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ABSTRACT

Queuing systems of any domain oftentimes exhibit correlated arrivals that considerably influence system
behavior. Unfortunately, the vast majority of simulation modeling applications and programming languages
do not provide the means to properly model the corresponding input processes. In order to obtain valid
models, there is a substantial need for tools capable of modeling autocorrelated input processes. Accordingly,
this paper provides a review of available tools to fit and model these processes. In addition to a brief
theoretical discussion of the approaches, we provide tool evaluation from a practitioners perspective. The
assessment of the tools is based on their ability to model input processes that are either fitted to a trace or
defined explicitly by their characteristics, i.e., the marginal distribution and autocorrelation coefficients. In
our experiments we found that tools relying on autoregressive models performed the best.

1 MOTIVATION AND INTRODUCTION

Discrete event simulation (DES) is considered to be an appropriate approach to predict the behavior of
queuing systems (Law and Kelton 2000). This is especially true for complex systems characterized by
dynamic and stochastic behavior with a high level of interferences. DES is employed in a wide range
of domains like manufacturing/intralogistics, telecommunications, and transportation (see references in
Section 2.1).

The result quality (in the sense of accurately predicting/capturing the system behavior) strongly depends
on the employed model which, of course, should capture the relevant characteristics of the real system. The
corresponding model roughly consists of static elements as well as parameters and processes. This paper
focuses on modeling stochastic input processes. In the ideal case there is some historical trace data for
doing so. In all other cases parameters of the processes have to be estimated. Random number generators
(RNG, see Section 2.2) are used to create particular events accordingly.

Usually, RNGs create numbers which are stochastically independent. Indeed, it is regarded as a quality
feature if randomly generated numbers show as little correlation as possible (L’Ecuyer 2006). However,
consider for example some batch building or priority rules in queueing systems, obviously, these factors
will lead to dependencies and we cannot assume an input process based on independent random numbers is
still appropriate. There is a considerable amount of literature supporting this hypothesis and the existence
of autocorrelation in processes should generally be considered (see Section 2.1). Consequently, appropriate
generators for random variates are a necessity to model these systems.

Unfortunately, there is no DES-tool which allows the generation of autocorrelated random variates out of
the box albeit some well researched approaches are available (Section 2.2). In order to model autocorrelated
input processes, some stand alone tools have to be adopted. This paper discusses the available tools and
evaluates their capabilities of creating autocorrelated processes.
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The paper is structured as follows: An overview of related work is given in Section 2. This includes
the definition of autocorrelation, an overview where autocorrelation occurs, and how the system behavior
is influenced by autocorrelated processes. Furthermore, basic concepts of generating random numbers are
presented. Section 3 introduces general approaches which are suitable to generate autocorrelated random
variates. Subsequently, in Section 4 specific tools which implement these approaches are introduced.
Section 5 covers the practical use of these tools based on experiments, where we used them to fit processes
that model an autocorrelated time series. Finally, we summarize and evaluate our findings in Section 6 and
provide a brief outlook in Section 7.

2 RELATED WORK AND BASIC DEFINITIONS

This section gives a short introduction to autocorrelation and random number generators.

2.1 Autocorrelation—Basics and Motivation

The following statistics basics can be found in Box et al. (2008). Accordingly, autocorrelation is a
mathematical expression quantifying the degree of linear dependency a given time series shows with a
lagged version of itself. Suppose the observations (xt ,xt+τ) of the time series X with length N and t = 1 . . .N
for a lag-τ , the sample autocorrelation coefficients rτ are defined by

rτ =
∑N−τ

t=1 (xt − x̄)(xt+τ − x̄)

∑N
t=1 (xt − x̄)2

, x̄ = ∑
i

xi

N
for τ = 0,1,2, . . . ,N −1. (1)

In order to show multiple autocorrelation coefficients, their function (autocorrelation function: ACF)
is visualized in correlograms—Figure 1 shows the ACF of two different time series.
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Figure 1: Autocorrelation function of two time series—horizontally dashed: significance band (95%).

