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ABSTRACT

In this article we propose a modification to the first order Linearly Implicit Quantized State System Method
(LIQSS1), an algorithm for continuous system simulation that replaces the classic time discretization by
the quantization of the state variables. LIQSS was designed to efficiently simulate stiff systems but it only
works when the system has a particular structure. The proposed modification overcomes this limitation
allowing the algorithm to efficiently simulate stiff systems with more general structures. Besides describing
the new method and its software implementation, the article analyzes the algorithm performance in the
simulation of a complex power electronic converter.

1 INTRODUCTION

The simulation of continuous time models requires the numerical integration of the Ordinary Differential
Equations (ODEs) that represent them. The literature on numerical methods for ODEs (Hairer, Nørsett,
and Wanner 1993, Hairer and Wanner 1991, Cellier and Kofman 2006) contains hundreds of algorithms
with different features that make them suitable for solving different type of problems.

Some ODE systems exhibit certain characteristics that pose difficulties to numerical ODE solvers. The
presence of simultaneous fast and slow dynamics, known as stiffness, is one of these cases. Due to stability
reasons, these systems enforce the usage of implicit ODE solvers that must perform expensive iterations
over sets of nonlinear equations at each time step. The presence of discontinuities is another difficult case,
where the ODE solvers must detect their occurrence using iterative procedures, restarting the simulation
after each event.

ODE models coming from power electronics, spiking neural networks, multi-particle collision dy-
namics, and several other technical areas, exhibit very frequent discontinuities and, sometimes, stiffness.
Consequently, the simulation of these systems becomes very expensive.

In the last years, a new family of numerical ODE solvers that can efficiently handle discontinuities
was developed. These algorithms, called Quantized State System (QSS) (Kofman and Junco 2001, Cellier
and Kofman 2006), replace the time discretization performed by classic ODE solvers by the quantization
of the state variables. Regarding stiffness, a family of Linearly Implicit QSS (LIQSS) solvers was recently
developed (Migoni, Bortolotto, Kofman, and Cellier 2013), that can efficiently simulate some of these
systems.

A limitation of LIQSS algorithms is that they require that the stiffness is due to the presence of large
entries on the main diagonal of the Jacobian matrix of the system. Otherwise, spurious oscillations may
appear on the simulated trajectories impoverishing the performance.

In this article, we propose a modification of the first order LIQSS algorithm that overcomes that limitation,
extending the cases in which stiffness is efficiently handled. Besides introducing the new algorithm, we
analyze its properties, we describe its implementation in the stand-alone QSS solver (Fernández and Kofman
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2014) and we present simulation results, comparing the performance of the new method with that of the
original LIQSS1 and the classic DASSL solver.

The paper is organized as follows: Section 2 introduces the previous concepts and definitions used
along the rest of the work. Then, Section 3 describes the new algorithm and describes its implementation.
Finally, Section 4 presents the simulation results and Section 5 concludes the article.

2 BACKGROUND

This section provides the background required to tackle the rest of the article. Starting with a brief
description of the problems suffered by classical ODE solvers when dealing with discontinuous and stiff
systems.Then, the family of QSS solvers is presented.

2.1 Numerical Integration of Stiff and Discontinuous ODEs

Many dynamical systems of practical relevance, both in science and engineering, are stiff. Integration of
these systems using traditional numerical methods based on time discretization requires the use of implicit
algorithms, because all explicit methods must necessarily restrict the integration step to ensure numerical
stability. In return, implicit methods have higher computational cost than explicit ones, because they call
for iterative algorithms in each step to calculate the next value.

Regarding discontinuities, it must be taken into account that classic algorithms are based, either explicitly
or implicitly, on Taylor series expansions that express the solution at the next time tk+1 as polynomials in the
step size h around the current time tk. As discontinuous trajectories cannot be represented by polynomials,
the numerical algorithms usually introduce unacceptable errors when a discontinuity occurs between time
tk and tk+1.

To avoid this problem, ODE solvers must detect the exact instant at which the discontinuity occurs,
advance the simulation until that time, and restart the simulation from the new conditions. This strategy,
known as zero crossing detection and and event handling, is expensive in terms of computational costs as
the zero crossing location usually involves iterations.

2.2 Quantized State System Methods

QSS methods replace the time discretization of classic numerical integration algorithms by the quantization
of the state variables.

