Proceedings of the 2016 Winter Simulation Conference
T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds.

AN APPROACH TO INTEGRATE INTER-DEPENDENT SIMULATIONS USING HLA WITH
APPLICATIONS TO SUSTAINABLE URBAN DEVELOPMENT

Ajitesh Jain
David Robinson
Bistra Dilkina
Richard Fujimoto

School of Computational Science & Engineering
Georgia Institute of Technology
Atlanta, GA 30332, USA

ABSTRACT

Challenges such as understanding sustainable urban development require modeling interdependencies and
interactions among systems. The High Level Architecture (HLA) provides an approach to studying these
aspects by integrating separately developed simulations in a distributed computing environment. These
applications require coupling interdependent simulations and sequencing their execution to ensure certain
data dependence requirements are met. An approach to specifying the proper sequence of execution of
interdependent simulations using SysML sequence diagrams is proposed. A means to implement these
specifications by automatically generating code using HLA’s time management services is described. This
approach is demonstrated through the creation of a federated simulation to model interactions among
land use, transportation, and transit in the San Diego area by integrating widely used simulators such as
UrbanSim and MATSim.

1 INTRODUCTION

Many complex systems have multiple interdependent and interacting subcomponents, each of which has
its own dynamics and often its own sophisticated simulation models. In order to facilitate understanding at
the system level, one needs to be able to integrate separately developed simulation models into a unified
model that allows for distributed simulations. Sustainable urban development is one such example of a
complex system that requires understanding the interrelationships among multiple infrastructures such as
water, energy and transportation.

Sustainability has become a key issue in the study of urban systems as more and more of the Earth’s
population is predicted to move to urban centers. According to the United Nations World Urbanization
Prospects 2014 Report (United Nations 2015) the world’s urban population is predicted to surpass 6 billion
people by 2050, or 66% of the projected global population, compared to 54% today. Over $53 trillion
in infrastructure (re)development is expected through 2030. Because of this, simulation tools that allow
decision makers to assess the possible effects of development choices, especially those impacting multiple
constituencies, will become more valuable. But as the complexity of urban systems grows, it is difficult
to capture the variety of interactions that drive the overall development of a city using any single model.

The High Level Architecture (HLA), IEEE Standard 1516 (IEEE Std 1516-2010 2010, IEEE Std
1516.1-2010 2010, IEEE Std 1516.2-2010 2010) is the most well known approach to model such system
of systems. It provides a common methodology and approach to integrate and reuse different simulations.
However modifying existing simulations to make them HLA compliant can be a time consuming and error-
prone task. In (Jain et al. 2015), we describe a methodology to assist the development of the Federation
Objection Model (FOM) using SysML and to automatically generate code for the same. The FOM describes

978-1-5090-4486-3/16/$31.00 ©2016 IEEE 1218

Jain, Robinson, Dilkina, and Fujimoto

the common structure and meaning of data shared across the federation. The two key main issues of FOM
development which we addressed were: the disparity between measurement units and data types, and
identification of semantically similar simulation entities. In order to tackle the first issue, the developer
must explicitly document the data types and measurement units of entities while developing the conceptual
model. To address the second issue of semantically similar entities, the developer must explicitly identify
such entities and relate them in the conceptual model. This is important for the meaningful exchange of
data among simulations.

When assembling a federation, it is often the case that federates have specific data dependence
requirements among each other. Federate A is data dependent on federate B if A requires specific data
from B in order to proceed with its execution. Data dependency is common especially in time-stepped
models where one federate produces data that is required by another federate, all within a single time step.
For example, a land use simulation may require knowledge of transportation delays before it can predict
where new housing developments will occur in the current time step. Because these dependencies arise
within a single time step, the HLA time management services, by themselves, do not directly support proper
sequencing. The federation developer could determine dependencies and manipulate time management
service calls such as TimeAdvanceRequest and NextMessageRequest with appropriate logical time values
to ensure proper sequencing. However, this approach becomes increasingly complex if there are many data
dependencies and a large number of federates.

