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ABSTRACT 

This paper describes a hybrid simulation model that uses a system dynamics and discrete event simulation 

to study the influence of long-term population changes on the demand for healthcare services. A dynamic 

simulation model implements an aging chain approach to forecast the number of individuals who belong 

to their respective age-sex cohorts. The demographic parameters that were calculated from a Central 

Statistical Office Local Data Base were applied to the Wrocław Region population from 2002 to 2014, 

and the basic scenario for the projected trends was adopted for a time horizon from 2015 to 2035. The 

historical data on hospital admissions were obtained from the Regional Health Fund. A discrete event 

model generates batches of patients with cardiac diseases and modifies the demand according to the 

demographic changes that were forecasted by a population model. The results offer a well-defined 

starting point for future research in the health policy field. 

1 INTRODUCTION 

The effectiveness of the performance of a healthcare system depends largely on an appropriate level of 

financial and material resources. Although different countries are at different stages of economic 

development and can afford different packages of care, in the case of any public healthcare system, the 

number of provided services is permanently much lower than the growing demand, and the supply of 

services is usually insufficient to meet all of the associated needs. A population’s health is therefore 

determined not only by the quantity of available resources but also by their appropriate distribution. The 

credible knowledge of a population’s needs is the key determinant that can enable the optimal allocation 

of resources and provide the information that policy makers can use to improve people’s access to health 

facilities.  

 In the application of quantitative modeling to support managerial decisions, healthcare needs are 

usually converted into indicators of demand. The terms that are used in this process include descriptors of 

the delivery of healthcare services such as volume, structure and dynamics. The most common 

methodological approach assumes that the future demand for healthcare services may be properly 

approximated by the past supply of the services that have been delivered to the patients; see, for example, 

(Bowers et al. 2009; Steins et al. 2010; Matta and Patterson 2007). However, this is not always the best 

solution that can be applied. According to Roberfroid et al. (2009), this approach is justified only when 

the current supply of healthcare services is appropriate and the population’s demography changes 

according to currently observed trends. It is widely recognized that the population’s needs for healthcare 

services are highly influenced by age-gender demographic profiles such as the proportion of elderly 
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people, average expected length of life, birth and death rates, and the number of people of working age 

(Ansah et al. 2014). For example, Barber and Lopez-Valcarcel (2010) simulated a demographic pyramid 

to analyze the demand for medical specialties in Spain; Masnick and McDonnel (2010) modelled 

population evolution to link individuals with health conditions to clinical workload; Lagergren (2005) 

projected the population of older persons to estimate future needs for publicly financed long-term care. 

Furthermore, the supply projection approach does not consider the important uncertainties that could 

influence future demand, such as the uncertainty of future incidence rates of specific diseases. The 

random and uncertain factors that play a significant role in healthcare management issues and influence 

these types of external and internal factors on the overall demand for healthcare services should be 

considered (Cardoso et al. 2012). 

 The factors that are discussed above have an impact on the undesirable accumulation of demand, 

despite the fact that there is a satisfactory average supply level (calculated for the specific period). This in 

turn may lengthen the waiting time that is required for a particular service and generate additional costs. 

The overall goal of our project is to develop the general approach for predicting the demand for 

healthcare services. In an attempt to extend our previous studies (Mielczarek et al. 2014; Mielczarek 

2013), we searched for new solutions that would enable the preservation of the unique and valuable 

features of the discrete simulation with the possibility of applying a holistic analysis of the problem. We 

decided to build a hybrid simulation model to capture different aspects of demand for healthcare services, 

in particular the effects of ongoing demographic changes, the uncertainty that surrounds the key 

determinants of future incidence rates and the healthcare indicators that vary geographically. The 

submodel, which was developed according to a continuous system dynamics (SD) paradigm, describes 

population evolution. The discrete event simulation (DES) submodel generates data that can facilitate an 

assessment of the demand for healthcare services on the regional level. 