As already mentioned, autocorrelated processes can be observed in many domains and systems.
Comprehensive literature reviews on autocorrelation in the logistics field can be found in Altiok and
Melamed (2001), Civelek et al. (2009), Nielsen (2004), and Rank et al. (2012). In agriculture, Mertens
et al. (2009) report on autocorrelated egg lay behavior of hens. For a discussion of autocorrelation in
traffic networks and relevant literature we refere to Cheng et al. (2011). Furthermore, autocorrelated
streams are well known and investigated in telecommunications (Taylor 2007, Ibrahim et al. 2012) and
server-client-systems in the IT-domain (Leland et al. 1994, Baryshnikov et al. 2005, Paul et al. 2011).

The issue with autocorrelation in queuing systems is not the occurrence by itself—correlated processes
have a major impact on the systems’ performance. From a theoretical point of view the discussion goes
back to Runnenburg (1962). Some more recent studies can be found amongst others in Livny et al. (1993),
Balcioǧlu et al. (2008), Jagerman et al. (2004), and in most of the stated sources of the previous paragraph.
Considering autocorrelation in “real world”-systems, Nielsen (2007) suggests qualitatively similar impacts,
however, not as profound as predicted theoretically. Some case studies can confirm this conjecture (e.g.
Pereira et al. (2012), Rank et al. (2013). In general, there is no doubt about the occurrence of autocorrelation
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and its impact on the system behavior. Hence, dependent processes have to be represented adequately in
simulation models making tools for modeling autocorrelated process indispensable.

2.2 Random Number Generators

In the context of this paper random numbers are always considered to be pseudo random numbers. In contrast
to “real” random numbers they are not actually random but rather stem from deterministic algorithms.

The most popular method to generate uncorrelated random numbers applies the principle of congruence.
A linear congruence generator is the most simple approach and uses an equation of the form zn = azn−1

mod m. By “properly” defining z0 and the parameters a and m, the transformation ui = zi/m leads to
uniformly, independently and identically distributed (IID) samples U (0,1) of the interval [0,1) (L’Ecuyer
2006). Random numbers with a specific marginal distribution F can be realized by applying its inverse
F−1 (Law and Kelton 2000). More sophisticated generators drop the assumption of a linear congruence.

Well known discrete event simulators like AutoMod, Plant Simulation, Arena, Simul8, VSSIM as well
as popular programming languages like Java, C/C++, Visual Basic have congruence generators implemented
(see their corresponding documentations and Banks 2000, SIMUL8 Corp. 2012, Protzmann et al. 2013,
Uhlig et al. 2013). However, when dependent numbers are required other approaches (see Section 3) and
appropriate tools (see Section 4) have to be applied.

2.3 Previous work on tools for modeling autocorrelated samples

To the best of the authors’ knowledge, there is no comprehensive evaluation of tools for modeling
autocorrelated processes and automated fitting of samples. Nevertheless, there are some studies comparing
particular approaches in the manner of Section 3 (see for example Bause et al. 2009, Laner et al. 2014,
Biller and Nelson 2002, Nielsen 2004).

3 MODELLING APPROACHES

Modeling approaches for autocorrelated processes can be divided into: autoregressive models, distortions
methods, Markovian arrival processes, copulae, and “others” (Johnson 1994). A short overview on their
workings is given subsequently.

Autoregressive models are discussed in detail by Box et al. (2008). A common model is the so
called ARMA model which combines the autoregressive (AR) part with a moving average (MA) part. In
this regard a process Z of order p and q can be obtain by Zt = ∑p

i=1 αiZt−i −∑q
j=1 θ jεt− j + εt for t ∈ Z

and ε ∼ N (0,1). These processes generate random variates with a normal marginal distribution. With
respect to other marginal distributions FY , ARTA-processes (AutoRegressive To Anything) are introduced
in Cario and Nelson (1996b). Briefly, the approach uses an AR base process Zt , applies the standard normal
cumulative distribution function Φ and the inverse transformation method so that Yt = F−1

Y [Φ(Zt)]. In order
to keep the desired characteristics across the transformations, the stated reference provides a numerical
search procedure to determine the correct initial values.