To illustrate this problem, consider a federation consisting of three federates A, B and C. Federate
A publishes AttributeA and subscribes to AttributeC. Federate B subscribes to AttributeA and publishes
AttributeB, while federate C subscribes to AttributeB and publishes AttributeC. In one time step, federate A
executes and then publishes AttributeA to the federation. It then must wait for AttributeC before completing
the time step. Federate B waits for an updated value of AttributeA and can only start executing after it
has received the update. It then publishes an update on AttributeB. Federate C waits for an update on
AttributeB and then starts executing after which it publishes AttributeC to the federation. Thus we see that
Federate B is data dependent on Federate A, Federate C is data dependent on Federate B and Federate
A is data dependent on Federate C. The problem is to generate a simulation loop for each of the three
federates. We describe an approach using SysML Sequence diagrams to depict the execution flow among
the federates. This specification is input to a translator that automatically produces code for the simulation
loop containing time management service calls with appropriate timestamp values. This helps the developer
by simplifying the creation of a correctly synchronized federation. One must note that this approach is
useful for integrating models with inter-dependencies and may not be applicable for integrating other types
of models.

We exercise our method of automating the integration of federates into an HLA framework through
a case study including three separate models: UrbanSim (Waddell 2002), MATSim (Balmer et al. 2008),
and TransitSim (a new model created for this study), to form an Integrated Transportation Land Use Model
(ITLUM). By combining these models we are able to capture more complex urban interactions, such as
people deciding where to live based on traffic congestion, that otherwise would not be taken into account
by any one model. We use this ITLUM to study the role of public transportation in urban development in
the San Diego area.

2 RELATED WORK

In (Fakhimi et al. 2013), the authors give an overview of different approaches for modeling sustainable
development. They recommend using hybrid approaches for modeling different aspects of the Triple Bottom
Line (TBL) framework. TBL is a framework that accounts for economic, societal and environmental
factors for achieving sustainable development. They argue that using hybrid approaches say Discrete
Event Simulation (DES) for modeling queuing systems and System Dynamics (SD) for modeling interplay
between different aspects of TBL could be more effective to model sustainable development in contrast to
using these approaches in isolation.

1219

Jain, Robinson, Dilkina, and Fujimoto

Integration of models is typically a laborious, error-prone task. There have been various efforts in the
past to address this problem. Uluat and Oguztiiziin (2011) describe a Model Driven Engineering (MDE)
approach to integrate legacy simulations via HLA by manually creating mappings from entities of one
simulation to another followed by automated code generation. In (Bocciarelli et al. 2012), the authors
suggest a model-driven approach for generating HLA code from SysML diagrams. They also propose
the use of sequence diagram for generating federate initialization code which generates calls to the RTI
for a federate to join the federation and enable time regulation. Adak et al. (2010) suggest using Live
Sequence Charts to describe a federate’s behavior and then use model transformations to generate HLA
code. The Live Sequence Charts contain all the necessary information such as timestamps, lookahead etc
to generate HLA code. In contrast, our approach involves describing interactions with other federates using
SysML sequence diagrams and the translator generates appropriate timestamp values instead of having the
developer derive those values.

Urban growth/land use models and transportation models are particularly useful targets for integration
because of the inherent feedback loop between those systems. Clearly decisions concerning where to live
are influenced by transportation related factors, such as traffic congestion and the time required to get to
work. Likewise, traffic congestion, and the average time taken to travel to work are affected by where
individuals live. Newman and Kenworthy (1996) give a brief overview of various studies showing transit
oriented development in different cities. It is often the case that infrastructure models require specific
domain expertise and are developed in isolation, however they need to be integrated to gain a holistic view.

UrbanSim is a popular, open source land use model that has been developed and used for urban
development simulation over the past 15 years (Waddell 2002). The original version of UrbanSim was
written in Java in the late 1990’s. The second iteration of UrbanSim (also known as OPUS) was implemented
in Python and released in 2005. Finally, the latest implementation of UrbanSim, also called the Urban
Data Science Toolkit (or UDST, see https://github.com/UDST/urbansim), is implemented in Python and
uses more modern data science libraries such as Pandas.

Similarly, MATSim (Balmer et al. 2008) is an open source agent-based transportation simulator that
has been developed over the last decade. It is implemented in Java in a modular manner and has been
extended to address many research questions (for a list of extensions, see http://matsim.org/extensions).
MATSim has been used to simulate traffic in, among other places, Singapore (Erath et al. 2012), Tel-Aviv
(Bekhor et al. 2011), and Indonesia (Ldmmel et al. 2009).