Given a time invariant ODE in its State Equation System (SES) representation:

ẋ = f(x(t), t) (1)

where x(t) ∈ Rn is the state vector, the first order Quantized State System (QSS1) method (Kofman and
Junco 2001) analytically solves an approximate ODE called Quantized State System:

ẋ = f(q(t), t) (2)

Here, q(t) is the quantized state vector that follows piecewise constant trajectories. Each quantized state
qi(t) is related to the corresponding state xi(t) by a hysteresis quantization function:

qi(t) =

{
xi(t) if |qi(t−)− xi(t)|= ∆Qi

qi(t−) otherwise

This is, qi(t) only changes when it differs from xi(t) by a magnitude ∆Qi called quantum. After each
change in the quantized variable, it results that qi(t) = xi(t).

Since the quantized state trajectories qi(t) are piecewise constant, then, the state derivatives ẋi(t) also
follow piecewise constant trajectories and, consequently, the states xi(t) follow piecewise linear trajectories.
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Due to the particular form of the trajectories, the numerical solution of Eq. (2) is straightforward and
can be easily translated into a simple simulation algorithm.

For j = 1, . . . ,n, let t j denote the next time at which
∣∣q j(t)− x j(t)

∣∣= ∆Q j. Then, the QSS1 simulation
algorithm works as follows:

Algorithm 1: QSS1.
1 whi le (t < t f ) // s imulate un t i l f i n a l time t f
2 t = min(t j ) // advance s imu la t i on time
3 i = argmin (t j ) // the i−th quant ized s t a t e changes f i r s t
4 exi = t− tx

i // e lapsed time s i n c e l a s t x i update
5 xi = xi + ẋi · exi // update i−th s t a t e va lue
6 qi = xi // update i−th quant ized s t a t e
7 ti = min(τ > t ) sub j e c t to |qi− xi(τ)|= ∆Qi // compute next i−th

quant ized s t a t e change
8 f o r each j ∈ [1,n] such that ẋ j depends on qi
9 ex j = t− tx

j // e lapsed time s i n c e l a s t x j update

10 x j = x j + ẋ j · ex j // update j−th s t a t e va lue
11 tx

j = t // l a s t x j update

12 ẋ j = f j(q, t) // recompute j−th s t a t e d e r i v a t i v e

13 t j = min(τ > t ) sub j e c t to
∣∣q j− x j(τ)

∣∣= ∆Q j // recompute j−th
quant ized s t a t e changing time

14 end f o r
15 tx

i = t // l a s t x i update
16 end whi le

QSS1 has very nice stability and error bound properties: the simulation of a stable system provides
stable results (Kofman and Junco 2001) and the maximum simulation error (in the simulation of a linear
time invariant system) is bounded by a linear function of the quantum size ∆Q.

Since the states follow piecewise linear trajectories, the instant of times at which they cross a given
threshold can be computed without iterations, allowing the straightforward detection of discontinuities.
Moreover, when a discontinuity occurs, it will eventually change some state derivatives in the same way
a change in a quantized variable does during a normal step. That way, the simulation does not need to be
restarted. In conclusion, the detection and handling of a discontinuity does not take more computational
effort than that of a single step. Thus, the QSS1 method is very efficient to simulate discontinuous systems
(Kofman 2004).

In spite of this advantage and the fact that it has some nice stability and error bound properties (Cellier
and Kofman 2006), QSS1 performs only a first order approximation and it cannot obtain accurate results
without significantly increasing the number of steps. This accuracy limitation was improved with the
definition of the second and third-order accurate QSS methods (Cellier and Kofman 2006, Kofman 2006).

2.3 Linearly Implicit QSS Methods

In spite of their advantages, QSS1, QSS2 and QSS3 methods are inefficient to simulate stiff systems.
In presence of simultaneous slow and fast dynamics these methods introduce spurious high frequency
oscillations that provoke a large number of steps with its consequent computational cost (Cellier and
Kofman 2006).

