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ABSTRACT

A multi-year research project focused on a global aerospace company’s design-to-production transition,
and in particular how to answer production-related questions much earlier in a program’s design cycle than
is possible today. A fundamental difficulty is that the time and expertise required to formulate appropriate
analysis models prevents their routine use, especially in new program development. The project’s goal was
to reduce these requirements, and by late 2014 a methodology had been developed for on-demand analysis
generation to answer routine questions about production systems. A pilot project was conducted in 2015 to
demonstrate efficacy, that an implementation of the methodology could in fact reduce by at least an order of
magnitude the time required to answer a frequently-asked question, in a repeatable way while specification
of the products, their process plans, planned facilities, and available resources were frequently changing.
This paper summarizes the methodology, its pilot project implementation, and preliminary results.

1 INTRODUCTION

A global aerospace company seeks to improve the design of their production systems by addressing key
questions earlier in the product lifecycle. Computer-Aided Design (CAD) and Engineering (CAE) tools aid
product designers by providing push-button ability to evaluate mechanical, aerospace, thermal, and other
types of metrics about candidate product designs. However, computational tools aiding production system
designers with on-demand analysis capabilities are more limited. Therefore, the company’s vision is to
enhance tool support for the design, diagnosis, and continuous improvement of production systems, beginning
by giving designers push-button ability to evaluate “produceability” metrics and questions including:

e Ifan airplane’s design were to include novel new materials, does capability exist to make the needed
parts, at a certain rate, and at a certain cost?
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e If a major subassembly is partitioned into distinct sections made by different suppliers and joined
at final assembly, how should the delivery schedule balance high robustness to supply disruptions
and low inventory costs?

e What investment in tools, fixtures, layup molds, and other resources is needed to manufacture a
certain subassembly at a certain production rate?

Whatever the list of questions, the subject of the research is how to push-button answer them, and there are
several factors which make that hard. First, push-button capability requires formulating and solving a variety
of operations research analysis models, including statistical, discrete-event simulation, and optimization
analysis models. Solution methods and algorithms are well-studied in the literature, but not well-studied
is how to formulate an analysis model given an analysis-neutral system description and a question about
the system in an automated, robust, and reusable way. Second, during early design stages a product’s
specification may only exist at a high level of abstraction, meaning that push-button functionality must
accommodate varying amounts of detail. Third, while information about products and processes may be
rigorously captured in Product Lifecycle Management (PLM) systems, information about resources and
facilities is often not - production knowledge in many companies is often informal, tacit, and transient. If
a company’s backbone of architecture includes CAD, Product Data Management (PDM), Manufacturing
Execution Systems (MES), and Manufacturing Resource Planning (MRP), the combination of these systems
still lacks information needed to answer many produceability questions, including the ones listed above.
Therefore, when a designer pushes the button, they should also expect to supply additional information,
which raises the questions of what exactly that information is, what language and format it should take,
and what flexibility exists for its detail.

An analogy for the company’s vision is to augment personal assistants such as Apple’s Siri®, Google’s
Voice Search, or Microsoft’s Cortana® with additional functionality needed to answer produceability
questions about candidate designs. To understand how the needed functionality differs from what already
exists, consider that many questions asked of personal assistants are answerable by simple database or
web search. Isolated examples also exist of more advanced machinations, a popular one being computing
driving directions. Questions about navigating civilian transportation networks are not commonly answered
by searching through pre-recorded routes in databases, but rather by formulating a shortest-path network
flow optimization analysis, solving it (perhaps using Dijkstra’s algorithm with heuristics), and doing so
within seconds and invisibly to the end-user. With this analogy, the factors listed above can be summarized
into two challenges: (1) A necessary generalization and expansion of personal assistants’ capabilities for
analysis formulation and solution, and (2) Modeling. Answering questions about driving directions is
possible because personal assistants already have detailed knowledge of civilian transportation networks.
They have no knowledge, however, of an arbitrary company’s proprietary products, processes, resources,
and facilities - and even if they did have access to the company’s information systems, those are not
complete, nor can commonly function in the required role of an experimental design environment.