UrbanSim and MATSim were previously integrated by Thomas Nicolai (Nicolai 2013). However the
MATSim extension that was developed involved a manual integration of the two models. MATSim4UrbanSim
depends on custom code embedded in the UrbanSim model, and is not compatible with the newest release
of UrbanSim. This highlights a common problem that custom integration efforts are fragile, and not easily
adapted as new versions of the models become available. Coupling the models with standardized interfaces
such as those provided by HLA combined with automated code generation simplifies code maintenance
and allows for more models to be more easily integrated.

3 SYSTEM DESCRIPTION
3.1 Creating The Federation Object Model (FOM)

As described in (Jain et al. 2015), to generate a FOM the developer needs to complete the following steps:

1. Create a SysML description of the simulation models. SysML provides a platform independent
method for specifying simulation models. This involves creating a Block Definition Diagram (BDD)
containing simulation entities with their measurement units. The entities are annotated with HLA
stereotypes such as HLAClass, HLAAttribute and Federate. The federates also specify the attributes
to which they publish and subscribe.

2. Define relationship among similar entities. This is achieved by using an association name ““similar-
Entities” between those entities. Similar entities that require some transformation, an association

1220

Jain, Robinson, Dilkina, and Fujimoto

block is used which specify transformation routines to convert between entities and indicate if the
transformation is lossy or not.

3. After the above two steps, the diagram is exported as an XMI file and input to a translator. The
translator routine develops an internal model represented as a directed weighted graph. It generates
a FOM such that the loss of information for transforming from one entity type to another is minimal.
The translator generates a fedfile and code for transformation routines.

4. The translator generates RT1 routines such as the initialization code for publishing and subscribing to
different attributes, their corresponding UpdateAttributeValues and ReflectAttributeValues methods.

5. In the last step, the developer manually inserts calls to the above generated routines at appropriate
places in the simulation code. This includes invoking time management services to synchronize
the federation.

The SysML description can be reused and adapted as the simulation is used in other federations for
different purposes.

3.2 Generating The Simulation Loop

SysML provides Sequence Diagrams as a means to describe a system’s dynamic behavior. They depict
interactions between different entities in a system. In object oriented programming, sequence diagrams
indicate the order of method call invocations by one object on another. We use these diagrams to show the
relative order of how different federates exchange data, then input it to a translator that generates simulation
loop code for each federate using time management service calls with appropriate timestamps values. The
entities participating in the flow of execution are represented by a dashed vertical line called the lifeline.
Time increases as one goes down the lifeline. The horizontal arrows represent the actual communication
between entities. We use the Federated Simulations Development Kit (FDK) (Fujimoto et al. 2000), that
implements a subset of the HLA Interface Specification for our work. This implementation of the RTI
assumes that all federates begin at the same time, i.e. they all join the federation together at time ¢ = 0,
and that all attributes are delivered by the RTI in timestamp order. In order to parse these diagrams, we use
the following vocabulary to describe the sequence flow. We indicate data flow from federate A to federate
B with horizontal arrow annotated with label Update(AttributeName). Here, AttributeName indicates the
attribute being sent from A to B. It is assumed that federate A would have being described to publish and
federate B to subscribe to that attribute or any attribute connected to it via “similarEntities” relation in the
BDD. Federates also can send an Execute() message to themselves representing some internal processing
by the federate. Also, the lifeline of each federate represents all interactions in one cycle of the simulation
loop. Figure 1 shows an example of a sequence diagram depicting the interactions among federates for the
federation described in the introduction section.

Once we have described the interactions among federates we export the diagram as XML Metadata Inter-
change (XMI) format and parse it using JAVA DOM parser and XPATH APIs. Each Update(AttributeName)
gets translated to an UpdateAttributeValues call to the RTI. Let us assume that At is the length of each cycle,
i.e., if the simulation loop begins at time t then the simulation time at the end of one iteration is # + Ar. We
label all the Update(AttributeName) calls from 1 to N from top to bottom in the sequence diagram using
a topological sort. This means that the first Update(AttributeName) by any federate is labeled 1 while the
last such call by any federate is labeled N. Let € = Ar/N. Then the timestamp of n/" update is given by
t +ne. We generate the simulation loop for a federate as follows:

1. Scan the lifeline of the federate to get all incoming and outing interactions along with Execute()
self invocation messages from top to bottom (increasing time)

