which may involve diagnostic testing such as imaging
(radiographs, ultrasound CT scans, MRI), laboratory work, and treatment. After the patient receives testing
and treatment, he/she is either well enough to be discharged home or is admitted to the hospital.

During the admission process, the attending evaluates the patient status to decide whether the patient
needs to be admitted into an inpatient unit (IU). If so, the patient information is reviewed by a case manager
and information (e.g. estimated length of stay, diagnosis, special needs, precautions and level of care) is
entered into the electronic healthcare records system. Once entered, and before the patient is officially
accepted, there is a discussion and care hand off between the providers in the ED and physicians in the IU.

After the request is compiled, it is sent to the bed management staff who checks for bed availability.
A bed in the IU is chosen according to an iterative process until a bed becomes available. ED staff inform
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the transportation staff to move the patient into the assigned IU beds, the patient is then transferred, and
receives treatment in an IU.

Once in the IU, the patient is continuously assessed and treated until discharge, or, occasionally,
transferred to another unit in the hospital. The patient’s care team generally rounds on a daily basis and it
is at this time when the decision to discharge the patient home or to transfer the patient to a different unit
within the hospital is made. In the former case, discharge orders are sent and processed, and the patient
leaves the hospital. Otherwise, providers at the receiving unit are notified of the transfer and the patient is
moved to the new unit.

4 STOCHASTIC SERVICE NETWORK MODEL

Based on the hospital patient flow description from the previous section, we model the hospital system
as a stochastic network. It consists of J nodes (hospital units), each with one or several servers (hospital
beds). Patients arrive to any node from outside the network and belong to one of K classes. Patients arrive
from outside the network according to a non-homogeneous Poisson process with rate that depends on the
job class.

At each node, patients are processed in two phases. The first phase of service represents treatment up
to the disposition decision. The second phase of service represents the time required for boarding when a
patient is sent to another unit or final processing when a patient is sent home. The first phase of service
begins when a patient reaches a server at the queue. At this time, a service time is generated randomly
according to a probability distribution that depends on up to five factors: node, class, time, congestion,
and where the job should have been routed (in the case of overflow). Here, congestion is the number of
patients waiting for or in service.

Upon completion of the first phase of service, it is randomly determined whether the patient should
be routed to another unit (admitted) or sent home (discharged). The routing is determined by a probability
transition matrix which is class dependent. At the same time, an admission decision is made where to
actually route the patient (allowing for bed managers to manage overflow). This decision can depend on
node, class, time, and congestion.

After the first phase of service (once the disposition is made), another service time is generated randomly
accordingly to a probability distribution that depends on the node, class, time, congestion, and where the
job will actually be routed. For example, a patient that will be routed to the surgery unit can have a boarding
time that depends on the surgery unit.

Upon completion of the second phase of service, three things could happen. First, the patient can
be immediately routed home or to the next node (determined at disposition) provided there is a server
available. Second, the patient can be blocked from service (i.e. remains in the same node), because there
are no servers available. At which point, the patient is placed in a queue and must wait in their current
location, keeping their current server occupied, until a server is made available for them. Third, the patient
can be routed to the next node, but placed in a queue, until a server is made available for them. The
placement in the queue, i.e. the job’s priority, can depend on class, time, and congestion.

4.1 Model Justification

Our modeling assumptions are based on an empirical analysis of electronic healthcare records data from
the University of Michigan Health System collected from August 2015 through October 2015 for the ED
and from July 2015 in the IUs. This included around 17,799 patient encounters in the ED and on around
3,476 patient encounters in IUs. The following characteristics were available: clinical characteristics (e.g.
triage level), and event dates and times at the ED, SSUs, and other IUs. This work is part of the study
Emergency Department Patient Flow: The Continuum of Care from Sick in the Emergency Department to
Healthy in the Hospital to Home at the University of Michigan, for which the University of Michigan’s
Biomedical Institutional Review Board (IRB) approved all research procedures (HUM00105968).
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We distinguished six patient classes: five that arrive initially to the ED and one that arrives initially to
the IUs. ED patient classes were based on acuity and disposition decision (Acuity level 1-2 Admit, Acuity
1-2 Discharge, Acuity 3 Admit, Acuity 3 Discharge, Acuity 4-5). The IU patient class consists of scheduled
arrivals or transfers from another hospital. For each patient class, the arrival process was modeled as a
non-homogeneous Poisson process with a piece-wise constant arrival rate function (Figure 2A). For each
ED patient class, the arrival rate function was constant over 2-hour periods by day of the week. For the IU
patient class, the arrival rate function was constant over 2-hour periods independent of day of the week (due
to limited data; see bottom Figure 3A). The constants were estimated from the data as the average number
patients in the respective class for the relevant 2-hour period. We tested our proposed arrival process model
using statistical tests proposed by (Lewis 1965) based on the Kolmogorov-Smirnov (KS) statistic (Kim
and Whitt 2014a, Kim and Whitt 2014b).