To overcome this problem, the family of QSS methods was extended with a set of algorithms called
Linearly Implicit QSS (LIQSS) which are appropriate to simulate some stiff systems (Migoni, Bortolotto,
Kofman, and Cellier 2013). LIQSS methods combine the principles of QSS methods with those of classic
linearly implicit solvers. There are LIQSS algorithms that perform first, second and third-order accurate
approximations: LIQSS1, LIQSS2, and LIQSS3, respectively.
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The main idea behind LIQSS methods is inspired in classic implicit methods that evaluate the state
derivatives at future instants of time. In classic methods, these evaluations require iterations and/or matrix
inversions to solve the resulting implicit equations. However, taking into account that QSS methods know
the future value of the quantized state (it is qi(t)±∆Qi), the implementation of LIQSS algorithms is explicit
and does not require iterations or matrix inversions.

LIQSS methods share with QSS methods the definition of Eq. (2), but the quantized states are computed
in a more involved way, taking into account the sign of the state derivatives.

In LIQSS1 the idea is that qi(t) is set equal to xi(t)+∆Qi(t) when the future state derivative ẋi(t+) is
positive. Otherwise, when the future state derivative is negative qi(t) is set equal to xi(t)−∆Qi(t). Then,
when xi reaches qi, a new step is taken. That way, the quantized state is a future value of the state and the
derivatives in Eq.(2) are computed using a future state value, as in classic implicit algorithms.

In order to predict the sign of the future state derivative the following linear approximation for the i–th
state dynamics is used:

ẋi(t) = Ai,i ·qi(t)+ui,i(t) (3)

where Ai,i =
∂ fi
∂xi

is the i-th main diagonal entry of the Jacobian matrix and ui,i(t) = fi(q(t), t)−Ai,i ·qi(t)
is an affine coefficient.

It could happen that Ai,i · (xi(t)+∆Qi)+ ui,i(t) < 0, i.e., when we propose to use qi(t) = xi(t)+∆Qi
the derivative ẋi(t+) becomes negative. It can also happen that Ai,i · (xi(t)−∆Qi)+ui,i(t)> 0. Thus, qi(t)
cannot be chosen as a future value for xi(t). However, in that case, qi can be chosen such that ẋi(t) = 0.
That equilibrium value for qi can be calculated from Eq.(3) as

qi =−
ui,i

Ai,i
(4)

Then, the LIQSS1 simulation algorithm works as follows:

Algorithm 2: LIQSS1.
1 whi le (t < t f ) // s imulate un t i l f i n a l time t f
2 t = min(t j ) // advance s imu la t i on time
3 i = argmin (t j ) // the i−th quant ized s t a t e changes f i r s t
4 exi = t− tx

i // e lapsed time s i n c e l a s t x i update
5 xi = xi + ẋi · exi // update i−th s t a t e va lue
6 q−i = qi // s t o r e prev ious va lue o f q i
7 ẋ−i = ẋi // s t o r e prev ious va lue o f dxi /dt
8 ẋ+i = Ai,i · (xi + sign(ẋi) ·∆Qi)+ui,i // fu tu r e s t a t e d e r i v a t i v e

e s t imat i on
9 i f ( ẋi · ẋ+i >0) // the s t a t e d e r i v a t i v e keeps i t s s i gn

10 qi = xi + sign(ẋi) ·∆Qi
11 e l s e // the s t a t e changes i t s d i r e c t i o n
12 qi = −ui,i/Ai,i // choose q i such that dxi /dt = 0
13 end i f
14 ti = min(τ > t ) sub j e c t to xi(τ) = qi // compute next i−th quant ized

s t a t e change
15 f o r each j ∈ [1,n] such that ẋ j depends on qi
16 ex j = t− tx

j // e lapsed time s i n c e l a s t x j update

17 x j = x j + ẋ j · ex j // update j−th s t a t e va lue
18 tx

j = t// l a s t x j update

19 ẋ j = f j(q, t) // recompute j−th s t a t e d e r i v a t i v e

20 t j = min(τ > t ) sub j e c t to x j(τ) = q j or
∣∣q j− x j(τ)

∣∣= 2∆Q j //
recompute next j−th quant ized s t a t e change
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21 end f o r
22 // update l i n e a r approximation c o e f f i c i e n t s
23 Ai,i = ( ẋi− ẋ−i ) /(qi−q−i ) // Jacobian d iagona l entry
24 ui,i = ẋi−Ai,i ·qi // a f f i n e c o e f f i c i e n t
25 tx

i = t // l a s t x i update
26 end whi le

It can be seen that LIQSS1 steps only add a few calculations to those of QSS1. In particular, LIQSS1
estimates the future state derivative using a linear model (line 8) and it estimates the Jacobian main diagonal
entry Ai,i and the affine coefficient (lines 23–24).