2. Initialize time =t. This keeps track of the simulation time of the federate

3. For each message m with label [:

1221

Jain, Robinson, Dilkina, and Fujimoto

(a) If m is an incoming Update message, check if time < (t 4 1€) is true. If this condition is true,
output NextEventRequest with timestamp (7 + l€) followed by a while loop invoking RTI’s
tick() method till the time is advanced. Set time = (¢ +l¢)

(b) If m is an outgoing Update message,

i. Checkiftime == (t+(I—1)¢) is true. If this condition is false, output TimeAdvanceRequest
with timestamp (7 + (I — 1)¢) followed by a while loop invoking RTI’s rick() method till
the time is advanced. Set time = (1 + (I —1)¢)

ii. Output UpdateAttributeValues function invocation for that attribute with timestamp (z 4-/€).

(c) If m is Execute message, find the immediate incoming or outgoing Update message p with
label i after this message for this federate.

i. If there are no messages, output TimeAdvanceRequest with timestamp (¢t 4+ At). Also output
a call to Execute() followed by a while loop invoking RTI’s fick() method till the time is
advanced. Set trime = (¢ + At)

ii. If there is a message p with label i, find the difference between time and (1 + (i —1)¢g). If
the difference is greater than 0, output TimeAdvanceRequest with timestamp (¢ + (i —1)¢).
Output a call to Execute(). If the difference is greater than 0, output while loop invoking
RTT’s rick() method till the time is advanced and set time = (1 + (i — 1)€)

4. Check if time < (t+ At). If this condition is true, output TimeAdvanceRequest with timestamp

(t 4+ Ar) followed by a while loop invoking RTI’s fick() method till the time is advanced. Set

time = (t + At).

The code generated for federate A using the sequence diagram in Figure 1 is shown in Figure 2. It
should be noted that since we are calling UpdateAttributeValues for timestamp (7 4 l¢) that, when the
federate is at (# 4 (I — 1)€), a look-ahead value should be chosen so that it is less than €. We need to
call TimeAdvanceRequest before every Execute() call so that the execution of the federate doesn’t block
the execution for other federates. Execute() is a stub which is generated so as to produce an executable
federation. This helps to first test the federation before modifying the existing simulations and uncover
any susceptible bugs. The developer explicitly needs to remove calls to Execute() by invoking appropriate
functions or embedding the above generated time APIs at appropriate places in the simulation code. The
current implementation of the translator generates code for FDK in C. It can also generate the corresponding
code in the programming language used to develop the simulation, for instance Python.

: Federate A : Federate B : Federate C
|
|
|
|

: 1: Execute()

2. Update(AttributeA)

4: Execute()
:| 3: Execute()

S: Update(AttributeB)

5: Execute()

7: Update(AttributeC)
i

Figure 1: Example Sequence Diagram.

1222

Jain, Robinson, Dilkina, and Fujimoto

deltaT = 6.0; time = 0.0; epsilon = deltaT / 3; // Local Variables
waitingForTAG = FALSE; // Global variable modified in TimeAdvanceGrant callback
while (True) {

Execute ();

UpdateAttributeValues (AttributeAObjectDesignator , attrA, time + epsilon);

TimeAdvanceRequest(time + 2 % epsilon);

waitingForTAG = TRUE;

Execute ();

while (waitingForTAG == TRUE) // Wait for TimeAdvanceGrant
RTI_Tick ();

NextEventRequest(time + 3 % epsilon);

waitingForTAG = True;

while (waitingForTAG == TRUE) // Wait for TimeAdvanceGrant
RTI_Tick ();

time += deltaT;

Figure 2: Simulation loop for Federate A using sequence diagram shown in Figure 1.

4 CASE STUDY

To illustrate the techniques described above, and to show how they can help facilitate sustainable development,
we have performed a case study using the city of San Diego, California. Specifically, we have create
a metamodel using the techniques from Section 3 in order to simulate urban development while taking
into account feedback from the traffic and public transportation systems. The metamodel is made of three
separate models, namely: UrbanSim (Waddell 2002), MATSim (Balmer et al. 2008), and a simple public
transportation model we have developed for this case study, which we call TransitSim. These models are
joined together as individual federates in a federation using the methodology described in the Section 3.
The UrbanSim model is a parcel based model that completes urban development simulations using a wide
variety of data sources. MATSim is an agent-based transportation model that runs traffic simulations on the
road network to estimate the travel time between pairs of zones in the SUI. Lastly, TransitSim is a model
that describes what portion of the population will use public transportation. When joined together, these
models make up an Integrated Transportation and Land Use Model (ITLUM) for the San Diego area that
allows us to study any number of urban development questions. The model covers a wide area around the
city of San Diego, shown in Figure 3a, however for our case study we focus on results in the downtown
San Diego area shown in Figure 3b. This downtown portion of the city will constitute our system under
investigation (SUI).