By late 2014, a methodology had been developed to address these challenges, and in particular the
modeling challenge. The methodology enables push-button answering produceability questions via automatic
formulation of many different analysis model types, but the pilot project focused exclusively on formulating
discrete-event simulation models, consistent with Nelson’s observation that “Simulation is increasingly the
only method capable of analyzing, designing, evaluating, or controlling the large-scale, complex, uncertain
systems in which we are interested” (Taylor et al. 2013). A company-imposed requirement is to use
commercial off-the-shelf (COTS) tools for automatically-formulated simulation models including Simio
and Tecnomatix Plant Simulation.

1.1 Prior Work: Model Generation and Modeling

Many engineering analysts have tried adding automation to their workflow, following the paradigm of
separating system description from system analysis, authoring system descriptions in a presumably-easier
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way, and then automatically transforming them into the semantics and syntax of a particular analysis
language as-needed. Yuan et al. (1993) describes a generator for SIMAN-language simulation models of
“discrete operational systems” which are modeled with an “operations network™ and “operation equations”.
Son and Wysk (2001) describe automatically building simulation models in the Arena language to answer
manufacturing shop floor control questions, using a network abstraction called a “message-based part state
graph” to capture potential routings through a shop’s resources. Fournier (2011) describe automatically
building simulation models in various languages (QUEST, Arena, ProModel, FlexSim) using the Core
Manufacturing Simulation Data (CMSD) standard, and Bergmann et al. (2012) maps CMSD to the SLX
simulation language. Dong and Chen (2001) generate object-oriented Petri Nets from Computer Integrated
Manufacturing Open System Architecture (CIMOSA) behavior rules, and Deavours et al. (2002) generate
Stochastic Activity Networks (SAN) from modeling formalisms compatible with the Mobius framework.
Simulation analysis model generators inputting SysML-language system models are Batarseh et al. (2015)
and Kapos et al. (2014), the latter generating executable Discrete Event System Specification (DEVS)
models.

Observe the variety of system description languages in the citations above. In addition to “discrete
operational systems”, “message-based part state graphs”, CMSD, and more, there are many additional
candidate languages, ranging from research ideas to adopted standards. An OASIS standard for the
exchange of production planning and scheduling data is (OASIS 2011). The output of the ISO TC 184/SC4
committee includes the ISO 10303 standard for machine-readable capture and sharing of product data
(Pratt 2001). AutomationML is a standard-of-standards for exchanging data between engineering tools in a
production facility (Drath et al. 2008). These efforts standardize data schemas, and there are also efforts to
standardize semantics and ontologies. An OMG standard formalizing business process semantics is Business
Process Model and Notation (BPMN) (OMG 2011). A Supply Chain Council standard formalizing supply
chain management semantics is the Supply Chain Operations Reference (SCOR) (SCC 2012). Proposals for
formalizing manufacturing semantics include Manufacturing Semantics Ontology (MASON) (Lemaignan
et al. 2006) and also Molina and Bell (1999), Cutting-Decelle et al. (2007), and Guerra-Zubiaga and Young
(2008).

Tanenbaum (1981) observes “The nice thing about standards is that you have so many to choose from.”
In the first years of the research project, the authors sought a single and “perfect” system description
language for production systems (Thiers and McGinnis 2013), aggregating from various cited contributions
and filling in gaps. However, nothing was ever developed which the authors could plausibly argue the whole
world should use, for reasons including a fundamental tension between concrete and abstract (the former
needed for user accessibility, the latter needed for robustness and reusability), and also that a language
is inexorably shaped by its authors’ use cases at a moment in time. Inevitably, both the use cases and
time change, the language must evolve, transformation programs which are tightly coupled to the language
break, and the author must maintain code they have long forgotten, if the original author can be found
at all. Progress only resumed when it was finally accepted that a single and “perfect” system description
language for production systems may never exist, and a way was devised to accommodate a plethora of
similar-but-different system description languages.