This paper presents the results of an experiment that was conducted to analyze the effects of long-

term demographic changes on future demand for healthcare services. We outline the overall idea of the 

hybrid model and discuss the initial findings of the simulation of population projections. The remainder 

of the paper is organized as follows: section 2 provides background information about healthcare demand 

modeling and outlines the conceptual framework for using hybrid simulation. The methodology and the 

details of the model are presented in section 3. The features of the experiment and the analysis of the 

results are presented in section 4. Finally, section 5 ends the paper with discussion and conclusions. 

2 BACKGROUND 

Simulation plays a vital role in healthcare decision making, and healthcare systems have benefited greatly 

from the use of simulation (Gul and Guneri 2015, Katsaliaki and Mustafee 2011). Simulation methods 

that are applied to the healthcare sector are categorized in various ways, but they are most commonly 

classified (Brailsford et al. 2009; Sobolev et al. 2011; Mielczarek and Uziałko-Mydlikowska 2012; 

Marshall et al. 2015) into four categories: Monte Carlo (MC), discrete-event simulation (DES), system 

dynamics (SD) and agent-based simulation (ABS). In the selection of a simulation method, the most 

central consideration is the type of the problem that is being investigated. For example, when modelling 

emergency departments, discrete-event simulation is definitely the preferred technique (Gul and Guneri 

2015). In contrast, models of epidemics and disease prevention are usually built using the system 

dynamics approach (Homer and Hirsch 2006). ABS is used to study systems for which the consequences 

on the collective level are not predictable although the modeler is able to describe the behavior of 

individuals (Kasaie et al. 2010). 

The estimation of the future demand for healthcare services is crucial in addressing the majority of 

the decision support management problems in healthcare systems. Mielczarek (2014) demonstrated that 

the issue of modeling and forecasting healthcare demand is present: in diagnosing and improving the 

performance of a healthcare system; in studying the cost-effectiveness and/or the clinical effectiveness of 

medical procedures, in connection with medical treatments that are associated with clinical pathways, and 
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in the development of prevention strategies or contemporary health trends; and as support for decision 

makers who are engaged in the capacity planning process at the regional or national level. 

In the projection of the demand for healthcare services, population demography and epidemiological 

estimates of prevalence are usually considered. For example, long-term care (Ansah et al. 2014) or highly 

age-related conditions such as dementia (Jagger et al. 2009) require that population projections with 

demand modeling are linked. So-called cohort modeling enables the representation of chronological 

ageing, i.e., the process that describes the dynamic movement of people from one population group to 

another over time. However, there is also a need to include more individual-specific components in the 

model, such as a region’s socio-economic profiles, temporal factors (i.e., time of day, day of the week, 

season, and calendar year) or geographical characteristics (i.e., the location of healthcare providers, 

patients’ place of residence) and other factors. The influence of different types of uncertainty and 

randomness should also be considered (Cardoso et al. 2012). The neglect of this type information can lead 

to forecasts that are constructed without links to the specifics of the observed changes in demographics, as 

well as the epidemiological, geographical and health related structures of the population. An incorrectly 

estimated demand could lead to the erroneous assumptions and could significantly lower the explanatory 

power of demand projections. Consequently, this may result in accepting a solution for which the planned 

supply of services far from meets the current demand. 

Demand modeling is performed using system dynamics (Desai et al. 2008), discrete-event (Vissers et 

al. 2007) or agent-based simulation (Taboada et al. 2011). We assumed that the quantitative and 

qualitative factors as well as the deterministic and stochastic variability should all be present in the model. 

Such a possibility is offered by the hybrid structure that has already proven to be successful in many 

fields and has obtained benefits that were unattainable with the use of only one of the components alone. 

In hybrid modeling, different elements of a system are modelled by different simulation and/or analytical 

paradigms (Viana 2014). Balaban (2014) used a multi-method simulation approach to model the return-

to-work behavior of people with disabilities. Gao et al. (2014) developed a hybrid simulation model to 

project the cost and health impacts of diabetic end stage renal disease. Crowe et al. (2015) used 

simulation and analytical modeling to study certain aspects of a pediatric heart transplantation program. 