ED treatment time was defined as the time from when the patient is roomed in the ED to when the
ED disposition is made. ED treatment time was analyzed by class, number of patients in or waiting
for treatment, and time of day (Figures 2B–D). The likelihood function was used to find an appropriate
one- or two-parameter family of continuous probability distribution for ED treatment times. This led to
treatment times in the ED being modeled as lognormal random variables. In addition, average treatment
time was found to depend on the patient class and ED occupancy (patients in service at the ED). Hence,
parameters for the lognormal distribution were determined by maximum likelihood estimation, where for
each ED class, the location parameter for the lognormal distribution was modeled as a linear function of
ED congestion and the scale parameter was assumed to be constant.

ED boarding time was defined as the time from when the ED disposition is made to when the patient
exits the ED. Using a similar analysis to ED treatment times led to boarding times in the ED being modeled
as lognormal random variables that depend on where the patient was transferred (Figures 2E–F). Again,
parameters were calculated for each IU using maximum likelihood estimation.

Five inpatients nodes or “units” were defined: Intensive Care Unit, Telemetry, General Care, Pediatric
Unit, and Medical SSU. These definitions are used by the UMHS Admissions & Bed Coordination Center to
divide physical units and services based on broad clinical resources available. Although not captured in detail
in the model, it is important to note that across these nodes, there are approximately ten different inpatient
services at the UMHS (Neuroscience, Head Neck and Plastics, Cardiovascular & Thoracic, Transplant
(Med/Surg) & Surgical Services, Medical Services, Cancer, Short Stay, Moderate care, and ICU), which
refers to the physician team caring for a patient, and approximately 60 physical IUs, which refers to locations
in the hospital. The hospital also includes cardiovascular and other operating rooms, an ED overflow unit,
a burn acute care unit, and a catheter laboratory. The operating rooms were excluded and considered an
inpatient service. The other units were excluded because they had a very small number of beds.

Except for the SSU, IU treatment times were defined as the time from when the patient was admitted
to the unit to when the patient was discharged. IU treatment times were modeled as lognormal random
variables that depend on the unit (Figure 3B). For the SSU, treatment times were calculated as the difference
between when the patient was admitted to the SSU and when the patient left the unit. SSU treatment times
were also modeled as lognormal random variables (Figure 3B). Parameters were estimated using maximum
likelihood estimation. Boarding times in an IU/SSU and boarding times for any patient sent home was
assumed to be zero.

Patient routing was modeled as in the diagram in Figure 1. Patients can arrive to the ED or one of the
IUs based on patient class (for the IU class, c.f. Figure 3E). From the ED, patients can be sent home or to
the SSU or IUs (Figure 3C–D). From the SSU, patients can be sent home or sent to another IU (Figure 3F).
From the IU (not the SSU), patients are sent home. For the ED classes, the transition probability matrix for
routing out of the ED was estimated from the data as fractions of the total count of transitions. For the IU
classes, the transition probability matrix for routing into an IU was estimated from the data as fractions of
the total count, and similarly, the transition probability matrix for routing out of an SSU was also estimated
from the data as fractions of the total count of transitions.
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Figure 2: Processes for ED arrival, treatment, and boarding were modeled based on UMHS data. ED
patients were divided into five classes based on acuity and whether they were admitted to an IU. (A) The ED
arrival process was captured as non-homogeneous Poission process with piece-wise constant rate function
that depends on time, day of the week, and class. (B–D) ED treatment times were modeled as lognormal
random variables that depends on class and congestion, but not time. (E–F) ED boarding time was also
modeled as a lognormal distribution that depended on where the patient was admitted and time of day.
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Figure 3: Process for IU arrival and treatment, along with transition probabilities for routing, were
estimated from UMHS data. (A) The arrival process for patients that arrived initially to IU or SSU was
modeled as a non-homogeneous Poisson process that depends on time. (B) IU/SSU treatment times were
modeled as lognormal random variables that depends on the unit. (C–D) ED patients that were admitted
would transfer to one of five inpatient units based on patient class. (E) Patients that arrived initially to an
IU are placed in a unit based on a transition probability. (F) SSU patients could also transfer to another
IU unit or sent home.
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In accordance with current practice at UMHS, we assumed there were 119 beds for Intensive Care,
211 beds for Telemetry, 256 beds for General Medicine, and 212 for Pediatric Care. A maximum number
of 69 beds were assumed for the ED, where 13 out of the 69 beds were available for new patients only
between 8A and 10P, and an additional 14 out of the remaining 56 beds were available only between 11A
to 10P. The number of beds for Short Stay are varied in the subsequent section. Lastly, in the ED queue,
patients are prioritized based on acuity, otherwise patients are prioritized on a first-come-first-serve basis.
We did not consider admission decisions for overflow in this initial model.

