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ABSTRACT

Complex adaptive systems (CAS) are ubiquitous across many domains, such as social networks, supply
chains, and smart cities. Currently, the modeling and analysis of CAS relies on adapting techniques used for
multi-agent simulation, an approach which lacks several features crucial to CAS modeling, such as agents
comprised of other agents, and considering methods for adaptation. Moreover, many existing approaches
do not scale well, thus making them difficult to employ in analyzing realistic scenarios. In this paper, we
propose the Complex Adaptive System Language (CASL), a declarative language that is able to capture the
salient features of CAS while being general enough to be used across multiple domains. CASL facilitates
the construction of complex models and our code generation method allows CASL models to be executed
on a variety of platforms. We demonstrate the flexibility of CASL by implementing three distinct models,
which are then executed using Repast.

1 INTRODUCTION

Complex systems are comprised of many autonomous and interconnected entities, whose interactions can
lead to unexpected and emergent properties (Szabo et al. 2014, Mittal 2013, Chan and Macal 2010).
Complex adaptive systems are a type of complex system where entities and the environment are encouraged
to adapt and interact with each other in order to achieve desired properties (Holland 2006) and provide
a more realistic abstraction of real-life scenarios (North et al. 2013, Niazi 2013). Complex adaptive
systems have become ubiquitous in domains such as social networks, supply chains, health-care networks,
smart-cities and smart-grids, the “Internet of Things”, and the Internet itself (Niazi 2013, North et al.
2013, Hasgall 2013, Benham-Hutchins and Clancy 2010). When systems in these domains are modeled
as CAS, the importance of entity interaction, adaptation, and influence from the operating environment is
highlighted, enabling deeper study focusing on individuals and how their behaviors contribute to higher
level properties (Holland 2006, Mittal 2013, Özmen et al. 2013).

Complex adaptive systems must support the concepts of adaptation, modularity, and diversity and contain
an environment(s) (Holland 2006). Environments in a complex adaptive system must contain entities and
be able to interact with them (Holland 2006). Environments can then act as communication mediums that
allow for stigmergical interactions, system wide events, and self-organization. The adaptation present in a
complex adaptive system refers not only to the individual adaptive processes of entities and environments,
but to the adaptive ability of the system as a whole (Holland 1992). Modularity in complex adaptive systems
dictates that at least one entity or environment must be comprised of sub-entities (Özmen et al. 2013,
Holland 2006). These sub-entities process inputs to determine the parent entity’s behaviors and actions.
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Diversity in a complex adaptive system is crucial as a variety of entities interacting with distinct behaviors
and actions can lead to co-adaptation, self-organization, and more accurate results generation (Özmen et al.
2013, Holland 2006, North et al. 2013). We define a complex adaptive system as a system that contains
a large number of diverse entities that may have the ability to adapt and/or are comprised of multiple
sub-entities. Each agent should be able to interact with the environment it is contained within, and the
system should execute for a long period of time to highlight aggregate properties or system level adaptation.

Current attempts to model CAS fall into two main categories, general or domain specific. Each of
these provides their own set of challenges. The attempts that rely on a general approach, such as adapting a
multi-agent system paradigm, tend to suffer from scaling issues, while also not providing a solid grounding
to model individual agent and environment adaptations. Furthermore, they can also only consider a single
form of agent representation such as a network or geographical information system, which hinders attempts
at creating highly detailed realistic CAS models. Domain specific approaches suffer from fewer scaling
issues and are able to provide high-quality representations of their respective entities such as accurate
adaptation methods. However, these techniques, amongst others, are unable to be adapted to other domains.

In this paper, we propose a new approach for the modeling and analysis of complex adaptive systems.
Our approach relies on a declarative domain-specific language with constraints components from which
simulation code is generated, executed, and subsequently analyzed. We advance the Complex Adaptive
Systems Language (CASL), which leverages the definition of CAS by providing distinct components which
form together to provide a precise definition of an entity. CASL provides features targeted towards the
modeling of complex adaptive systems, such as specific adaptation components. Furthermore, by containing
constraint components, models constructed using CASL are ensured to be complex adaptive systems models,
while also being efficient to create and execute. We demonstrate the use of CASL to implement three
models, namely, the Game of Life, a social network, and an emergency department. With our Game of Life
and social network models, we highlight the scale capabilities of CASL. For our emergency department
model, we highlight the explicit modularity and adaptation capabilities that CASL incorporates.