According to Djanatliev and German (2015), the separate use of simulation techniques is not sufficiently 

powerful to solve large-scaled problems. The authors also suggest the use of a hybrid simulation term if a 

clear distinction between continuous and discrete methods is of particular importance. 

Healthcare demand modeling requires the integration of two opposite perspectives in the simulation 

model. The projections of long-term population evolutions are performed with the aggregated data and 

focus on pre-specified age-sex cohorts. These groups are described using such demographic parameters as 

birth and death rates, life expectancy, and migration descriptors. The common approach to the study of 

demographic trends is system dynamics (SD), which is a method that focuses on the dynamic analysis of 

complex phenomena. SD uses a holistic perspective to describe a system by means of a set of stocks and 

flows, unique theoretical constructions that are capable of accumulating objects (i.e., individuals from a 

specific age-sex group) and pushing them from one reservoir to another during a specified time period (as 

individuals age during the natural passage of time). The opposite perspective, which is based on discrete 

modeling, concentrates on individuals, i.e., patients entering the healthcare system. The model keeps track 

of the patients’ movements, tries to capture their individual choices, and attempts to incorporate the 

dynamic and uncertain factors that influence the time and place of admission and the type of services that 

are provided to patients. 

3 METHODS 

3.1 Overview of the Model 

The initial population for the model was the 2002 Wrocław Region (WR), and the revised population 

estimates were extracted from the data that were published by the Polish Central Statistical Office (GUS, 
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2015). The WR belongs to Lower Silesia, which is the fourth largest region in Poland. From among the 

five subregions that make up the Lower Silesia voivodship, the central area, which consists of the capital 

(i.e., the city of Wrocław) and another subregion that encompasses the administrative districts and which 

are located near the capital, were selected for our study.  

 The general concept of the hybrid SD–DES model is shown in Figure 1. The main objective is to 

estimate the level and the structure of the exposed and unexposed demand for healthcare services. The 

key element is the inclusion of the factors for which the incidence, intensity and consequences are 

uncertain in relation to demography, human behavior, time and prevalence. The SD model uses an aging 

chain approach to forecast the demographic changes that will be observed within the WR population over 

next 20 years. The DES model generates batches of patients with a certain disease (e.g., patients with 

suspected cardiovascular disease) who will arrive at the WR hospitals. The model takes into account 

temporal (month, year), spatial (place of residence, location of the healthcare unit) and epidemiological 

(incidence rates) factors. The final volume of the demand is determined by integrating the outputs of the 

two submodels. 

 

 

Figure 1: The general concept of the hybrid simulation model. 

3.2 Population Submodel 

The SD population submodel consists of two aging chains, with five age-sex cohorts in every chain. A 

detailed description may be found in (Mielczarek and Zabawa 2016). The stocks represent individuals 

who belong to a certain age-sex group, while the flows are responsible for the dynamic behavior of the 

population. Input flows, i.e., births and immigrations, increase the number of individuals inside the 

cohort; and output flows, such as deaths and emigrations, decrease this number. There are five cohorts 

inside each aging chain: F0_4; F5_19; F20_39; F40_59; F60+ and M0_4; M5_19; M20_39; M40_59; 

M60+. For example, the cohort F20_39 describes women at the ages between 20 and 39 years old. The 

cohorts are connected by the maturation input-output flows (see Figure 2). The movement between 

cohorts may be described by the time in cohort, i.e., the time that each individual needs to “live” from the 

moment at which she enters the younger cohort until the moment at which she moves to the older one. 

The demographic variables are assumed to be exogenous. There are four main demographic variables: 

fertility, mortality, net migration and life expectancy. The last variable applies only to cohorts F60+ and 

Patients belonging 
to different 

age-sex cohorts

CV patients: historic arrivals 
from 9 WR districts

DES model

SD population model

0_4 5_19 20_39 40_59 60+

CV patients: projected 
demand from 9 WR districts
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M60+, and it measures the average time that an individual at age 60 is expected to live based on sex and 

current age. 