4.2 Application of the Model

The goal of the model is to assess the impact of SSUs on patient flow in the hospital. To illustrate the
applicability of our model, we thus ran our discrete-event simulation model to examine how the number
of beds in the SSU impacts the average waiting times and average bed occupancy by time of day in the
ED and SSU (Figure 4).

For the discrete-event simulation, we used parameters determined by our analysis from Section 4.1
and a simulation length of 3 years, using only the the second year for analysis. Because the goal of this
study was to analyze performance measures (i.e. average waiting times and bed occupancy) for a one year
period, we used only the second year for analysis using the guideline that the simulation warm-up period
is equal to the length of the period we wanted to simulate. Moreover, we are also evaluating average
waiting times as a function of when patients enter the system. Because waiting times depend on the arrival
process and congestion, we ran the simulation beyond the simulated year to ensure correct waiting times.
For simplicity, we ran the simulation for another year, with the understanding that patients do not wait in
queues longer than 2 days.

To assess the impact of the size of the SSU on congestion, we varied the number of SSU beds from 10
to 18, incrementing the number of beds by two each time, for a total of five scenarios. For each scenario,
we calculated average hourly waiting time to ED care, average hourly bed occupancy (i.e., patients waiting
in treatment) in the ED, average hourly waiting time to SSU care, and average hourly bed occupancy in
the SSU by hour of day and day of week. The simulation was performed in MATLAB.

When the number of SSU beds equals 10, the system is unstable in the sense that average hourly
waiting times are no longer finite. As a result, we see in Figure 4A-B that, for each day, the estimated
average hourly bed occupancy in the ED and SSU equals the total number of beds in each unit: 69 in the
ED and 10 in the SSU. Surprisingly, when the number of beds in the SSU increases from 10 to just 12,
the system becomes stable in the sense that the average waiting times are finite.

The estimated average hourly bed occupancy in the ED generally decreases with number of SSU beds
(Figure 4A). In all instances, ED occupancy follows the same sinusoidal-like, but lagged, trend as the
estimated bi-hourly arrival rate (c.f. Figure 2A): relatively high occupancy in the morning that decreases
to its lowest peak at 9A, and then increases to its highest peak at around 9P. The average waiting time for
treatment in the ED also follow a sinusoidal-like trend: relatively high waits in the morning that decreases
to its lowest peak at 6A, and the increases to its highest peak at around midnight. Lastly, average ED
waiting times decreases with number of SSU beds from a peak of half an hour when the number of SSU
beds is 12 at around 4A, to a trough of 0 when the number of SSU beds is 16 or 18 between 10A to 5P
(Figure 4C).

In contrast, the estimated average hourly bed occupancy in the SSU stays relatively constant throughout
the day (between 10 and 12 patients) and slightly increases with the number of SSU beds (Figure 4B).
Moreover, the average waiting times for care in the SSU decrease with the number of SSU beds (Figure 4D).
There is a very steep decrease in waiting times when the number of beds in the SSU increases from 14
beds (with a peak average wait of almost 16 hours around 10A) to 16 beds (with a peak average wait of
no more than one hour). However, there is little difference in average hourly waits when the SSU has 16
or 18 beds.
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Figure 4: ED and SSU Occupancy.

5 DISCUSSION

We presented a simulation model of a hospital system as a stochastic network model, that captures many
nuances of a hospital system, the most important of which is the interaction between emergency departments
and inpatient units. The details of the model are based on UHMS electronic healthcare records, and is
primarily motivated by our interest in broadly assessing the impact of SSUs on outcomes, efficiency, and
costs of care.

Simulation models of healthcare systems have been well studied in the literature; we refer the reader to
Jacobson, Hall, and Swisher (2006) and to Brailsford (2007) for systematic surveys on hospital simulation
models and to Section 3.3 in Saghafian, Austin, and Traub (2015) for a summary of work focused on EDs.
Our work and the work summarized in these papers underscore their importance: they allow decision-makers
to analyze otherwise intractable systems and to experiment with what-if scenarios to determine feasible or
appropriate system configurations without having to change the physical system.