Distortion methods D literally destroy the IID-property of an uniformly distributed base process U so that
Y = D(U), D = F−1

Y and Y exhibits the desired autocorrelation. For example the TES-method (Transform-
Expand-Sample) presented in Melamed (1991) generates lag-1 positively autocorrelated samples by

U+
t =

{
U+

t = Zt t = 0

〈U+
t−1 +Vt〉 t = 1,2, . . .

(2)

where 〈x〉 denotes the modulo-1 arithmetic and U+
∼ U (0,1). Lag-1 negatively autocorrelated values U−

t
can be derived from U+

t (Melamed 1991). TES generated random variates require iterative user interaction
to determine Vt . In this context, Geist and Melamed (1992) and Jelenkovic and Melamed (1995) describe
the “TEStools” to support the user.
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An alternative to TES are minification and maxification methods (Lewis and McKenzie 1991). The
distortion is obtained by the parameter C. For example, the process Umin is obtained from

Umin
t =

⎧⎨
⎩

Umin
t = Zt t = 0

C ·min

(
Umin

t−1 ,
Zt−1

C−1+Zt−1

)
t = 1,2, . . .

(3)

where the autocorrelation function is defined by rmin
Y (τ) =C−τ andUmin ∼U (0,1). For TES and minification

and maxification the base process U has to be transformed into the desired marginal distribution.
A well structured introduction into Markovian arrival processes (MAP) and a literature review can be

found in Kriege (2012). Thus a MAP can be expressed by its background continuous time Markov chain
(CTMC) with m states/phases. Further, a CTMC is defined by its generator matrix QQQ = DDD0 +DDD1. DDD0 and
DDD1 are of order m×m and contain state transition rates. The matrix DDD0 contains transitions of the CTMC
without arrivals whereas DDD1 contains the probabilities of state transitions with arrivals. An inter-arrival time
is obtained from the time cumulatively passed when the CTMC restarted from a specific state—consecutive
inter-arrival times represent a random number series. For the resulting MAP, DDD000 controls the inter-arrival
time marginal distribution and DDD111 the autocorrelation structure, respectively. A discussion of how to fit
MAP and a comprehensive literature review on this topic is given in Artalejo et al. (2010).

Copulae C describe dependencies between univariate marginal distributions in a multivariate joint
distribution. Detailed reviews can be found amongst others in Trivedi and Zimmer (2007) and Nelsen
(2006). The basic theory goes back to Sklar’s Theorem (Sklar 1973). Considering multiple univariate time
series as lag-τ shifted series of a particular process, copulae can also be used to generate autocorrelated
random variates. Some popular copulae are the product-, Farlie-Gumbel-Morgenstern-, Gauss-, Student’s
t-, Clayton-, Frank-, and Gumbel-copulae. For example, the Clayton-copulae CCl of order m, parameter θ
and the samples u1,u2, . . . ,um is defined by

CCl(u1,u2, . . . ,um;θ) = max

⎧⎨
⎩
(

m

∑
i=1

u−θ
i −m+1

)− 1
θ

;0

⎫⎬
⎭ mit θ ∈ [−1,∞)\{0}. (4)

“Other” approaches to generate random numbers like for example the Correlation Transfer Technique,
Rank Matching or by summing up samples with a normal marginal distribution can be found in Polge et al.
(1973), Santos Filho and Yacoub (2008), and Lakhan (1981).

4 MODELING TOOLS

This section presents the evaluated tools. We considered tools for different environments including command
line tools, libraries, and stand alone tools with a Graphical User Interface (GUI). All discussed tools are free
to use. Unfortunately there are no tools available for the TES, minification and maxification approaches.
Furthermore, we could not identify tools to simply model and fit autocorrelated input processes with
copulae, even though there are functions for copulae in MATLAB and R. Our evaluation focuses on
three main aspects: functionality, interoperability, and usability. The functionality is assessed based on
experiments, where we model arrival processes and rate the achieved goodness of fit (see Section 5). For
the interoperability and usability we assess how well the tools can be integrated into a typical simulation
work flow and whether they are well documented and intuitive.