The members of each age cohort are updated on every computational interval so that the changes 

inside the cohorts are registered not once a year but on a continuous basis within a year. The time-step 

mechanism, which operates at discrete moments, aggregates all of the input and output flows that move to 

and from a particular cohort into one dynamic object. The singular resultant flow instantly increases or 

decreases the number of individuals in the cohort. 

 

 

Figure 2: Female aging chain: five stocks (cohorts) with input (births), output (deaths) and input-output 

flows (migrations). 

3.3 Arrivals Submodel 

We used dynamic random Poisson processes to model patient arrivals to the WR healthcare facilities. 

There were nine input patient flows (see Figure 3) describing cardiovascular (CV) patients incoming from 

nine WR districts.  

 

no 1

CV 0_4

CV 5_19

CV 20_39

CV 40_59

CV 60+

W
R

 d
is

tr
ic

ts

no 5

no 6

no 7

no 2

no 3

no 8

no 4

no 9

CV patient in 
population cohorts

CV patients: projected 
demand from 9 WR 

districts

 

Figure 3: Patients with CV health problems arriving at the WR healthcare facilities. 

 The parameters for the exponential distributions with time-varying parameters were defined 

according to the results of the historical data analysis. All input parameters were based on the data sample 

from the Lower Silesian Health Fund branch registry. The flows of CV patients fluctuate considerably 
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depending on the calendar month, and their intensity is highly dependent on the number of older people 

who live in particular districts. The output of the model predicted the number of CV patients who live in 

nine WR districts and will create the demand for healthcare services in the next few years. 

3.4 Data 

The simulation begins in 2002 and runs through 2014 according to parameters that were estimated on the 

basis of CSO (GUS, 2015) data. Beyond 2015, the input values were estimated based on the different 

scenarios according to (Waligórska et al. 2014). The goal of the simulation was to explore the past and 

future structure of the WR population and to generate numerical forecasts that can be used by the DES 

model. Table 1 presents the basic set of parameters calculated based on the historical data. The incidence 

rates that describe the number of WR patients with CV disease are based on the statistics from the Lower 

Silesia Health Fund (NFZ) branch registry from 2010 and 2011. The arriving patients were defined by 

two descriptive characteristics: age-sex group and place of residence (district code). 

Table 1: Historical population parameters calculated based on (GUS, 2015) for the WR. 

Parameter 2002 2008 2014 

Total female population  606158 613093 633074 

Population of children F0_4 23974 26924 30527 

The oldest population F60+ 124988 136798 165694 

Fertility rates (F) 2.31% 2.99% 2.85% 

Death rates (F0_4; F40_59) 0.23%; 0.32% 0.32%; 0.38% 0.07%; 0.29% 

Migration rates (F20_39)  0.21% 0.28% 0.43% 

Life expectancy (F60+) 22.15 23.18 24.40 

    

Total male population 558302 559861 579707 

Population of children M0_4 25452 28093 32560 

The oldest population M60+ 78835 87899 113164 

Fertility rates (M) 2.55% 3.09% 3.08% 

Death rates (M0_4; M40_59) 0.22%; 0.84% 0.17%; 1.00% 0.11%; 0.73% 

Migration rates (M20_29) 0.14% 0.20% 0.39% 

Life expectancy (M60+) 17.19 18.05 19.49 

3.5 SD Model Testing 

The model was calibrated to determine the optimal values of times in cohorts (so-called maturation 

lengths). The values of the maturation lengths were adjusted using the ExtendSim optimizer. The primary 

optimization function was to minimize the total differences between the number of females (and, 

respectively, males) from historical and simulation data in cohorts 0_4, 5_19, 20_39 and 40_59. The 

second optimization function was to minimize the total differences between the total number of women 

(and men, respectively) from the historical and simulation data in 60+ cohorts (Figure 4). The results of 

the calibration were acceptable. The total number of the WR population was simulated with a high level 

of accuracy. The Mean Percentage Error (MPE) differs from -1.49% to 1.96%. The discrepancies in the 

MPE values for particular cohorts were at an acceptable level: from -4.87% to 9.88% for the female 

cohorts and from -5.72% to 10.93% for the male cohorts. 