2 RELATED WORK

As CAS become an increasingly important field of study, tools, methodologies, and frameworks are needed
to create models and simulations of CAS. There are three main paradigms for the modeling and simulation of
CAS, namely, complex networks, discrete-event simulation, and agent-based modeling. Complex networks
are able to capture the interactions between entities and exemplify the massive scale at which some systems
operate, including scale-free networks (Niazi 2013, Mittal 2013). However, complex networks can only
represent homogeneous entities, e.g. entities that have different parameters but share the same behaviors.
Discrete-event simulation is able to capture the heterogeneity, scale, and a top-down view of the system
during execution by using system states, as well as behavior evolution of the entities (Mittal 2013, Chan
and Macal 2010, Banks et al. 2005). Discrete-event simulation is not entirely suitable for CAS modeling
as it requires events, transitions, and states to be defined prior to execution, which is highly susceptible to
state space explosion, even with a moderately sized CAS. While agent-based models are able to capture the
heterogeneity, interactions, simplicity of entities, and non-linearity of a CAS, they cannot easily accomplish
ultra-large scale simulations, and it is non-trivial to provide a top-down view of the system (Niazi 2013,
Mittal 2013, North et al. 2013).

Although several authors have modeled CAS using existing modeling software such as Repast (North
et al. 2013) and NetLogo (Tisue and Wilensky 2004), no specific modeling tools have been developed. North
et al. (2013) provide a series of methods to use Repast for CAS modeling and simulation. Niazi (Niazi
2013) outlines how two existing paradigms, namely, complex networks, and agent-based modeling, can
be used to model CAS in particular fields such as social sciences, biology and computer science. Several
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attempts at modeling domain specific CAS have been achieved by leveraging existing frameworks. Niazi
and Hussain (2011) developed a model of a wireless sensor network designed to be used inside a CAS
model, using NetLogo for both the CAS and wireless sensor model. Özmen et al. (2013) utilize ABM
to model a collaboration network. Cioffi-Revilla et al. (2012) model a complex adaptive social system.
They achieve this by creating evolving agents and deploying them to an existing model, and defining
evolutionary parameters suited to the model. Boulaire et al. (2015) designed a tool to handle large-scale
agent based simulation that utilizes agents that are both modular and are involved in many interactions.
Works from Mittal and Holland have focused on modeling CAS using more theoretical approaches. Mittal
(2013) enhances existing discrete-event simulation formalisms to model and simulate CAS. Holland (1992)
proposed a language, Echo, to model CAS. Smith and Bedau (2000) determine that Echo is not capable
of modeling CAS correctly as it cannot capture the diversity of hierarchically organized aggregates and
therefore is unable to display emergent properties. Although not tools specifically for modeling CAS, Aydt
et al. (2012) and Picone et al. (2012) designed tools for modeling and simulation aspects of smart-cities. Aydt
et al. (2012) designed a simulation of a smart-traffic system capable of using external data sources. Picone
et al. (2012) constructed a discrete-event simulation that focuses on the differing scales of sub-systems
in a smart-city by considering how mobile entities affect the overall traffic. Raunak and Osterweil (2013)
designed tools for modeling and simulating emergency departments using discrete-event simulation that
focuses on constraints and resource requirements of entities.

Several languages have been created in the modeling and simulation community. Nanoverse (Borenstein
2015) is a high-level constraint-based language for biological cell simulation, that relies on agents existing
in a singular environment. The generated Nanoverse code is designed for use in the Nanoverse framework.
While Nanoverse requires very little code to construct a full model, it is bound to biological simulation
and only considers simple agents. A more domain agnostic modeling language, 3APL (Dastani and Meyer
2005), provides model designers a DSL and a Java based framework to create multi-agent system models
where the agents follow the Belief-Desire-Intention model of cognitive behavior. 3APL explicitly defines
certain blocks such as GOALBASE and CAPABILITIES, which together form the total cognitive abilities
of each agent. However, 3APL has strict limitations as each agent model is required to follow BDI logic
and is unable to perform complex actions without the use of external plug-ins or Java calls. Another
framework for developing multi-agent system simulations called JADE (Bellifemine et al. 1999) is more
suited to complex adaptive system simulation as it is more flexible, as JADE is a Java library, and each
agent can use a variety of different functionalities. Furthermore, JADE agents explicitly require behaviors
to be defined, similar to 3APLs blocks. However, JADE suffers drastically from scaling issues as each
JADE agent requires individual threads (Lorig et al. 2015). Repast and NetLogo provide languages for
modeling based on the LOGO language, named ReLogo (Ozik et al. 2013) and NetLogo respectively.
Both ReLogo and NetLogo are DSLs designed for agent-based modeling and they provide few restrictions
beyond this goal. However, due to these languages being more general, the amount of code required for
complex adaptive system modeling becomes quite substantial, even for simple models.