Notice also that in line 20 the algorithm checks the additional condition
∣∣q j− x j(τ)

∣∣ = 2∆Q j, as a
change in variable qi can change the sign of the state derivative ẋ j(t) so that x j does no longer approach
q j. In this case, we still ensure that the difference between x j and q j is bounded (by 2∆Q j). However, we
shall see then that the fact that x j does not always approach q j may result into non efficient simulation of
some stiff systems.

LIQSS1 shares the main advantages of QSS1 and it can efficiently integrate stiff systems provided
that the stiffness is due to the presence of large entries in the main diagonal of the Jacobian matrix. Like
QSS1, it cannot achieve good accuracy and higher order LIQSS methods were proposed.

The second and third order accurate LIQSS2 and LIQSS3 combine the ideas of QSS2 and QSS3 with
the principles of LIQSS1.

2.4 Implementation of QSS Methods

The easiest way of implementing QSS methods is by building an equivalent DEVS model, where the events
represent changes in the quantized variables. Based on this idea, the whole family of QSS methods were
implemented in PowerDEVS (Bergero and Kofman 2011), a DEVS–based simulation platform specially
designed for and adapted to simulating hybrid systems based on QSS methods. In addition, the explicit
QSS methods of orders 1 to 3 were also implemented in a DEVS library of Modelica (Beltrame and Cellier
2006) and implementations of the first–order QSS1 method can also be found in CD++ (D’Abreu and
Wainer 2005) and VLE (Quesnel, Duboz, Ramat, and Traoré 2007).

Recently, the complete family of QSS methods was implemented in a stand–alone QSS solver (Fernández
and Kofman 2014) that improves DEVS–based simulation times in more than one order the magnitude.

The stand–alone QSS solver requires that the models are described in a subset of the Modelica modeling
language (Tiller 2012), called µ-Modelica (Fernández and Kofman 2014).

3 MODIFIED LIQSS1 ALGORITHM

In this section, we first analyze the main limitation of LIQSS1 concerning the appearance of fast oscillations
in systems where the stiffness is not due to large entries on the main diagonal of the Jacobian matrix. Then,
we propose an idea to overcome this problem, and, using this approach we propose a first order accurate
modified LIQSS method.

3.1 LIQSS1 limitations

The simulation of a stable first order system with QSS1 algorithm produces a result that usually finishes with
the state trajectory oscillating around the equilibrium point (Cellier and Kofman 2006). These oscillations
are the reason why QSS1 is not efficient to simulate stiff systems.

That problem is solved by LIQSS1, that prevents the oscillations by taking the quantized state as
a future value of the state. When it is not possible, LIQSS1 finds the equilibrium point using a linear
approximation.

However, LIQSS1 cannot ensure that qi is always the future value of xi because, after computing qi,
ẋi can change its sign due to a change in some other quantized variable q j. In such case, then it can also
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happen that the next change in qi triggers a change in the sign of ẋ j. This situation may lead to oscillations
involving states xi and x j.

3.2 Basic Idea

In order to avoid oscillations between pairs of variables, we propose to check whether a quantized state
update changes the sign of some other state derivative. If so, we additionally check whether an eventual
update of the second quantized state would change back the sign of the first state derivative. Under this
situation, we expect that both variables experience spurious oscillations, and, in order to prevent them, we
apply a simultaneous change in both quantized states using a linearly implicit Backward Euler step.

While this strategy may not solve general stiff structures, it will avoid the appearance of oscillations
between pairs of variables, what covers several practical cases.

3.3 Modified LIQSS1

Based on the idea expressed above, the modification introduced to the LIQSS1 algorithm consists in
checking an additional condition to verify that after changing a quantized state, the other state derivatives
would not change their sign. To check this condition, for each pair of state variables xi, x j, such that both
influence each other state derivatives, a second order linear approximation model of the form

ẋi = Aii ·qi +Ai j ·q j +ui j

ẋ j = A ji ·q j +A j j ·q j +u ji
(5)

is used. Here, Ai, j =
∂ fi
∂x j

(q, t) is the i, j entry of the Jacobian matrix, and ui j = fi(q, t)−Aii ·qi−Ai j ·q j is
an affine coefficient.