 It should be emphasized that the optimization of maturation lengths was necessary because the model 

must consider the diverse ages of the individuals within the same cohort. In addition, the time ranges that 

were defined for the particular cohorts differed from 5 to 20 years and this differentiation in the sizes of 

the cohorts adversely affects the correctness of the chronological aging. Another problem is caused by the 

intermediate inflows and outflows that dynamically increase or decrease the quantity within the stocks 
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and disrupt the flow between the age cohorts. This blending problem lead to the differences between the 

theoretical values of the parameters time in cohort and the adopted values of maturation length. The time 

that is needed to move from one cohort to another takes on average longer than the time in cohort variable 

would indicate (see Table 2). The life expectancy parameter was also adjusted. The last two cohorts (F60+ 

and M60+) describe individuals who are older than 60 years. Life expectancy, as defined for a certain 

point of time, differs for a woman at age 61 and a woman at age 81. Therefore, during the optimization 

process, the values of numerical multipliers were found and applied. 

 

 

Figure 4: Mean Percentage Errors (MPE) calculated between historical and simulation data for the 

particular age-sex cohorts of the WR population.  

Table 2: The comparison of the parameters describing the delays in the movement of individuals between 

cohorts. Values extracted from the data and calculated through the optimization process. 

Cohort data [years] model [years] 

 F M F M 

 Time in cohort Maturation length 

0_4  5 5 6.1 6 

5_19 15 15 13.5 12 

20_39 20 20 37 30 

40_59 20 20 32 27 

 Life expectancy 

60+ n  m n x 1.9 m x 1.3 

3.6 Simulation Scenario 

We used the population projections for the period from 2015 to 2035 as published by the Polish 

Government. According to (Waligórska et al. 2014) four alternative scenarios forecast the demographic 

changes for Poland over the next 20 years. The scenarios assume different values of four basic 

parameters: births, deaths, migrations and life expectancy. We formulated the demographic assumptions 

for the WR according to the most likely scenario that was predicted for the whole country. It should be 

emphasized, however, that the governmental forecasts are published for the larger administrative regions 

(voivodships), such as, for example, the Lower Silesia. Our simulation study focused on two small 

regions (out of five) that belong to the Lower Silesia voivodship. These two regions are classified as an 

urban area, and the global population parameters are highly differentiated for rural and urban regions. 

 There are four parameters that are used in the simulation models that reflect possible future 

population changes: fertility rates, which are calculated as the percentage of the number of births in 

relation to the F20_39 cohort; death rates, which are calculated as the number of deaths in relation to a 
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particular cohort; migration balance, which is calculated as the resulting balance of immigrations over 

emigrations in relation to a particular cohort, and average life expectancy, which is linked to the last two 

cohorts. The basic scenario makes the following assumptions for the period from 2014 to 2035: 

 

 The fertility rates will first slightly decrease and then gradually increase by approximately 

15.55% (females) and 13.50% (males). 

 Death rates will increase gradually; however, the number of deaths in the middle-aged cohorts 

(F40-59 and M40-59) will slightly decline. The growth rates of deaths will be higher in urban 

areas compared to rural regions. 

 The difference between the international and internal net migrations will decrease to almost zero; 

however, the total number of immigrating and emigrating populations will decrease by 

approximately 20%. 

 Women and men will live longer; however, the differences in life expectancy between Poland and 

European countries will remain at the same levels. In 2035, a woman age 60 will live on average 

for 27.75 years, and a man at the same age will live on average for 24.27 more years. 

 

 Under the basic scenario, it was assumed that the age-specific prevalence of CV disease remains the 

same during the forecasted time horizon. However, we plan to explore other trends during the next phase 

of the study. 

4 RESULTS  

The simulation begins in 2002 and continues through to 2014 and runs according to the parameters that 

were calculated based on the historical data. Next, from 2015 on, the values of the parameters are 

projected according to the population scenario that is described in section 3.6. The simulation reveals the 

important demographic trends for the WR population for the next 20 years. The total number of 

individuals from the 60+ cohort, both women and men, will systematically rise (Figure 5); however, the 

difference between the volume of the oldest men’s population in relation to the oldest women’s 

population will slowly decrease. For example, in 2002 the M60+ cohort consisted of 63.34% of the F60+ 

age-sex group, and in 2035, this ratio will rise to 69.08%.  

