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ABSTRACT

Ecological disturbances (i.e. pests, invasive species, floods, fires etc.) are a fundamental challenge in
managing connected social-ecological systems. Even if treatment for such disturbances is available, often
managers do not act quickly enough or not at all. In this paper we build an agent based model that examines:
a) under what circumstances are managers locked into non-action that favors ecological disturbances? b)
what learning strategies are most effective in avoiding management lock-in? The model we develop relates
adoption of treatment strategies to eradicate ecological disturbances with the type of learning preferred
by individuals (success bias, conformist and individual). We further model treatment strategy adoption as
a function of treatment cost, ability of the ecological system to recover once treated and the disturbance
effect on the social system. Our model shows the importance of success-bias imitation and system size in
affecting the odds of eradicating ecological disturbances on connected landscapes.

1 INTRODUCTION

Agriculture, biodiversity and human well-being are interrelated and depend heavily on the effective man-
agement of pests, invasive species, fires, floods and, more generally, of ecological disturbances (Pimentel
et al. 2000, Chapin III et al. 2000). Ecological disturbances are important topics in international policy
(Howden et al. 2007). Further, while some ecological disturbances can be prevented but have a clear
and immediate effect (i.e. fires and floods), others such as invasive species and pests can be very hard
to detect and their effects can be slow, but cumulative and potentially devastating (Chadès et al. 2008,
Chadès et al. 2011, MacKenzie et al. 2002). In an increasingly interconnected world it is important to
understand how individuals manage ecological disturbances effectively, how they make decisions about
adopting treatment strategies and how these can spread through an interconnected social-ecological sys-
tem. Environmental management often requires cooperation or coordination on the part of managers, and
therefore the transmission of information among managers about management strategies and environmental
conditions (Epanchin-Niell et al. 2009, Lansing and Kremer 1993, Janssen 2007). This is especially true
in fragmented landscapes composed of different types of land-tenure regimes with managers distributed
across a patchy, connected ecological landscape (Epanchin-Niell et al. 2009, Rebaudo and Dangles 2011,
Schoon et al. 2014).

Management practices need to be adopted at appropriate scales, as a mismatch between management
and the associated ecological system can lead to inefficient management or complete failure (Crowder et al.
2006, Cumming et al. 2006, Folke et al. 2007). Given the connectivity of the overall social-ecological
system, reliance on trial and error learning may be detrimental. To complicate matters further, increased
connectivity is accompanied by an increased uncertainty associated with the magnitude of ecological
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disturbances and the uncertainty related to strategies adopted by neighbors (Darnhofer et al. 2010, Rebaudo
and Dangles 2015, Baggio and Janssen , Baggio et al. 2015). Individuals need to adapt management
strategies to changing conditions in the face of uncertainty, and thus will rely not only on individual
learning but also on social learning (Baird et al. 2016). Managers seek out and use information from
their peers (Isaac et al. 2007, Baird et al. 2016). Personal networks are a fundamental component of the
decision making process. Trusted individuals (often successful individuals, or just the majority of peers)
play a key role in diffusing and adopting specific management practices (Collins 2014).

Individuals will adopt different strategies when the ones they use are unproductive, when specific
strategies are adopted by the majority of their peers (or other individuals in their social network), or are
adopted by the most successful individuals within their social network (Laland 2004, Mesoudi 2011).
More precisely, individuals employ social learning if the returns of the strategy adopted by neighbors is
considered a better option than the strategy they are currently using (Schlag 1998). There are two key ways
in which individuals learn socially: 1) success-biased imitation, where individuals copy strategies adopted
by successful individuals (Boyd and Richerson 1988), and 2) conformist imitation, in which individuals
adopt the most common strategy within the population, independent of the actual payoff (Henrich and
Boyd 1998).