If the new value of qi does not introduce any change in the sign of the other state derivatives computed
with the linear approximation of Eq.(5), the algorithm works identically to LIQSS1. However, when the
new value of qi provokes that the sign of ẋ j changes in Eq.(5), we propose a new value for q j in the new
direction of x j. Then, we check if that proposed value for q j changes the sign of ẋi. If it does not, we
forget about the change in q j and the algorithm follows identical steps to those of LIQSS1. Otherwise, we
know that an oscillation may appear between states xi and x j, so we compute both quantized states qi and
q j simultaneously using a Backward Euler step on the model of Eq.(5).

Defining

qi j ,

[
qi

q j

]
xi j ,

[
xi

x j

]
ẋi j ,

[
ẋi

ẋ j

]
Ai j =

[
Aii Ai j

A ji A j j

]
ui j ,

[
ui j

u ji

]
(6)

the backward step is given by the equation

qi j(t) = xi j(t)+h · ẋi j(t +h) = xi j(t)+h · (Ai j ·qi j(t)+ui j) (7)

where h is computed as the maximum step size so that the difference between the states and the quantized
states is bounded by the quantum. When the states xi and x j are near an equilibrium point for Eq.(5), the
maximum step size h is infinite and the resulting quantized states are those corresponding to the equilibrium.

Taking into account these considerations, the modified LIQSS1 simulation algorithm is identical to
that of LIQSS1 (Algorithm 2) until line 14. Afterwards it continues as follows:

Notice that this new algorithm adds the calculation of a simultaneous step on states xi and x j (lines 28–
29), but this only takes place under the occurrence of oscillations. In other case, the algorithm only has
some additional calculations to detect changes in the sign of the state derivatives, what requires estimating
them (lines 19 and 23) and estimating also the complete Jacobian matrix (lines 38, 41, 52 and 56) and
different affine coefficients.
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Algorithm 3: Modified LIQSS1.
15 f o r each j ∈ [1,n] such that ( i 6=j and Ai j ·A ji 6= 0)
16 ex j = t− tx

j // e lapsed time s i n c e l a s t x j update

17 x j = x j + ẋ j · ex j // update j−th s t a t e va lue
18 u ji = u j j−A ji ·q−i // a f f i n e c o e f f i c i e n t
19 ẋ+j = A ji ·qi +A j j ·q j +u ji // next j−th s t a t e der . e s t .

20 i f ( ẋ j · ẋ+j < 0) // update in q i => change o f s i gn in dxj /dt

21 q+j = x j + sign(ẋ+j ) ·∆Q j // update q j in fu tu r e xj ’ s d i r e c t i o n

22 ui j = uii−Ai j ·q j // a f f i n e c o e f f i c i e n t
23 ẋ++

i = Aii ·qi +Ai j ·q+j +ui j // next i−th s t a t e der . e s t .

24 i f ( ẋ+i · ẋ++
i < 0) // update in q j => change o f s i gn in dxi /dt

25 // presence o f o s c i l l a t i o n s
26 q−j = q j // s t o r e prev ious va lue o f q j

27 ẋ−j = ẋ j // s t o r e prev ious va lue o f dxj /dt

28 h = MAX BE STEP SIZE(xi,x j ) // maximum BE step s i z e such

that ( |xi(k+1)− xi(k)| ≤ ∆Qi ∧
∣∣x j(k+1)− x j(k)

∣∣≤ ∆Q j )
29 [qi,q j] = BE step (xi,x j,h) // q i and qj are computed us ing a

BE step s i z e h from x i and xj
30 tq

j = t // l a s t q j update

31 t j = min(τ > t ) sub j e c t to x j(τ) = q j or
∣∣q j− x j(τ)

∣∣= 2∆Q j //
compute next j−th quant ized s t a t e

32 f o r each k ∈ [1,n] such that ẋk depends on q j
33 exk = t− tx

k // e lapsed time s i n c e l a s t xk update
34 xk = xk + ẋk · exk // update k−th s t a t e va lue
35 ẋ−k = ẋk // s t o r e prev ious va lue o f dxk/dt
36 ẋk = fk(q, t) // recompute k−th s t a t e d e r i v a t i v e
37 tk = min(τ > t ) sub j e c t to xk(τ) = qk or |qk− xk(τ)|= 2∆Qk //

compute next k−th quant ized s t a t e
38 Ak, j = ( ẋk− ẋ−k ) /(q j−q−j ) // Jacobian