Our proposed language is more suitable for modeling complex adaptive systems in several respects.
Firstly, CASL directly utilizes the definitions of complex adaptive systems to provide component blocks that
directly implement each entity’s adaptation, interaction, and modularity features, among others. Secondly,
it allows the implementation of CAS conceptual models in a more straightforward way by providing a
distinction between the key features of a CAS, such as adaptation processes. Thirdly, the code generated
by our DSL takes into account scale issues for the target simulation software. Finally, despite being a DSL,
CASL is a domain agnostic modeling language, as it is capable of being used to model any CAS.
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3 PROPOSED APPROACH

This section presents an overview of our approach and modeling language. Our CAS modeling and analysis
framework consists of several components, which include the CASL modeling tool and code generator,
the simulator, and an observation tool. Our proposed language, CASL, provides constructs for designing
models to capture the salient features of a CAS such as adaptation and modularity, along with other complex
systems features such as interactions and behaviors.

3.1 Framework Overview

Our proposed framework consists of the CASL modeler, the code generator, a simulator, and an observation
tool. Once a model is constructed in the CASL modeler, code is generated only if all the required constraints
have been adhered to. The generated code is then executed in the simulator, which may require initialization
parameters which can be provided by a configuration XML file. The observation tool is comprised of
several modules that analyze various features of a CAS such as aggregation, runtimes, interactions, and
domain-specific features. The observation tool is designed to be extensible to allow for new metrics to be
added, that may either be designed specifically for the current simulation or for a more domain-agnostic
purpose. Figure 1 presents a diagram of our framework architecture.

CASL Simulator

Observation 
Tool

Output

Code 
Generator

Initialization 
Parameters

Figure 1: Framework Overview.
3.2 CASL

Constructing models of complex adaptive systems is a sizable task, even for systems with unsophisticated
entities. Furthermore, CAS models tend to contain large numbers of entities which requires simulation
software that can scale satisfactory. Typically, model designers must use a fully featured development
library such as Repast or MASON (Balan et al. 2003) in conjunction with a general purpose language like
Java or C++, or use a domain specific language (DSL) such as 3APL or JADE. Neither of these approaches
are ideal for complex adaptive system modeling, as the former requires the CAS model to be constructed
using the rules of the library, while the latter constricts the model designer to follow a strict set of rules
which may also lead to a model that doesn’t fulfill the criteria of being a CAS.

CASL aims to heavily reduce the amount of system expert effort required to model a system, while
also producing code that is tailored to the target simulation software, and increase the readability of the
code. CASL itself is a declarative DSL with constraint activated components. These constraint activated
components determine how the system and entities should be modeled, for example, if the CAS contains
only system level adaptation by way of aggregation such as in the Flock of Birds model, explicit adaptation
methods should not be allowed. By providing these constraints in CASL, models can be constructed in a
way that focuses on how the entities and system affect each other.

In CASL, each system consists of multiple entities that are either agents or environments. Agents must
exist in environments, while environments can either be unique or exist in other environments. This allows
for agents (or other environments) to interact directly with their containing environment. CASL is divided
into three sections, namely, a SYSTEM section, an ENVIRONMENT section, and an AGENT section. This
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distinct separation is similar to blocks in 3APL and JADE. Figure 2 shows the relationship between the
agent, environment, and the system sections.

SYSTEM

ENVIRONMENT A

AGENT A AGENT B

SUB-
AGENT A

ENVIRONMENT B

AGENT C AGENT D

Figure 2: Example of a CASL model structure with five agents and two environments.

The SYSTEM section contains model initialization functions and system-level parameters such as initial
system configurations, whether the system is open or closed along with how entities may enter or leave the
system, and an enumeration of the agents and environments in the model, as well as simulation parameters
such as termination conditions. The SYSTEM section also allows for modification of certain constraints,
namely, diversity, adaptation, and modularity. The diversity constraint requires a heterogeneous system,
i.e., multiple agent types. The adaptation constraint requires at least one entity to possess an adaptive
process. Finally, the modularity constraint requires at least one entity to be constructed from other entities.