4.1 Artafacts and Artagen

Artafacts and Artagen are introduced in Cario and Nelson (1996b). Both provide a numerical search
procedure to properly define the parameters for applying the ARTA method outlined in Section 3. Without
stating a specific license governing their use, the corresponding Fortran code of Artafacts and Artagen can
be downloaded from Cario and Nelson (1996a). Both use input text files to parametrize the processes.

1051



Uhlig, Rank, and Rose

In case of Artafacts, user input includes the name of output file, the desired marginal distribution,
the number of autocorrelation coefficients to match, the coefficient’s values and relative errors as well as
parameters of the ARTA marginal distribution. The output file contains all the parameters to be used to
define the AR-base process. Random variates can be obtained by manually post processing these parameters.
For the purpose of this paper the statistic software R (R Development Core Team 2011) and its functions
rnorm, pnorm and qexp have been applied (see Source Code 1).

Source Code 1: Post processing of the Artafacts output in R.

noOfRndNumbers <- 10000
datRes <- rnorm(length(alphaCoeff), 1)
sigma <- 1 - sum(arCoeff * alphaCoeff)
#arCoeff and alphaCoeff are vectors with values fitted by ARTAFACTS
for(i in length(alphaCoeff) + 1:noOfRndNumbers) {

datRes[i] <- sum(datRes[(i - 1):(i - length(alphaCoeff))] * alphaCoeff)
+ rnorm(n = 1, mean = 0, sd = sqrt(sigma))

}
datRes <- qexp(pnorm(datRes[length(alphaCoeff):noOfRndNumbers]))

Artafacts can also read empirical time series which results in an output file containing the estimated
ACF and their significance levels. Artagen is designed to generate autocorrelated random variates from
user input. The corresponding input file contains similar values to the Artafacts input file and in addition
a statement about the amount of values to generate. Artagen and Artafacts do not provide the means to
fit/estimate moments or the marginal distribution of a sample trace.

4.2 Jarta

Jarta is a Java library to model and fit ARTA processes. It implements the approaches presented in Cario
and Nelson (1996b). An ARTA process can be defined either explicitly with desired marginal distribution
and autocorrelation coefficients or be fitted to a sample trace. When a sample trace is fitted the order
of the process is estimated based on the significant partial autocorrelation coefficients and an empirical
distribution is build from the sample data. Jarta is published under an open source license (Apache License
2.0). Jarta can be called from the command line using a simple text file as parameter input or directly as a
library in a Java environment (see Source Code 2). For example, we have used it as a module in AnyLogic.
A detailed overview on Jarta can be found in Uhlig et al. (2013).

Source Code 2: Java example code to fit ARTA processes.

% Fit an ARTA process with given marginal distribution and autocorrelation coefficients (accs)
RealDistribution dist = new ExponentialDistribution(1.0);
double[] accs = {0.3, -0.1};
ArtaProcess arta = ArtaProcessFactory.createArtaProcess(dist, accs);
% Alternatively automatically fit to given trace
ArtaProcess ar = ArtaProcessFactory.createArtaProcess(trace);
% Generate sample from the fitted process
double sample = ar.next();

4.3 ProFiDo—Processes Fitting Toolkit Dortmund

ProFiDo is introduced in Bause et al. (2010) and is released under the terms of the GNU General Public
License version 2. It can be downloaded from Bause et al. (2016). ProFiDo is a Java based software and
provides a GUI to conveniently apply different command line tools suitable for fitting and modeling time
series as well as visualisation. To ensure consistency an XML-based interchange format is applied whose
particular files can be manipulated by the user. ProFiDo Version 1.3 supports PH distributions, MAP, and
ARMA and ARTA processes. The tool collection includes amongst others Artafacts (see Section 4.1),
Artafit (Biller and Nelson 2005), MAP EM (Buchholz 2003), MAP MOEA (Panchenko and Buchholz
2007) and CAPP-Fit (Kriege and Buchholz 2011) which are all used in this work.
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In order to fit and/or model processes, so called work flow elements like input/output files, fitting
algorithms, and RNG have to be placed on a canvas with appropriate connections (see Figure 2). Each
node is initialized using default values—for instance the statement which autocorrelation lag is to match.
For the purpose of this paper and with regard to the easy application in practice, these values are changed
as little as possible. Eventually, ProFiDo creates a tool chain to realize the work flow.