According to the United States Census Bureau’s 2007-2011 American Community Survey (United
States Census Bureau 2011) only 4.1% of San Diego residents use public transportation to get to work,
while 84.7% drive to work. Our case study examines how increasing the probability that workers will take
public transportation to and from their jobs affects the congestion and development of the city over a 5
year time period. To do this, we run two different scenarios using our federation: a baseline scenario, and
scenario in which an exaggerated percentage of the population uses public transportation. In the baseline
scenario the probability that a person, whose home and work are within a mile of a bus stop, takes public
transportation, is set to 4.1% to estimate the current conditions in San Diego. In the exaggerated experiment,
this probability is set to 50% to see what effects a concentrated public transportation campaign might have
on the development of the city as a whole. We simulate 5 years of development, starting from 2013,
where each iteration of the entire federation represents a year, and examine the spatial distribution of the
population over time, for both scenarios, to reason about the effects of each scenario.

1223

Jain, Robinson, Dilkina, and Fujimoto

(a) Wider simulation area surrounding San (b) The area of downtown San Diego that we
Diego. are using as our system under investigation.

Figure 3: System under investigation.

4.1 UrbanSim Model

In this study we use a heavily modified version of the example San Diego model and data provided with
the new UrbanSim implementation, found at https://github.com/UDST/sandiego_urbansim. UrbanSim uses
information such as land use, and census data, in order to simulate land use, including where people choose
to live, in future years. As is, the UrbanSim model uses information about travel times between pairs of
zones, but these values remain fixed over a simulation. In our integrated simulation, the travel times are
updated by the output from the MATSim simulation after each simulation timestep, thereby affecting the
development of the simulation in future timesteps.

Part of the UrbanSim data contains information about the population in San Diego at the household level
(i.e. number of people who live in a house, number of workers, etc.). We have extended the model with
a module that samples a percentage of the population from the households table to use in the subsequent
TransitSim and MATSim simulation. The sampling process involves picking a random household, then
for each worker in that household picking a random job location from the job table for that person. This
temporary table contains the household and job locations of each sampled person and is written to file
after each iteration of the simulation. The rest of the tables are written to file after each iteration using the
“data_out” functionality of the orca.run method in the UrbanSim simulation pipeline.

4.2 TransitSim Model

We have developed a simple public transportation model called TransitSim to be used with UrbanSim and
MATSim to provide a richer model, and another target for our HLA coupling. Given a list of people with
home and work locations, a set of bus stops, and an underlying road network, this model decides which
people will take public transportation to and from their job. This model is parameterized by: a.) how far
a person is willing to travel to get to a bus stop (by walking or otherwise), called the range; and b.) the
probability, p, that a person will take public transportation provided that it is within range of their home
and work. Experiments on our SUI show that approximately 73% of the workers, from the baseline year
data, are within a mile range of a bus stop. The details of the model are as follows:

1. Given a list of input individuals, for every input individual:
(a) Find the distance from their home location to the nearest road, d, and distance from their job
to the nearest road, d;
(b) Find the distance from those points to the nearest bus stops, d, and d,; respectively
(c) If dy +dpy < range and d; +d,; < range

1224

Jain, Robinson, Dilkina, and Fujimoto

i. Flip a coin with probability p, which if passes, means that the person will take public
transportation, remove them from the output list
ii. Else they drive to work, a process that is simulated by MATSim, they stay in the output
list
2. Output the subset people on the input list that drive to work

We make some assumptions with this model. We assume that if someone has access to a single bus
stop, they are able to travel to any other bus stop in the city. The transportation capacity of the bus system
is not taken into account. The time needed to travel using a bus is not thresholded. Other modes of public
transportation are not taken into account, and we assume the bus system does have a significant impact on
traffic congestion in the city.