The AGENT and ENVIRONMENT sections allow for agents and environments to be defined respectively.
Each agent and environment contains components to define parameters, functions, behaviors, interactions,
adaptation processes, and subsystems. The use of these separate components allows us to define agents
or environments as a combination of components, while also providing a clear distinction between the
various features of a CAS entity. For example, an entity’s behaviors may trigger different interactions, or
an entity’s sub-entities may trigger an adaptation. Parameters contain all the operating and state parameters
of the entity, such as spatial position, life status, and busy status. The functions component contains the
definition of initialization functions as well as any helper functions. In addition to the functions component,
CASL also provides macros to access common simulation functions such as random number generation,
calculating an entities nearest neighbors, and list filtering among others.

3.2.1 Defining Entity Behaviors

The behaviors, interactions, adaptation, and subsystems components are the most crucial as they define
the entity life-cycle in the overall model. Each of these components can be triggered by an input, time,
an interaction, after a state change, or instantly from another component. By using any combination of
these components, any entity in a complex adaptive system can be implemented. The behaviors component
describes an entities’ behaviors, where a behavior is a process that may affect only the entity calling it.
For example, in the Game of Life model, where a Cell should change its life state, or in the Flock of Birds
model, where a Bird should move to in the next step. Behaviors can never be in the form of an interaction,
however, they may trigger a particular interaction. Each behavior contains rules for a behavior type, a
trigger time, optional input parameters, as well as the behavior action itself. A behavior type determines if
the behavior contains no interactions, an interaction to an agent, an environment, or both. This allows the
designer to instantly verify the logic of the particular logic. The trigger for a behavior determines when
the behavior action should be performed, either instantly, at the end of the step, or in a number of steps.
The optional inputs for a behavior may be used if the behavior requires further information, such as a
value acquired from an interaction. For example, the behavior rules [SELF][DELAYED] indicate that
the behavior will only affect the entity itself and that it will be performed at the end of the current step.
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3.2.2 Defining Entity Interactions

The interactions component is the most crucial for the entities in a CAS model as it describes ways that
an entity can interact with others. Interactions between entities can be a query or a communication. Query
interactions occur when one entity simply polls another for information by reading a state or value, without
the other entity requiring knowledge of the interaction. Communication interactions occur when an entity
interacts with another and passes a message or signal. All agents are required to have at least one interaction,
while an environment can only have an interaction if the environment is of a physical type. Figure 3 shows
the interaction component for a Cell in the Game of Life model. The interaction type is a query, as no
other entities are required to acknowledge the interaction, and the interaction is triggered every one step.
The final line of the component shows that the adaptive process, changeLife, is to be triggered.

interactions:{
countAliveNeighbors[QUERY][STEP(1)](): {
var List:neighborsList = CASL.GRID.GetNeighbors[Cell](1);
var int:aliveNeighbors = CASL.COUNT[neighborsList](Alive);
ADAPTATION.changeLife(aliveNeighbors); }; };

Figure 3: Interaction component for a Cell in the Game of Life model.

3.2.3 Defining Entity Adaptation

The adaptation component describes the adaptive processes that the entity may undergo, where an adaptive
process is a procedure that causes the state or certain parameters of an entity to change. While similar to
a behavior, adaptive processes have the goal of optimizing some features to improve performance. These
processes may be implicit, an evolutionary algorithm or genetic programming, or a cognitive approach.
Implicit adaptation is used for imparting relatively simple adaptive processes such as determining the life
state of a Cell in the Game of Life. Evolutionary adaptation allows for various evolutionary methods such
as a genetic or evolutionary algorithm to be used as an adaptive process. Cognitive approaches such as
the Belief-Desire-Intention model or a neural network can be implemented as an entities adaptive process.
Furthermore, the adaptation component allows these processes to be driven by another model or a separate
engine, such as MIDCA. By allowing adaptive processes to contain external features, entities in CASL
can be implemented in the most suitable fashion. Each adaptive process contains rules for the type of
adaptation, if there is a delay on the adaptation performing, optional input parameters, as well as the process
itself. The type of adaptation determines what methods of adaptation the process is to use, such as implicit,
evolutionary, or cognitive. In the case of the latter two types, CASL will check if a suitable package or
process is being used. Adaptive processes can either be triggered instantly, or at the end of the simulation
step. The optional inputs for an adaptive process may be used if the process requires further information
such as values generated from a behavior. For example, the rules [IMPLICIT][NONE] indicate that the
adaptive process relies on implicit adaptation and that there is no delay once it is triggered.