Figure 2: ProFiDo GUI—Exemplary canvas with workflow elements.

4.4 BuTools

BuTools is a multi platform collection of tools for Markovian performance evaluation (The BuTools Team
2016). Currently three platforms are supported, i.e., MATLAB, NymPy/Python and Mathematica. BuTools
is available for free, although, no explicit license governing its use is given. BuTools provides functions
to model Markovian arrival processes and to fit these processes automatically to a given sample trace. For
the fitting process it uses an approach presented in Horváth (2013). Source Code 3 illustrates how to fit a
MAP, either to a sample trace or to explicitly given inputs, i.e., desired raw moments of distribution and
lag-1 autocorrelation.

Source Code 3: MATLAB example code to model MAPs with BuTools.

% Fit a MAP with given moments and lag-1 correlation
moms = [1, 2, 6];
corr = 0.2;
[D0, D1] = MAPFromFewMomentsAndCorrelations(moms, corr);
% Alternatively automatically fit MAP to a given trace
[D0, D1] = MAPFromTrace(trace, 4);
% Generate samples from the fitted process
samples = SamplesFromMAP(D0, D1, 10000);

4.5 KPC-Toolbox

The KPC-Toolbox encompasses a set of MATLAB scripts for automatic fitting of sample data. The
underlying approach is based on the Kronecker Product Composition (KPC—see Smirni et al. 2016) to
fit a MAP. The order of the MAP is estimated automatically. The KPC-Toolbox is available to the public
and for testing and is licensed under the BSD-3 license. Source Code 4 shows how a MAP is fitted and
new sample data is generated.

Source Code 4: MATLAB example code to model MAPs with KPC-Toolbox.

% Automatically fit MAP to a given trace
trace_prepared = kpcfit_init(trace);
MAP = kpcfit_auto(trace_prepared, ’OnlyAC’, 1)
% Generate samples from the fitted process
samples = map_sample(MAP, 10000);
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5 RESULTS

The experiments we conducted for this paper fall into two categories. We used the presented tools to either
fit a process to a given sample trace or we defined the characteristics of a process explicitly based on the
desired marginal distribution and autocorrelation structure. The goal of our experiments was to evaluate
the usability of the tools and check the plausibility of the generated results. We did not perform an in-depth
statistical analysis of the basic approaches, but rather focused on the tool usability for the end user.

We considered four simple test cases to asses the tool functionality. For each of them we aimed to
model a process with an exponential marginal distribution with mean one. Four different autocorrelation
structures were employed. First, a small positive autocorrelation at lag one (r1 = 0.2). The second scenario
considered an increased autocorrelation (r1 = 0.5). For the third case we used a negative autocorrelation
(r1 =−0.3). Finally, we used an autocorrelation structure that also had a significant autocorrelation at lag
two (r1 =−0.2,r2 = 0.2). The input traces for automatic process fitting were generated with Jarta. Each
tool was used to generate 10,000 samples, which were evaluated statistically. Table 1 displays the empirical
results of our experiments. We looked at the moments and autocorrelation of the generated processes to
see if they matched the expectations. Furthermore, we performed a Kolmogorov-Smirnov (KS) test to
compare the generated samples to the desired exponential distribution. Overall, we observed reasonable
results for most tools. However, tools that are based on MAPs were outperformed by other approaches.
Our results indicate that they oftentimes were only able to match either the desired distribution or the
desired autocorrelation structure. With regard to the shape of the resulting marginal distribution we found
anomalies in the samples generated by BuTools (see Figure 3) and KPC-Toolbox (see Figure 4).
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Figure 3: The process fitted with BuTools (r1 = 0.5)

did not match the desired exponential distribution.

The “dent” was more pronounced for larger positive

autocorrelation coefficients.
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Figure 4: Process fitted with KPC-Toolbox gener-

ated fewer short inter arrival times than expected.

The effect occurred when negative autocorrelation

coefficients (r1 =−0.3) were tested.