This study aims to provide some theoretical insight into the relationship between social and individual
learning and the effect of ecological disturbances using an agent-based modeling (ABM) framework. We
use a social-ecological model to assess the conditions that lead to successful management of ecological
disturbances such as pests and invasive species under full isolation or full connectivity between social agents
in a fully connected ecological landscape. We do this by varying the cost of treatment, the effect of the
ecological disturbance on the ecological system (catastrophic vs non catastrophic) and the type of learning
agents employ. We examine the differential effect of learning via trial and error, or learning socially either by
imitating other successful managers, or by imitating the majority of other managers in the social-ecological
system. We assume that the ecological landscape is fully connected and thus disturbances have the ability
to affect the whole system simultaneously. We find that, on average, success-biased imitation is key to the
management of ecological invasions.

2 METHODS

The model can be thought of a generalization of the well known Lansing-Kremer (Lansing and Kremer
1993, Janssen 2007) and comprises N social agents and N ecological patches. Each ecological patch is
associated with a social agent. Ecological patches can be affected by ecological disturbances, and social
agents can intervene to prevent or treat such disturbances. Affected ecological patches suffer a reduction
in utility (yield, aesthetic value, etc.) that reduces the payoff of social agents. Payoffs are a function of the
difference between utility gained from the ecological patch and the cost of management practice employed
(cost = csl if treatment is adopted, and 0 otherwise). Treatment adoption treats the ecological disturbance
(or the possibility of being ”disturbed”). Treatment adoption needs to be maintained or its effects vanish.
Treatment is adopted as a function of learning strategy (individual, success bias, or conformist bias). Agents
decide the type of learning strategy depending on their preference towards individual vs social learning,
whether they are success-biased or conformist imitators and their observed payoffs. Social agents are either
isolated (thus engaging only in individual learning), or they exist in homogeneously mixed environments,
where a social agent has the ability to know strategy and payoff of all other social agents in the system.
Model details and model code can be found at https://www.openabm.org/model/5005/version/1/view. The
flowchart below gives a graphical representation of the process just described (Figure1).
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2.1 Model Initialization and Parameter values

At the beginning of each simulation run, 10% of ecological patches are affected by a generic disturbance.
Social agents are not adopting any treatment by default. The model initial parameters are reported in Table
1.

Table 1: Symbols, names and values of model parameters.

Type Symbol Variable Value
General Ns Number of social agents 10 or 100

Ne Number of ecological patches = Ns
csl Cost of adopting the disease management strategy 10, 50
rec Recovery of yield when cured (pest is eliminated) 0 (no recovery), 10
e f f Loss of utility due to infection 10, 50, 100

Social Agents Net? Type of social network Isolated, fully connected
mem Memory (payoff remembered) 5
con f id Social learning confidence 3
l prob conformist probability (success learner = 1− l prob) 0, 0.25, 0.5, 0.75, 1
A Adoption of treatment 0
mu Mutation (or learning error) 0.02
th Parameter for conformist bias imitation 3

Ecological Patches y Utility provided 100
Eres Patch intrinsic resistance to disturbance 0, 0.25, 0.4, 0.5, 0.6, 0.75
Nin f Fraction of initially infected ecological patches 10%

2.2 Ecological Disturbances

Ecological disturbances are represented by pests, invasive species, fungi, fires, floods etc. on fully connected
landscapes. Here Nin f represents the fraction of initially affected patches in the ecological system. At
each time-step ecological patches have a probability of being affected by a disturbance that is dependent on
the number of ecological patches already affected within the overall system. Ecological patches become
affected if Iag > Eres where Iag is disturbance strength represented by a number extracted from a uniform

Figure 1: Model Flowchart Diagram
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random distribution between 0 and 1 and repeated nin f times where nin f = number of affected ecological
patches, and Eres is the ecological patch disturbance intrinsic resistance. Each ecological patch can be
affected if and only if no treatment strategy is currently adopted (i.e. A(Si) = 0 where Si = social agent
i connected to the ecological patch Ei). Once affected, ecological patches reduce the utility provided to
social agents by e f f (i.e. yt = yt−1− e f f ). However, if treatment is adopted, then ecological patches are
able to recover the lost utility by rec (i.e. yt = yt−1 + rec), up to the initial level (= 100).