 

 

Figure 5: Forecasted trend of the WR population within two age groups: the middle-aged and the oldest, 

separately for women and men (simulation data). 

 The simulation shows that population aging will result in a 23.2% (women) and 25.6% (men) increase 

in the number of people aged 60+ over the next 20 years. The youngest cohorts, i.e., small children and 

adolescents from 5 to 19 years old, will systematically decrease from 2002 to 2020; however, in 2020, 

this drop will stop, and a small but continuous increase is observed (Figure 6). The number of the 

1542



Mielczarek and Zabawa 

 

population between 40 and 59 years old (Figure 5) will fluctuate: a clear upward trend is observed for the 

female cohort F40_59; however, in the case of the male cohort M40_59, the falling trend will start in 

2029. The forecasted changes in the structure of the WR population, both for women and men age-sex 

groups,  are presented in Figure 6.  

 

 

Figure 6: Changes of structure of the WR population by age cohorts, separately for women and men 

(simulation data). 

Under the assumption that the proportion of CV patients per age group remains unchanged during the 

forecasted time horizon, the global trends for the population are well reflected in the decreases and 

increases of the prevalence of CV patients. It can be seen from Figure 7 that the trend in the prevalence of 

CV patients is upwards except for the M40_59 cohort. The older population (F60+ and M60+) will 

generate increasing demands, and the growth of CV patients between 2014 and 2035 will be more intense 

among the male population 60+ than the female 60+ (34.4% and 30.15%, respectively). The middle aged 

cohorts (F40_59 and M40_59) will produce a slightly increased demand; however, this growth will not be 

extensive, and the number of CV patients will remain at a stable level. 

 

 

Figure 7: Forecasted trend of CV patients in the WR population within two age groups: the middle-aged 

and the oldest, separately for women and men (simulation data). 

5 DISCUSSION AND CONCLUSIONS 

The population model that is presented in this paper represents a step towards a hybrid simulation with 

the overall goal to forecast future volume of healthcare demands within different groups of patients. The 

valid prediction of the demand for healthcare services may contribute to the improvement of the quality of 
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the decisions that are made to properly distribute the available resources and implement policies that aim 

to improve people’s health. However, in Poland, no data have been collected on the regional level that 

show how services are provided in relation to certain measures of needs-for-service. There are also no 

published studies that show how the care is allocated within the region and the grounds for long-term 

plans that have been prepared to cover the forecasted population demand. 

 The basic concept of a computer simulation model assumes that it is possible to estimate future 

demand by taking into account the past supply of services and the projected trends of population 

demography. We believe that both types of healthcare needs, i.e. the demands exposed and recorded in 

healthcare system, as well as the demands that was not revealed and therefore cannot be found in NHF 

registries, may be estimated with the acceptable accuracy. 

This study is an attempt to link the demographic trends with the regional volume of the demand for 

healthcare services. The major strength of our approach lies in the ability to integrate different simulation 

approaches and data from different sources. A dynamic simulation model implements an aging chain 

approach to forecast the number of individuals who belong to age-sex cohorts. A discrete event model 

generates batches of patients with cardiac diseases based on the historical data from the Regional Health 

Fund and modifies the demand according to demographic changes that have been forecasted by a 

population model. To the best of our knowledge, only a few studies have been conducted to quantify the 

relationship between expected patient volume and demographic, environmental, socio-economic and 

geographical variables. The issues of random and uncertain factors, such as the needs that originate in 

different geographical regions or forecasted changes in the future morbidity rates, have not been 

extensively studied in relation to long-term care planning. 

The model described in the paper has its limitations. For example, it assumes a given and stable level 

of the proportion of CV patients per age group and the absence of technological progress effect. Further 

research is needed to more deeply examine the relationship between WR demographic parameters and CV 

prevalence indicators. It is clear that these trend extrapolations should be modified according to different 

scenarios. 
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