Regarding the interoperability and usability of the tools we got mixed results. Obviously, our
impressions cannot be completely objective and are colored by personal preference. Overall, all tools were
reasonably accessible and documentated. Therefore, we simply focus our evaluation on special features
of the respective tools. BuTools and the KPC-Toolbox were easy to integrate in the typical Matlab work
flow and provided well written documentation. From an end user perspective, it is not very intuitive to
define the desired marginal distribution in BuTools based on its raw moments. The KPC-Toolbox provided
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Table 1: Summary of experiment results; we considered generated processes that were defined explicitly

with the desired characteristics and processes that were fitted to a sample trace. Additionally, the p-value

from the Kolmogorov-Smirnov test was calculated to evaluate the goodness of fit.

Approach Mean Variance r1 r2 p-value

Experiment I - Exponential Distribution 1.0 1.0 0.2 — —

Jarta (generated) 0.991 0.991 0.200 0.045 0.520

Jarta (fitted) 0.981 0.976 0.203 0.047 0.201

Artafacts + R-script (fitted) 0.996 0.997 0.191 0.037 0.791

Artagen (fitted) 1.003 0.999 0.160 0.031 0.762

BuTools (generated) 0.997 0.985 0.197 0.117 0

BuTools (fitted) 0.993 1.002 0.113 0.056 0.630

KPC-Toolbox (fitted) 0.973 1.059 0.124 0.057 0

ProFiDo - Artafit + Distfit [auto] (fitted) 0.993 0.991 0.195 0.046 0.195

ProFiDo - Artafit + Distfit [exponential predefined] (fitted) 0.995 1.060 0.171 0.037 0.189

ProFiDo - Cappfit (fitted) 1.006 1.023 0.115 0.033 0.057

ProFiDo - MAP EM (fitted) 0.991 1.002 −0.002 −0.007 0.097

ProFiDo - MAP MOEA (fitted) 1.128 1.224 0.060 0.003 0

Experiment II - Exponential Distribution 1.0 1.0 0.5 — —

Jarta (generated) 0.990 1 0.499 0.262 0.020

Jarta (fitted) 1 0.988 0.484 0.242 0.298

Artafacts + R-script (fitted) 0.994 1.001 0.489 0.248 0.519

Artagen (fitted) 1.002 0.998 0.446 0.208 0.618

BuTools (generated) 1.014 0.994 0.506 0.372 0

BuTools (fitted) 0.964 1.038 0.237 0.152 0

KPC-Toolbox (fitted) 0.996 1.098 0.235 0.144 0

ProFiDo - Artafit + Distfit [auto] (fitted) 0.991 0.984 0.489 0.252 0.493

ProFiDo - Artafit + Distfit [exponential predefined] (fitted) 0.994 1.057 0.448 0.223 0.219

ProFiDo - Cappfit (fitted) 0.991 1.002 0.359 0.244 0.003

ProFiDo - MAP EM (fitted) 0.990 1.001 −0.002 −0.007 0.078

ProFiDo - MAP MOEA (fitted) 1.144 1.196 0.030 0 0

Experiment III - Exponential Distribution 1.0 1.0 −0.3 — —

Jarta (generated) 1.010 1.026 −0.289 0.125 0.988

Jarta (fitted) 1.004 1.017 −0.288 0.128 0.314

Artafacts + R-script (fitted) 1.002 1.001 −0.281 0.122 0.397

Artagen (fitted) 1.005 1.007 −0.238 0.080 0.874

BuTools (generated) 0.999 0.988 −0.295 0.188 0

BuTools (fitted) 1.006 1.076 −0.173 0.094 0.160

KPC-Toolbox (fitted) 1.005 0.718 0.030 0.003 0

ProFiDo - Artafit + Distfit [auto] (fitted) 1.013 1.025 −0.287 0.130 0.051

ProFiDo - Artafit + Distfit [exponential predefined] (fitted) 1.019 1.190 −0.220 0.102 0.051