39 tx
k = t // l a s t xk update

40 end f o r
41 A j, j = ( ẋ j− ẋ−j ) /(q j−q−j ) // Jacobian d iagona l entry

42 u j, j = ẋ j(t)−A j, j ·q j // a f f i n e c o e f f i c i e n t
43 end i f
44 end i f
45 end f o r
46 f o r each j ∈ [1,n] such that ẋ j depends on qi
47 ex j = t− tx

j // e lapsed time s i n c e l a s t x j update

48 x j = x j + ẋ j · ex j // update j−th s t a t e va lue
49 ẋ−j = ẋ j // s t o r e prev ious va lue o f dxj /dt

50 ẋ j = f j(q, t) // recompute j−th s t a t e d e r i v a t i v e

51 t j = min(τ > t ) sub j e c t to x j(τ) = q j or
∣∣q j− x j(τ)

∣∣= 2∆Q j //
compute next j−th quant ized s t a t e

52 A j,i = ( ẋ j− ẋ−j ) /(qi−q−i ) // Jacobian

53 tx
j = t // l a s t x j update

54 end f o r
55 // update l i n e a r approximation c o e f f i c i e n t s
56 Ai,i = ( ẋi− ẋ−i ) /(qi−q−i ) // Jacobian d iagona l entry
57 ui,i = ẋi(t)−Ai,i ·qi // a f f i n e c o e f f i c i e n t
58 tx

i = t // l a s t x i update
59 end whi le
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3.4 Implementation of Modified LIQSS methods

The modified algorithm was implemented in the Stand Alone QSS Solver. For that purpose, the pseudo
code of Algorithm 3 was programmed as plain C functions of the QSS solver. The corresponding codes
are available at https://sourceforge.net/projects/qssengine/.

4 EXAMPLES AND RESULTS

This section shows the simulation results, comparing the performance of the original LIQSS1 method with
the modified algorithm mLIQSS1 and with the classic DASSL solver in the simulation of power converter.

In order to perform this comparison, we run a set of experiments according to the conditions described
below:

• We simulated all systems under two different error tolerance settings: rel.tol. = abs.tol = 10−1 and
rel.tol. = abs.tol = 10−2.

• The simulations were performed on an AMD A4-3300 APU@2.5GHz PC under Ubuntu OS.
• In all cases, we measured the CPU time, the number of scalar function evaluations and the relative

error, computed as:

err =

√
∑(uC[k]−uCREF [k])2

∑uCREF [k]2
(8)

where the reference solution uCREF [k] was obtained using DASSL with a very small error tolerance (10−9).
As we discussed, the LIQSS algorithms cannot efficiently simulate systems where the stiffness is not

due to the presence of large entries on the main diagonal of the Jacobian matrix. An example where LIQSS
fails is a power electronic device called Ćuk converter, as it is reported in (Migoni, Bergero, Kofman, and
Fernández 2015).

Here, we analyze the performance of the modified LIQSS1 in the simulation of this system, considering
a four stage–interleaved version of the circuit as depicted in Figure 1.

This converter was simulated with the following set of parameters:

• Input source voltage: U = 24V
• Capacities: C1 = 10−4F and C2 = 10−4F
• Inductances L1 = 10−4Hy and L2 = 10−4Hy
• Load resistance: Ro = 10Ω

• Switch and diode On-state resistance: RON = 10−5Ω

• Switch and diode On-state resistance: ROFF = 105Ω

• Switch control signal period: T = 10−4sec
• Switch control signal duty cycle: DC = 0.35

We simulated this system with the different algorithms (DASSL, LIQSS1 and modified LIQSS1) until
final time of t f = 0.02 sec, where the trajectories reach a permanent regime, as it can be seen in the results
of Figure 2.

The performance comparison for the original LIQSSS method, the modified one and the classic DASSL
solver is reported on Table 1.

The first observation is that the original LIQSS1 algorithm performs a huge amount of steps that can be
explained by the appearance of spurious oscillations between the state variables that compute the inductance
currents, as its was already observed in (Migoni, Bergero, Kofman, and Fernández 2015). It is clear that
the modified LIQSS1 does not suffer from this issue and it performs between 20 and 80 times less steps.