2.3 Learning Strategies

If social agents are isolated (i.e. no knowledge exchange with other social agents), the only option is to rely
on individual learning. The probability of adoption of a treatment strategy is then given by the following
algorithm, that is based on the fact that a social agent will change strategies if they are dissatisfied with
the current one (Schlag 1998):

• Si will average her payoff over the last mem time-steps (mem = memory of social agents).
• Si will check how many times a specific strategy (treatment or no treatment) has led to a payoff

higher or equal than average payoff calculated in the previous step. NT0 = number of times that a
no-treatment strategy has led to higher than or equal to average payoffs; NT1 = number of times
that a treatment strategy has led to higher than or equal to average payoffs.

• Then, pr0i =
NT0

NT0+NT1
and pr1i = 1− pr0i: the probability of choosing strategy 0 increases linearly

with the number of times that that strategy has led to better than average outcomes.

Social learning can be chosen only if social agents are connected to other social agents. Social agents
can be either conformist imitators with probability l prob, or success-biased imitators with probability
1− l prob. If a social agent is a conformist imitator, he/she is able to see k neighbors and will choose
with pr0 a specific strategy (treatment adoption vs no treatment adoption) depending on the number of
neighbors that have adopted that strategy (as in (Henrich and Boyd 1998)):

• pr0i =
nth

0
nth

0 +nth
1

where th = exponent of the function that determines the gradient of the probability
function (th = 1 corresponds to a linear increase in the probability of not adopting and th > 8
approximates a step function (see (Salau et al. 2012) for more details on this type of function
used to determine probabilities). n0 and n1 represent the number of social neighbors that have not
adopted (n0) or adopted (n1) treatment strategies.

• pr1i = 1 = pr0i where pr1i = probability of adopting a treatment strategy.

If a social agent is a success-biased learner, he/she will be able to have full information of all payoffs and
strategies of k neighboring agents. Adoption of a specific management strategy is given by the difference
between the maximum payoff of neighbors and one’s own (as in (Boyd and Richerson 1988)):

• ∆π =max(πk)−πi where max(πk)= maximum payoff of neighbor’s management strategy (treatment
or no treatment) different than one’s own. If all neighbors adopt the same strategy as one’s own,
than ∆π = 0.

• The probability of switching to the strategy leading to the neighbor’s maximum payoff equals
1

1+ε−∆π .

Social agents can switch between using individual and social learning if connected to other social agents
(if isolated, they can only engage in individual learning). The choice between adopting individual or social
learning depends on the clarity of strategy success and the social learning confidence level, reflecting the
fact that social agents will switch learning strategies depending on their satisfaction level with the current
one. Thus, at each time-step a social agent Si:
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• Checks the number of mem times a specific strategy (treatment or no treatment) has led to a payoff
better than or equal to the payoff averaged over the last mem times. NT0 = number of times that a
no-treatment strategy has led to higher or equal than average payoffs; NT1 = number of times that
a treatment strategy has led to higher or equal than average payoffs.

• Each Si calculates the clarity of winning strategy as CW = abs(NT1−NT0).
• If CW = con f id, Si will follow strategies dictated by individual learning, otherwise, it will follow

strategies dictated by the social learning.

Finally, each social agent is prone to making mistakes due to either mis-interpreting the social and/or
the ecological system. Such errors are represented by the probability mu of switching strategy.

2.3.1 Treatment adoption, eradication of ecological invasions and payoff

Social agents can either adopt treatment strategies (A= 1) or not adopt treatment strategies (A= 0). Adopting
the treatment strategy either eradicates the ecological invasion or immunizes against ecological invasion.
Treatment needs to be maintained, and if a social agent changes strategy to non-treatment (A = 0) then the
ecological patch becomes susceptible to invasions.

Invasion of an ecological patch affects the utility of the social agent managing that patch and ultimately
her payoff. More precisely, the payoff of a social agent (πSi) is given by the utility derived by the ecological
patch y and the decision to adopt treatment (with cost cls): πi = yi−A× cls where cls = cost of adopting
strategy A= 1 (i.e. adopting treatment) and yt = yt−1 if the ecological node is not infected, or yt = yt−1−e f f
if infected, where e f f = effect of the ecological invasion on the utility provided by the ecological patch.