4.3 MATSim Model

MATSim (Balmer et al. 2008) is an open source agent based transportation simulator. The model takes
several inputs: a table of persons with their home and job locations (the temporary table described in
Section 4.1), and a road network that has the free speed, congested speed, number of lanes, and length
information for each road segment. The output from the model is an origin-destination matrix that has the
simulated travel times between each pair of zones in the SUI. This output is fed back into the UrbanSim
model and used in the next iteration to model household and job location choices.

We run the MATSim model using the MATSim4Urbansim extension, developed by Thomas Nicolai
(Nicolai 2013). To do this we have a Python script wrapper that generates a XML configuration file according
to the MATSim4Urbansim XSD, found here http://matsim.org/files/dtd/matsim4urbansim_v3.xsd, then run
MATSim via a command line call. In all of our case study experiments these parameters stay constant.

4.4 Integration Methodology

We integrate the three models first, by describing the BDD in a SysML editor. The entities involved in the
federations consist of Parcel, Person, Travel data and Job. The entity classes and their attributes are shown
in Figure 4a.

In order to generate the time management method calls, we used the sequence diagram to depict the
flow of messages among the federates and input it to the translator. We then manually embedded the
generated calls at appropriate places in the code. Figure 4b shows the sequence diagram for the federation.
UrbanSim publishes person, parcel and job data and it subscribes to travel data. TransitSim publishes
person data and subscribes to person, job and parcel data. MATSim publishes travel data and subscribes
to person, job and parcel data. The execution begins with UrbanSim which generates the person, job and
parcel data. The other two simulations wait for UrbanSim to publish this data. After UrbanSim publishes
data, TransitSim executes and filters people based on the model described above. It publishes person data
after execution. Once MATSim receives updates about person data published by TransitSim, it starts its
execution and publishes travel data to the federates. We have introduced new stereotypes “publishFile”
and “subscribeFile” in SysML to represent this where if an HLAC]lass is connected to an HLAFederate by
an association annotated with any of these stereotypes, the UpdateAttribute and ReflectAttribute functions
send and receive the file path where those files are written by the simulations.

4.5 Results and Discussion

Two experiments using the integrated model were developed, a baseline experiment and exaggerated public
transportation experiment. In the baseline experiment we set the probability that a person, whose home and
work locations area within 1 mile of a bus stop, takes public transportation (instead of driving to work) to
4.1%, while in the exaggerated experiment 50%. To see the effect that this change has on the development
of San Diego we run our simulation for 5 years, from 2013 to 2018.

1225

Jain, Robinson, Dilkina, and Fujimoto

«blocks
sHLAAttributes

zone_id_work

wblocks «blocks wblockn «blocks ablockn wblockn
aHLAAfributes sHLAAttributes sHLAAttributes «HLAAftributes sHLAAributes wHLAAributes
sector_id_work job_id parcel_id_work parcel_id_work parcel_id_home person_id

1: Execute()

|

s \ es s s s s
type : Integer type : Integer type . Integer type : Integer type : Integer type : Integer type : Integer
l «PublishFiles
«SubscribeFiles «blocks
ablocks 5 «SubscribeFiles «HLAClass»
«HLAClass» Person
13 LA aPublishFies 1= |-
s . «SubscribeFiles
«PublighFiles aSubscribefiles 1, A
«blockn «blockn wblocks
«Federates «Federates aFederates
Urban Sim TransitSim Matsim
«PublizhFiles
«FublishFies wSubscriveFies
B o «SubscribeFiles
o " +
RTioCks aSubscribeFiles T
3
'H';:E:S” «HLACksS» [*
‘—l Travel_Data .—J/
wblockn «blockn ablockn ablocks ablocks ahlockn «blocks
aHLAAfributes «HLAAfributes aHLAAfributes aHLAAftributes aHLAAfributes aHLAAfrbutes «HLAAttributes
zone_id X¥_coordinate y_coordinate parcel_id travel_time from_zone_id to_zone_id
values alies v values values values
type : Integer type : Real type : Integer type : Real type : Integer type : Integer
unit : degrees unit : degrees unit : s{unit = second}

(a) BDD for the Urban Modeling federation.

2. Update(Person)

3: Update(Job)

4: Update(Parcel)

5: Update(Per=gn}

§: Update(Jot

7: Update(Pargel)

b

| 8 Execute(}

|

9: Update(Person)

11: Update(Travel

Data)

(b) Sequence diagram of interaction among federates.