For low accuracy settings (tolerance = 10−1), the modified LIQSS1 outperforms DASSL. However,
when the tolerance is set equal to 10−2, DASSL is faster. This can be easily explained by the fact that
LIQSS1 is only first order accurate and it cannot achieve a good accuracy without increasing significantly
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Where RS and RD can all take one of two
values, RON or ROFF .

Figure 1: Four-stage Ćuk interleaved converter circuit and its ODE representation.

Table 1: 4-Stage Interleaved Ćuk converter results comparison.

Integration Relative Jacobian Function fi CPU
Method Error Eval. Evaluations [mseg]

L
IQ

SS
1 ∆Qi = 1 ·10−1 3.0 ·10−2 − 80243117 9697.97

∆Qi = 1 ·10−2 2.8 ·10−3 − 102413128 12399.1

D
A

SS
L ∆Qi = 1 ·10−1 1.7 ·10−1 26113 4928846 227.102

∆Qi = 1 ·10−2 7.5 ·10−2 22556 4402996 218.124

m
L

IQ
SS

1 ∆Qi = 1 ·10−1 4.4 ·10−2 − 1043458 163.234

∆Qi = 1 ·10−2 5.2 ·10−3 − 5123830 676.012

the number of steps. Anyway, it can be noticed that, for identical tolerance settings, mLIQSS1 is much
more accurate than DASSL.

The advantages of mLIQSS1 with respect to DASSL are due to the efficient discontinuity handling and
sparsity exploitation, as well as the explicit treatment of stiffness (it only inverts 2 by 2 matrices irrespective
of the system size n, while DASSL needs to invert an n by n matrix at each step).

These advantages should be more notorious as the size of the system grows. In order to verify this
fact, we also simulated the model varying the size from 4 to 32 stages. In each of these experiments, we
set the tolerance of each solver so that the measured error results the same. That way, we compare the
CPU time required by each solver to simulate the system obtaining identical errors.

The results of these measurements are shown in Figure 3. As expected, the advantages of mLIQSS1
grow with the number of stages, resulting about 10 times faster than DASSL for the case with 32 stages.

1092



Di Pietro, Migoni, and Kofman

(a) Output voltage. (b) Output voltage detail.

(c) Currents iL j
2
. (d) Currents iL j

2
detail.

Figure 2: Four-stage Ćuk converter simulation results.

5 CONCLUSIONS

A modification of the first order accurate Linearly Implicit Quantized State System Method was proposed,
allowing to efficiently simulate stiff systems with more general structures than those having large entries
restricted to the main diagonal of the Jacobian matrix.

The mLIQSS1 algorithm was implemented in the stand alone QSS solver and tested in the simulation
of a complex power electronic converter comparing its performance with that of the original LIQSS1
method and the classic DASSL solver. The performance analysis showed that the mLIQSS1 overcomes the
appearance of spurious oscillations exhibited by LIQSS1 and, for low accuracy settings, it was significantly
faster than DASSL, particularly when the size of the system grows.

Besides the advantages demonstrated in the case study, the proposed method has a remarkable feature
of mixing LIQSS1 and Backward Euler’s algorithms. When it predicts that LIQSS1 may lead to oscillations
on certain sub-model, it applies a Backward Euler step on the corresponding state variables. That way,
mLIQSS1 constitutes the first approach to effectively combine Quantized State and classic discrete time
ODE solvers.

Regarding potential applications, QSS algorithms are particularly efficient to simulate models with
frequent discontinuities (like Power Electronic Systems) as well as large sparse models. Thus, we expect
that mLIQSS ideas lead to the efficient simulation of Power Electronic circuits where LIQSS fail: the
already mentioned Ćuk converter, the different Z source topologies (that have a similar structure to that
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Figure 3: Four-stage Ćuk interleaved converter simulation time comparison.

of the Ćuk), as well as more general switching converters under the presence of parasitic inductances and
capacitances.

The main limitation of mLIQSS1 is that it is only first order accurate. Thus, we are currently working
on developing higher order versions.

Besides extending mLIQSS1 to higher order, future research should study the performance of this
approach in a wider variety of applications.
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