2.4 Lowess Smoothing

Locally weighted scatterplot smoothing (i.e. LOWESS smoothing) methods fit a low degree polynomial
regression to a subset of the data derived from our simulations, hence showing non-linear trends between
variables. The LOWESS method assigns increasingly higher weights to points closer to the the point where
the dependent variable is estimated given the independent variable (Cleveland 1979, Cleveland and Devlin
1988) and as used in Baggio et al. (Baggio et al. 2011). The weights assigned follow a tricube function
as follows: w(x) = (1−|x|3)3 f or|x|< 1 and w(x) = 0 f or|x| ≥ 1. Here we use lowess smoothing to assess
the relationship between adoption and eradication time and between learning type and adoption, thus we
truncate the smoother at 0 for eradication time and at 1 for adoption (as negative time values and greater
than 100% adoption are nonsensical).

3 RESULTS

Our main objective is to understand the relationship between the adoption of treatment strategies that can
eradicate ecological disturbances (e.g. treating fires, floods, agricultural pests and/or invasive species),
the characteristics of the ecological disturbance (cost of treatment, possibility to recover, and effect), and
learning.

The first step to disentangle the importance of social learning type and ecological disturbances is to
understand the relationship between adoption of treatment strategy and the eradication of the ecological
disturbance. As shown in Figure 2, adoption of the treatment strategy clearly increases the probability for
the system to eliminate the effects of ecological disturbances. The more adoption occurs, the higher the
likelihood that the disturbance is eradicated. However, it is also noticeable how the size of the overall
system affects the actual threshold beyond which adoption always leads to eradication. More precisely, in
the case of smaller systems (Ne = Ns = 10) if more than 30.4% of social agents adopt treatment, eradication
is certain, while for bigger systems (i.e. Ne = Ns = 100) this threshold increases to 41.4%. Generally, the
larger the system and the more complicated the coordination problem and the more difficult it is to eradicate
ecological disturbances: more effort is needed to promote treatment strategies. Figure 2 also highlights the
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importance of social learning, more precisely of success-biased learning. Success-biased learning increases
the odds of successful eradication. This is especially true, once again, for smaller systems where when
more than 50.4% of social agents adopt a success bias, eradication is almost always assured.
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Figure 2: Relationship between eradication, adoption and learning. The solid line in each plot represents
the trend in the data given by LOWESS smoothing. The figure shows the importance of adoption and the
influence of success-biased imitation on the likelihood of ecological disturbance eradication.

As shown in Figure 2 adoption of the treatment strategy is fundamental to eradicate ecological
disturbances. Adoption not only depends on learning type but also on: a) the ability of the system to
recover if treated, b) the cost of treatment and c) the effect of ecological disturbances on the utility of
social agents. Figure 3 displays these relationships by system size. Generally speaking, the number
of adopters needs to be higher in order for eradication to occur (see also Figure 2). The difference is
clear and independent of cost, effect and recovery ability of the ecological system once treated. Further,
independent from system size, lower cost of treatment (csl = 10) and ability of the ecological system to
recover (rec = 10) from the ecological disturbance once treatment starts increases the rate of eradication
and the rate of treatment adoption. However, there is a fundamental difference relating to the effect of
ecological disturbance on social agents’ utility: in smaller system, intermediate, cumulative effects lead
to a higher likelihood of eradication and higher rate of adoption (i.e. e f f = 50) except when cost is low
and recovery is possible (csl = 10 and rec = 10). On the other hand, in bigger systems, small, cumulative
effects of ecological disturbances increase the likelihood of eradication and the rate of adoption (e f f = 10).
This difference indicates that in smaller systems it may be necessary for an ecological disturbance to be
clearly visible and have a strong and fast effect on manager’s utility in order for them to act to treat the
disturbance. However, when systems increase in size, a sizable effect is detrimental to eradication and
adoption of treatment strategies. While this is an interesting result, it can be truly uncovered only by a
rigorous qualitative analysis and research on motivation of managers to adopt specific treatment strategies.