3.2.4 Defining Sub-entities

The subsystems component allow for definition of sub-entities that effects the entity, such as biological
cells in an organism. The sub-entities can interact with the entity and other sub-entities in the same entity
but cannot directly communicate with other entities. This allows for the creation of models where entities
can be broken down into functional components or sub-processes which can enable deeper understanding of
such entities. For example, a trader entity in a stock market simulation would be comprised of a variety of
sub-processes that determine if the entity should make a trade or not. The ENVIRONMENT section has an
additional component that allows the model designer to set the main attributes of the environment, namely
whether the environment represents a physical environment, such as a building, or a virtual environment,
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such as a wireless sensor network (Niazi and Hussain 2011). This distinction is important as it determines
if the contained agents are stored according to a two or three-dimensional location, such as a position inside
a building, or a less tangible representation such as the tie strength between users in a social network.
In addition, each environment can be described as implicit or explicit, with the implicit representing an
environment type similar to typical MAS simulation, and the explicit type requiring the environment to
have interactions and behaviors. This differentiation is crucial as it determines if and how agents can
interact with their containing environment, as well as if the simulator needs to consider the environment
to be an entity that requires extra processing.

3.2.5 Implementation

CASL currently generates Java code for use in the Repast Simphony Suite (North et al. 2013). Repast
Simphony is a widely used simulation tool that provides the basics of simulation, such as a time and schedule
management, initialization settings, along with a simple visualizer, amongst other features. Repast Simphony
is capable of handling medium scale simulations, however, scale issues become an obstacle once several
thousand agents are present, mainly due to the single-threaded nature of Repast simulations (Lorig et al.
2015). The CASL DSL was implemented using the Xtext plug-in for Eclipse (Bettini 2013). In addition to
creating the DSL rules, Xtext provides an Eclipse instance where CASL can be written utilizing standard
IDE features such as code linting and auto-completion. Furthermore, the Eclipse instance allows for
constraints to be enforced prior to any generation of code. These features further allow for CASL models
to be constructed relatively easily. This also enables distribution of a version of Eclipse that is used to
construct CASL models. One of the main benefits of CASL, delivered by most DSLs and code generators,
is that the generated code can be optimized for the targeted simulation software (Bernstein et al. 2015).
This provides a high confidence that the model created will execute as efficiently as possible with the
targeted simulation software and thereby mitigate idiosyncrasies within the simulation software.

4 EXAMPLES

Several modeling languages are designed for use with specific domains in mind such as DEUS and Nanoverse.
This implies that the languages contain domain-specific features which prevent them from being applied to
other domains, thereby reducing their overall applicability. In this section, we demonstrate the flexibility
of our approach by implementing three distinctly different models, namely the Game of Life (Gardner
1970), a social network (Birdsey et al. 2015), and a model of a hospital emergency department.

4.1 Game of Life

Conway’s Game of Life (Gardner 1970) is a classic model that exemplifies agent-based modeling. The
Game of Life model consists of a two-dimensional grid of cells, and each cell has two possible states,
alive or dead. At each simulation step, each cell can become alive from dead or vice-versa depending on
the states of its local neighbors. To model this as a CAS, we consider the life state changes of each Cell
to be an implicit adaptation. However, the Game of Life model does not exhibit modularity or diversity.
Furthermore, each Cell exists in a single implicit environment, which has no properties. While the Game
of Life doesn’t contain all of the identified CAS properties, using CASL to implement the Game of Life
highlights the brevity of CASL and how the separation of interaction and adaptation processes allows for
simple model design. The CASL code used for each Cell is shown in Figure 4. The total amount of code
used for the CASL implementation of Game of Life is only 84 lines.
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parameters: {
var bool:Alive = false;

};
behaviors: {

changeStateToDead[SELF][DELAYED]():{
self.Alive = false; };

changeStateToAlive[SELF][DELAYED]():{
self.Alive = true; };

};
interactions: {

countAliveNeighbors[QUERY][STEP(1)]():{
var List:neighborsList =

CASL.GRID.GetNeighbors[Cell](1);
var int:aliveNeighbors =

CASL.COUNT[neighborsList](Alive);
ADAPTATION.changeLife(aliveNeighbors);

}; };

adaptation: {
changeLife[IMPLICIT][NONE](var int:n):{
if (self.Alive) then
if (n >= 2 && n <= 3) then

BEHAVIOR.changeStateToDead();
endif;

else
if (n == 3) then

BEHAVIOR.changeStateToAlive();
endif;

endif;
}; };

Figure 4: A Game of Life Cell implemented in CASL.