Figure 4: SysML Diagrams.

1226

10: Execute()

Jain, Robinson, Dilkina, and Fujimoto

Baseline, Averagev# People Per Household, 2013

Baseline, Averaie # People Per Household, 2018
= , <= 6.0 (17 tems) - i3
¥ - . .
- < ms) »* Jl
— <= 40520 ems) —
<= 30 £20
<= 2.0 (1275 tems)
<= 1016 tems
<= 0.0 425 items)

Exaggerated, Average # People Per Household, 2013 Exaggerated, Averaie # People Per Household, 2018

¢
s ,‘ ! < 6007 ke % i
- B) Néw
<
— ’ - — G
< tems) ".I’
< ems
<= 1006 tems)
<e 00625 tems)

Figure 5: Average number of people per household per TAZ in downtown San Diego for both scenarios
at the beginning and end of the simulation.

Our results consist of a set of maps that show the average number of people per household per TAZ,
and the total population of each TAZ at the start of the simulation compared to that at the end. These results
can be seen in Figures 5 and 6. The maps that show the total population per TAZ show that a smaller
number of people live in the downtown area at the end of the exaggerated experiment than in the baseline
experiment. A possible reason for this is that there will necessarily be less congestion downtown in the
exaggerated experiment due to the larger number of people taking public transportation. Less congestion
downtown means shorter commutes, and that people will have less incentive to live closer to their jobs.
This effect will be realized in the MATSim traffic simulation where fewer agents will be used in the traffic
simulation due to more people “deciding” to take public transportation in the TransitSim model. Another
result that can be seen from the maps is that the average population per household seems to increase in
the north west corner of the SUI in both scenarios, however the total population levels for the same areas
do not change a substantial amount. Consistent behavior over different scenarios can be further explored
by looking at more spatial variables from the UrbanSim output, but will be left to future work.

These initial results verify our automated modeling integration method and motivate future work in the
field of computational sustainability (Gomes 2009). Using HLA to facilitate the communication between
many models that previously would run independently will allow much richer analyses of urban systems,
and consequently the effects of making certain developmental decisions.

S CONCLUSION

In this paper, we describe a complete workflow for integrating simulations using HLA. This helps speed up
the process of creating federations by automating code generation to address sequencing problems that arise
when creating an executable federation of inter-dependent simulations. The developer only needs to spend
time creating the SysML descriptions which can be reused in other federations and manually embedding
the generated HLA code at appropriate places in the simulation code. We demonstrate the effectiveness of
this methodology by integrating simulations for urban development.

Future work on this project involves expanding the case study to include models of the water and
energy infrastructure systems in cities. Then, once a joint simulation environment for urban development
is created, we can move on with optimizing sustainable urban growth under different metrics. We envision

1227

Jain, Robinson, Dilkina, and Fujimoto

Baseline, Total People Per TAZ, 2013 Baseline, Total People Per TAZ, 2018

L

Figure 6: Total population per TAZ in downtown San Diego for both scenarios at the beginning and end
of the simulation.

that these activities will help us to create an ontology for sustainable urban development in SysML, which
can facilitate easier integration of further models in the future.

ACKNOWLEDGMENTS

This research was provided by National Science Foundation Grant 1441208 and CCF-1522054 (COM-
PUSTNET: Expanding Horizons of Computational Sustainability).

REFERENCES

Adak, M., O. Topgu, and H. Oguztiiziin. 2010. “Model-based code generation for HLA federates”. Software:
Practice and Experience 40 (2): 149-175.

Balmer, M., K. Meister, M. Rieser, K. Nagel, K. W. Axhausen, K. W. Axhausen, and K. W. Axhausen. 2008.
Agent-based simulation of travel demand: Structure and computational performance of MATSim-T.ETH,
Eidgendssische Technische Hochschule Ziirich, IVT Institut fiir Verkehrsplanung und Transportsysteme.

Bekhor, S., C. Dobler, and K. Axhausen. 2011. “Integration of activity-based and agent-based models:
case of Tel Aviv, Israel”. Transportation Research Record: Journal of the Transportation Research
Board (2255): 38-47.

Bocciarelli, P., A. D’Ambrogio, and G. Fabiani. 2012. “A model-driven approach to build HLA-based
distributed simulations from SysML models”. In SIMULTECH, 49-60.