Further, the characteristics of ecological disturbances (recovery, cost and effect) also influence social
agents decision with respect to learning. The type of learning strategy adopted by social agents is a
fundamental determinant of the system’s ability to eradicate ecological disturbances. Imitating successful
social agents, under the assumption that all agents have the same objective, that ecological disturbances
affect utility homogeneously and that agents have full information (i.e. a social agent is aware of strategies
and utility of all other social agents in the system) increases the likelihood of eradication. Figure 4
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Figure 3: Relationship between eradication of ecological disturbance, adoption, treatment cost, utility
recovery once treatment is administered, and effect of the ecological disturbance on utility by size of the
system (Ns=Ne= 10 vs Ns=Ne=100).

disentangles the relationship between learning, ecological disturbances, system size, and eradication. From
Figure 4 we can infer that the type of ecological disturbance influences the type of learning, especially in
the case of low cost and possibility of recovery in smaller systems (csl = 10, csl = 10, in Ne = Ns = 10).
In smaller social-ecological systems, specific characteristics of the ecological disturbance do not affect the
importance of success-biased learners in increasing the likelihood of eradication. However, the importance
of low cost of treatment and the ability for the system to recover are clearly important in determining
successful eradication when social agents are not success-biased imitators but rely on individual learning
or conformity. On the other hand, in larger systems specific characteristics do not affect the relationship
between learning type and eradication, except when csl = 10, rec = 10 and e f f = 50 or 100. In this latter
case, the rate of eradication increases for individual learners, while the rate of persistence of the ecological
disturbance increases in the case of success-biased learners.

In the case of disturbance persistence (grey bars in Figure 4) most social agents adopt an individual
learning strategy (i.e. > 50%). On the other hand, when eradication is successful, the majority of social agents
not only adopt social learning as a preferred learning strategy, but most employ success-biased imitation
(i.e. 60% in all cases). Success-biased imitation is a key component of the ability of a social-ecological
system to manage and eradicate ecological disturbances.
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Figure 4: Relationship between learning type, cost of treatment, treatment cost, utility recovery once
treatment is administered, and effect of the ecological disturbance on utility by size of the system (Ns=Ne=
10 vs Ns=Ne=100). Black bars = Learners rate in case of ecological disturbance eradication; Grey bars =
Learners rate in case of persistence of the ecological disturbance in the system.
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4 CONCLUSION

Ecological disturbances (i.e. fires, floods, pests, invasive species etc.) affect our well being and are a
fundamental challenge in our increasingly connected world (Pimentel 2011). Hence it is crucial to understand
how social agents that have the authority to manage specific patches of the landscape make decisions and
how these decisions affect the wider social-ecological system. Using an agent based model in which social
agents can use various learning strategies, coupled with an underlying connected ecological system that
is affected by ecological disturbances, we explored the relationship between treatment adoption, learning,
and ecological disturbances.

Generally, managers adopt practices that result in a relative advantage over other alternatives (Rogers
2003, Ghadim and Pannell 1999). However, in a highly connected world, individual learning based on
trial and error is not sufficient to counter complex problems such as ecological disturbances in fragmented
landscapes (Giraldeau and Beauchamp 1999). Our model reinforces this conclusion but also demonstrates
the costs of conformity. In fact, success-biased imitation is preferable, under the right conditions. For
example, our model shows that success-biased imitation is the learning strategy that most increases the
likelihood to eradicate invasions. However, this is based on the premise that social agents have full
information on strategies and utility derived by the ecological system of all other agents and that all agents
actually have the same relationship between the ecological system and their own utility. Despite these
caveats, success-biased imitation is also shown empirically to be preferred to conformity when individual
engage in social learning (McElreath et al. 2008, Mesoudi 2011).

This study is just the beginning of a promising line of research. Here we demonstrate the importance of
social learning, under specific assumptions that we aim to relax in the future. For example, how do different
types of learning strategies perform when the system is partially connected? What is the relationship
between the structural properties of the social and ecological system (i.e. the underlying social-ecological
network), learning strategies, treatment adoption and eradication of ecological invasions?
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