4.2 Social Network

The social network model considers several communities of advocate-led networks. Each agent follows
the model presented in Birdsey et al. (2015), where each advocate follower visits the social network after
a certain number of steps and may see a new post from the advocate. If the follower sees a post from the
advocate, the follower may respond to it, depending on how interested they are in the posts content. The
follower may instead just make an original post that could be on the communities topic, again, depending
on how interested the follower is in the topic. However, even if the follower does not take notice of the
new advocate post, they may just make an original post anyway. We extend this to a scenario with multiple
disconnected communities. Each Community consists of a single Advocate with a number of Followers,
and a Consensus for the Community, i.e., the communities’ opinion on a particular topic. The Consensus
forms the adaptive process for the Community environment and is triggered at the end of each simulation
tick. Each Community’s Consensus adapts according to how their respective users post and interact with
the community advocate. Figure 5 presents a function from the Behavior component of a Follower.

makeAPost[SELF][INSTANT](): {
if (FUNCTION.determineInterest()) then
INTERACTION.makeNewPostToComm(self.comm);
self.userState = USERSTATES.ON_TOPIC;

else
INTERACTION.makeNewPost();
self.userState = USERSTATES.NOT_ON_TOPIC;

endif; };

Figure 5: A Follower Behavior function used to determine the type of post to make.

4.3 Emergency Department

Our Emergency Department model considers the flow of patients across a year following the Australian
Department of Health emergency triage guidelines (Australian Government 2013). At each step, a number
of patients enter the Emergency Department where they have their triage category determined by a Nurse
and are then placed into a priority queue to wait for the next available Doctor. When a Doctor begins
examining a Patient, the Doctor may take a sample from the Patient which has to be processed by the
Pathology department. Once the Pathology department has finished processing, the results are returned to
the Doctor, who then determines the course of treatment for the patient.

This model highlights two main benefits of CASL. Firstly, each agent exists within an environment,
which provides a closer likeness to the real world system. Secondly, by treating the PathologyDepartment
as being comprised of multiple agents, CASL allows this to be implemented easily. Figure 6 presents
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an adaptive process for the EmergencyDepartment environment to determine the optimal roster for the
following day.

EnhancePersonnelSchedule[IMPLICIT][NONE](): {
if (self.PatientArrivalQueue.size() > maxPatientsWaitingForNurse) then
FUNCTION.addNurseFromRoster();

else
FUNCTION.removeNurseFromRoster();

endif;
var int:currentPatientsOverdue = FUNCTION.CountOverduePatients();
if (currentPatientsOverdue > maxOverduePatients) then
FUNCTION.addDoctorToRoster();

else
FUNCTION.removeDoctorFromRoster();

endif;
if (self.pathology.ProcessingQueue.size() > maxPathologyQueueSize) then
FUNCTION.addPathologyTechnicianToRoster();

else
FUNCTION.removePathologyTechnicianFromRoster();

endif; };

Figure 6: An EmergencyDepartment Adaptation function.

5 EXPERIMENTAL ANALYSIS

To highlight the capabilities of CASL with respect to scale and adaptation, we performed several experiments
across our three example models. For our Game of Life, and social network models, we performed
experiments to show how CASL generates moderately scalable models. For our Emergency Department
model, we performed experiments to exhibit how CASL can be used to create simple and practical adaptive
methods at an environmental level.

5.1 Scale

For two of our models, namely, the Game of Life, and social network models, we performed several
experiments to highlight the scaling capabilities of the code that CASL generates. Figures 7 and 8 display
the runtimes for our Game of Life and social network experiments respectively.
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Figure 7: Runtimes for the Game of Life model.
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Figure 8: Runtimes for the social network model.