Delligatti, L. 2013. SysML distilled: A brief guide to the systems modeling language. Addison-Wesley.

Erath, A., P. Fourie, M. Van Eggermond, S. Orddfez, A. Chakirov, and K. Axhausen. 2012. “Large-
scale agent-based transport demand model for Singapore”. In 13th International Conference on Travel
Behaviour Research (IATBR). Toronto: International Association for Travel Behaviour Research.

Fakhimi, M., N. Mustafee, L. Stergioulas, and T. Eldabi. 2013. “A review of literature in modeling approaches
for sustainable development”. In Proceedings of the 2013 Winter Simulation Conference, edited by
R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. Kuhl, 282-290. Piscataway, New Jersey: Institute
of Electrical and Electronics Engineers, Inc.

Fujimoto, R., T. McLean, K. Perumalla, and I. Tacic. 2000. “Design of high performance RTI software”.
In Distributed Simulation and Real-Time Applications, 2000.(DS-RT 2000). Proceedings. Fourth IEEE
International Workshop on, 89-96. IEEE.

1228

Jain, Robinson, Dilkina, and Fujimoto

Gomes, C. P. 2009. “Computational sustainability: Computational methods for a sustainable environment,
economy, and society”. The Bridge 39 (4): 5-13.

IEEE 2010a. “IEEE 1516 - Standard for modeling and simulation high level architecture - framework and
rules”.

IEEE 2010b. “IEEE 1516.1 - Standard for modeling and simulation high level architecture - federate
interface specification”.

IEEE 2010c. “IEEE 1516.2 - Standard for modeling and simulation high level architecture - object model
template (OMT) specification”.

Jain, A., R. Fujimoto, J. Crittenden, M. Liu, J. Kim, and Z. Lu. 2015. “Towards automating the development
of federated distributed simulations for modeling sustainable urban infrastructures”. In Proceedings
of the 2015 Winter Simulation Conference, edited by L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K.
Roeder, C. Macal, and M. D. Rossetti, 2668-2679. Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers, Inc.

Kuhl, F., R. Weatherly, and J. Dahmann. 1999. Creating computer simulation systems: an introduction to
the high level architecture. Prentice Hall PTR.

Lammel, G., H. Kliipfel, and K. Nagel. 2009. “The MATSim network flow model for traffic simulation
adapted to large-scale emergency egress and an application to the evacuation of the Indonesian city of
Padang in case of a tsunami warning”. Pedestrian behavior:245-265.

Newman, P. W., and J. R. Kenworthy. 1996. “The land use-transport connection: An overview”. Land use
policy 13 (1): 1-22.

Nicolai, T. W. 2013. “MATSim for UrbanSim: Integrating an urban simulation model with a travel model”.

Uluat, M. F,, and H. Oguztiiziin. 2011. “Model based approach to the federation object model independence
problem”. In Computer and Information Sciences II, 451-459. Springer.

United Nations 2015. “World urbanization prospects: The 2014 revision”.

United States Census Bureau 2011. “Means of transportation to work by selected characteristics: 2007-2011
American Community Survey 5-Year Estimates”. http://factfinder2.census.gov.

Waddell, P. 2002. “UrbanSim: Modeling urban development for land use, transportation, and environmental
planning”. Journal of the American Planning Association 68 (3): 297-314.

AUTHOR BIOGRAPHIES

AJITESH JAIN has an MSCS degree from Georgia Institute of Technology. His research interests include
modeling and simulation and artificial intelligence. His email address is ajiteshJain @ gatech.edu.

DAVID ROBINSON is a Ph.D. student at Georgia Institute of Technology in the School of Computational
Science and Engineering. His research interests include using modeling and simulation, and machine learn-
ing to solve problems in the field of Computational Sustainability. His email address is dcrobins @ gatech.edu.

BISTRA DILKINA is an Assistant Professor in the School of Computational Science and Engineering at
the Georgia Institute of Technology. She received a Ph.D. in Computer Science from Cornell University
in January 2012. Her email address is bdilkina@cc.gatech.edu.

RICHARD FUJIMOTO is Regents’ Professor in the School of Computational Science and Engineering at

the Georgia Institute of Technology. He received a Ph.D. in Computer Science and Electrical Engineering
from the University of California-Berkeley. His email address is fujimoto@cc.gatech.edu.

1229