ProFiDo - Cappfit (fitted) 1.011 1.032 −0.078 0.115 0.576

ProFiDo - MAP EM (fitted) 1.010 1.021 −0.002 −0.007 0.782

ProFiDo - MAP MOEA (fitted) 1.027 1.221 −0.231 0.125 0

Experiment IV - Exponential Distribution 1.0 1.0 −0.2 0.2 —

Jarta (generated) 1.009 1.001 −0.203 0.196 0.176

Jarta (fitted) 1.011 1.006 −0.214 0.204 0.008

Artafacts + R-script (fitted) 1.004 1.010 −0.200 0.195 0.236

Artagen (fitted) 1.005 1.005 −0.167 0.173 0.821

BuTools (generated) n/a n/a n/a n/a n/a

BuTools (fitted) 1.020 1.082 −0.166 0.100 0.398

KPC-Toolbox (fitted) 0.996 0.758 0.005 −0.004 0

ProFiDo - Artafit + Distfit [auto] (fitted) 1.012 1.023 −0.205 0.199 0.058

ProFiDo - Artafit + Distfit [exponential predefined] (fitted) 1.019 1.189 −0.155 0.154 0.009

ProFiDo - Cappfit (fitted) 1.011 1.009 −0.173 0.202 0.146

ProFiDo - MAP EM (fitted) 1.009 1.020 −0.002 −0.007 0.847

ProFiDo - MAP MOEA (fitted) 1.508 1.675 −0.062 0.008 0
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no apparent way to explicitly describe the properties of the modeled process, only automatic fitting was
supported readily. The use of Artafacts and Artagen are straight forward, although, they require the use
of the Fortran compiler and the command line. Both tools cannot be integrated directly into a simulation
environment. Therefore the modeled processes have to be used to create an appropriate amount of samples
in advance which then could be imported from a file. The same is true for ProFiDo, because it provides
a standalone environment to model and fit processes, the resulting processes cannot be integrated easily
into other tools. Here, you also have to rely on text files as exchange format. Alternatively, it is possible
to use the parameters determined by Artafacts or ProFiDo and simply generate an ARTA process within
the desired simulator or tool, e.g., R. The actual implementation of an ARTA process is simple and only
the appropriate parametrization quite intricate. ProFiDo is the only tool that provides a graphical user
interface. However, due to the lack of wizards the GUI does not add to the usability significantly, even
though the originators of ProFiDo provide a well structured documentation. The Jarta library is easy to
use if one is familiar with Java. It can be integrated in any Java project and can even be used directly in
commercial simulators like Anylogic that support Java. The Jarta command line tool is comparable in use
to Artagen, however, the configuration files are easier to read.

6 DISCUSSION

The results of our experiments seem to indicate that one should avoid MAPs to model autocorrelated input
processes. However, it is important to point out that this not inherently a problem of the MAPs approach.
Generally, an appropriate MAP should be able to capture the process properties. It seems to be challenging
to automatically determine appropriate MAPs, especially the estimation of the order is difficult. Looking
at Figure 3 we can assume that the order of the fitted MAP was too low to smoothly capture the shape of
the marginal distribution. It seems the process alternated between states that resulted in small inter-arrival
times and states leading to high inter-arrival times, while missing intermediate values. Typically, MAPs
are better suited for mathematical queueing analysis.

From an end users perspective this means that one should use a tool based on the ARTA approach
when possible. Even though in the end, the decision will often come down to familiarity with the approach
and the environment. Regardless of the employed tool, the user should not rely on the automatic fitting
without reflection. It is only prudent to at least validate the generated samples according to their empirical
and expected properties. Furthermore, one should consider that all tools make assumptions with regard to
an input trace. For example, they are intended to model stationary time series and therefore preprocessing
is required to eliminate trends.

7 SUMMARY AND OUTLOOK

In this paper, we have discussed several methods and respective tools to model autocorrelated input processes.
Although a number of tools are available, they are often ignored. This leads to faulty models and wrong
predictions of system behavior. From our point of view, the usability and quality of the tools is good
enough to say that this seems to be rather caused by user ignorance than tool inconvenience. Therefore,
we can generally endorse the use of the presented tools, especially, the ones based on the ARTA approach
returned very good results.
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