For our Game of Life model, we performed experiments with Cell populations ranging from 225 Cells
to 160,000 Cells. Each experiment ran for 1,000 steps with 10 replications. For our smallest configuration
at 225 Cells, we attained a runtime of 173 milliseconds to execute, while with a population of 160,000
Cells, the runtime was 411 seconds. As the Game of Life is a relatively trivial model, the runtime increase
is fairly linear. However, beyond 160,000 cells we are subject to various Repast and Java.

For our social network model, we performed experiments with varying numbers of Communities and
Users per Community. Each experiment is executed for 2,500 steps, and configurations range from 2
Communities with 20 Users each, to 10 Communities with 1000 Users each, with 10 replications of each
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experiment. Our smallest configuration, which contained a total of 40 agents, took 67 milliseconds to
execute 2500 steps, while our largest, which contained 10,000 agents, took approximately 8 and a half
minutes to execute. However, beyond 10,000 agents we were again subject to Repast and Java limitations.

5.2 Adaptation

For our Emergency Department model, we performed experiments using Environmental adaptation to
determine the optimal number of Doctors, Nurses, and Pathology Technicians that should be working
across the next 24 hours. The adaptation process determines the new roster based on the number of Patients
not seen after by a Doctor after a 4 hour time limit, how many Nurses were not needed, and how many
pathology samples still need analysis. Table 1 presents our experimental results.

Table 1: Emergency Department Roster Adaptation Results.
Initial Roster Average Patients Final Roster

(Doctors/Nurses/Technicians) per hour (Doctors/Nurses/Technicians)
7/15/4 1.00 3/3/3
7/15/4 2.00 4/3/2
7/15/4 3.00 8/5/3
8/5/3 3.00 9/6/3

These results highlight the ability to easily create an adaptable component, in this case the staff roster,
for a model which can also be easily expanded. If the model needs other factors, such as Doctor seniority or
medical technologies, CASL allows for these to be added rather easily. Furthermore, the entire Emergency
Department model can be placed inside a larger model, such as one for an entire hospital, with little effort.

5.3 Discussion

For our three models, the total amount of CASL code written amounts to under 1000 lines, with the largest
requiring 466 lines and the smallest needing only 84. However, as we use Repast Simphony as our target
simulation software, the models are unable to scale well, with a Game of Life model consisting of 225
agents taking only 173 milliseconds, while one with 160,000 agents takes approximately 7 minutes. While
many small scale CAS models can be executed using Repast, to fully utilize CASL and gain a deeper
understanding of these systems, a simulation tool capable of handling large scale models is necessary.
Our social network model suffers from similar scale issues, with a population of 10,000 agents taking
approximately 8 and half minutes to execute. However, our social network model consists of multiple
distinct communities, each containing a number of users. CASL easily allows for alterations to our model,
such as if the communities require different types of users, cross-communication, and adversarial agents,
thus lending to a more realistic social network model. Our emergency department model showcases an
environmental adaptation component. While the adaptive process we implemented is fairly simple and
doesn’t consider many factors, in models that contain more detailed agents it would be trivial to create more
accurate adaptation methods that are capable of generating results that translate into real-world actions.

6 CONCLUSION

Complex adaptive system modeling and simulation provides significant challenges as they contain a large
number of interacting complex entities. We propose a new modeling language, CASL, and framework,
targeted specifically for the modeling and simulation of complex adaptive systems. CASL provides distinct
components for each entity which considers how they interact, behave, adapt, and how subsystems affect
them. By providing these distinctions, entities can be modeled in a way that ensures they have essential
properties. Moreover, these separate components, and the relationships between them, can provide a deeper
understanding of how entities operate individually and in their respective systems. The components also

1250



Birdsey, Szabo, and Falkner

allow for entities to be constructed relatively easily as focus can be placed on each component individually,
and that the constraint components ensure that the entities contain the correct properties for the particular
CAS model. In addition to these three models, CASL has also been used to model birds flocking and an
ant colony, further showcasing the flexibility of CASL and our framework.

Our future work is three-fold. Firstly, we seek to enhance CASL and the framework to be able to
handle simulations with large amounts of complex, modular agents. This would enable modeling and
simulation of more real world complex adaptive systems. Secondly, we aim to expand our collection of
observation modules which will allow for greater insight into complex adaptive systems. Thirdly, we intend
to implement a graphical modeler to further increase the efficiency of creating CAS models while also
reducing the bar to be able to construct models for simulation.
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