Our paper considers a topic in healthcare simulation that has not been adequately addressed in the
literature: data-driven models of hospital systems. Examples of such work include Sinreich and Marmor
(2005), Marmor et al. (2009), Zeltyn et al. (2011) which focus on EDs. The authors in Sinreich and
Marmor (2005), for instance, present a model of the care process in the ED based on field studies of
Israeli hospitals. Their analysis allowed them to characterize ED processes in different hospitals, to propose
patient types/classes (internal, surgical, orthopedic), a patient arrival processes for each patient type, and
staffing levels for different medical providers. More broadly, the data allows to more rigorously identify
factors that significantly contribute to patient flow in the hospital and to more precisely capture patient
flow in a more realistic fashion. Moreover, it allows for identifying factors that are not significant in order
to present the simplest description possible.

While all of the previous work made significant contributions in developing data-driven models, their
focus is on a single unit, such as the ED. By contrast, we take a macroscopic view of the hospital system,
spanning several hospital units. There is recent, relevant work in this area in Armony et al. (2015) and
Shi, Chou, Dai, Ding, and Sim (2015). They study patient flow in various departments at an Israeli and
Singaporean hospital. Armony et al. (2015), for example, empirically study the transfer process from ED
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to internal wards, and Shi et al. (2015) uses the analysis in Shi et al. (2014) to develop a simulation
model to study early discharge policies that can help reduce ED boarding, widely considered a main factor
contributing to ED overcrowding.

Our model also includes the ED to IU hand-off process and considers boarding, but extends previous
work by including other common features observed in practice and the data (e.g. overflowing patients,
priorities, blocking). We contend that these are important features to include when assessing the impact of
operational decisions in a complex interacting system such as the hospital; operational changes in one unit,
such as changes in the number of beds in the SSU, may have reverberations in both upstream units (e.g.
ED) or downstream units (e.g. IUs). Moreover, our proposed model is a time-varying and state-dependent
stochastic service network, for which no known analytic or simulation results are known.

To illustrate the former point, we generated scenarios to assess the impact of changes in the number of
SSU beds on average hourly bed occupancy and average hourly waiting times for treatment in the ED and
SSU over time. There are two main surprising results, with managerial implications. The first is that when
the number of SSU beds equals 10, the system is unstable in the sense that average hourly waiting times
are no longer finite, but can stabilized by simply increasing the number of beds from 10 to 12. This means
that for the given model, hospital managers should have at least 12 beds in the SSU to avoid arbitrarily
long waits. Second is that there is a significant decrease in waiting times when the number of beds in
the SSU increases from 14 beds to 16 beds, but very little difference in average hourly waits when the
number of SSU beds is increased from 16 beds to 18 beds. The latter is important for two reasons: first
is that SSU waiting time is time spent by a patient waiting for an SSU bed, or boarding, in an ED bed,
which contributes to ED overcrowding. Second is that the steep decrease in average waits when there is
an increase from 14 beds to 16 beds suggests that, if the current setup has 14 beds, a manager may want to
invest in additional capacity of two beds to reduce overcrowding. However, the small decrease in average
waits when we increasing from 16 beds to 18 beds suggests that a manager may not want to invest in
additional beds after that.

Traditional approaches to sizing hospital units are based on averages (c.g. Lovejoy and Desmond
(2011)) or on sizing a given unit with the number of beds that achieves some target probability of delay (c.f.
Green (2006)). Our simulation model extends these approaches by including more realistic features (e.g.
stochasticity) and, in contrast to models where target probabilities are used, our model is a time-varying,
state-dependent network with blocking, for which no known analytic results exist.

6 LIMITATIONS

The work presented in this paper is only a small part of a wide-ranging project, and there are several avenues
for future research directions that are currently being pursued. We list two that are related to simulation.
First is to better understand clinical pathways in different hospital units. For example, in the UMHS ED,
an Emergency Critical Care Center has recently opened with the purpose of delivering care to the most
critically ill and injured patients from the moment of arrival through the first hours of their health crisis.
It is the first of its kind in the country, and a better understanding of the patient clinical pathway through
this unit and how it affects flow elsewhere in the ED can help better determine whether and how it should
be modeled. Similarly, we excluded operating rooms and transfers between the different IUs from our
model even though operating rooms are routinely used and transfers commonly occur. Once again, a better
understanding of the pathway through the operating rooms and transfers between IUs will help determine
what features should be included in the model. Second is validation of our methods, continuing the limited
experiment presented in Section 5, and expanding to compare them against actual hospital measurements
(e.g. actual bed occupancy, ED and IU length of stay).
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