1.2 The Challenge of COTS Discrete-Event Simulation Tools

In addition to a large number of language choices for system description, there are also a large number of
language choices for discrete-event simulation analysis - unlike the domain of optimization analysis which
has a canonical language “A Mathematical Programming Language” (AMPL) (Fourer et al. 1993), to the
best of the authors’ knowledge the domain of discrete-event simulation has no such canonical language,
and each language choice differs from other language choices in both semantics and syntax. If there
are m choices of system description language and n choices of simulation analysis language, then m - n
permutations of transformations from system description to simulation analysis result, severely limiting
the return on investment of writing and maintaining each one. The methodology described in this paper
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reduces m to 1, but still allows m system description languages by adding an intermediate transformation
step which loosely couples each language to a back-end bridging abstraction language.

Among the efforts cited in section 1.1 to automatically generate simulation models, there is considerable
variety in where the transformation “intelligence” is located - it may be upstream in the system description
language (effectively conflating that language with the downstream analysis language), in the transformation
itself (as with general-purpose model-to-model transformation languages and tools including QVT (OMG
2016) and ATL (EMF 2016), or downstream in the system analysis language (effectively conflating that
language with the upstream description language, the de-facto approach of many COTS simulation tool
vendors). In some cases, researchers attempt to simplify transformations by writing their own discrete-event
simulation language and solver, as in Biswas and Narahari (2004), Chatfield et al. (2006), and Schonherr
and Rose (2009), enabling transformation of system description to simulation analysis using straightforward
one-to-one mappings. In the authors’ estimation, developing ad-hoc analysis tools when suitable COTS tools
are available - even if their language is inconvenient - does not seem a sustainable path. The methodology
described in this paper places most of the transformation “intelligence” in model-to-model transformations
themselves, but proposes a small step forward by building simulation models to the greatest extent possible
using model library blocks which are executable versions of bridging abstraction model elements.

2 METHODOLOGY

A methodology is a collection of related processes, methods, and tools (Estefan 2008), and the process in
this paper’s methodology is shown in figure 1. Both the System Model in the top-left and the Bridging
Abstraction Model in the top-center are description-only, and both are actually comprised of two different
levels of modeling abstraction, which might be called the schema and the data or the metamodel and the
instance model, or class definitions and object instantiations in object-oriented software terminology. The
system description language discussed at length in section 1.1 is the upper schema or metamodel layer, and the
distinction is important because model-to-model transformations depend only on this layer and should work
given any conforming data or instance model. The Bridging Abstraction Metamodel is an abstract creation
capturing the underlying commonalities shared by all discrete-event logistics systems - manufacturing
systems, supply chains, warehousing & distribution systems, transportation & logistics systems, healthcare
delivery systems, and more. A key observation is that most systems studied in industrial engineering have
a network structure, and most operations research analysis of them is network-based analysis. The bridging
abstraction metamodel has evolved since its inception into a collection of layered models, but the original
and fundamental layer the authors call a token-flow network, with an excerpt shown in figure 2.

~

( (3a) Given the question, /B deine Abstracti A (4) Given the abstract system
abstract what’s relevant J riaging Abstraction and the guestion, identify and J .
{ SyStem Model in the system model. " Model ‘ 7 construct an answering analysisﬂ Analysis Model
{ \ J
& -
(2) The quesfion's subject (5) SoIEve the
is a system model, which analysis model
includes both a schema and a for ayn answer
conforming in;tance model. i !
~ Ve ,'%\‘
Question about - (3b) Map from a question Question about } Answer
about the system to a question. .

‘ System Model | about the abstraction. | AbsUadun1Mode|‘ |
S / - v A >
A A (5b) Interpret results and i

(1) Ask avquestion pose new questions.
about a system. (5a) If the answer enhances

system knowledge, capture it
in the system model.

Figure 1: The methodology’s process, whose novelty is the Bridging Abstraction Model.
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Figure 2: An excerpt from the Token-Flow Network layer of the Bridging Abstraction Metamodel.

The Bridging Abstraction Model is introduced to mediate a fundamental tension between concrete
and abstract - a System Model should be as concrete as needed for accessibility, the Bridging Abstraction
Model should be as abstract as possible for robustness and reusability, and efficacy depends on easily
created and maintained mappings between the two. The mappings realize as declarative specifications of
model-to-model transformations, and updating them in response to new or evolving system models must
be as simple and fast as possible. In software terminology, the added intermediate step has the effect of
mitigating tight coupling between system description languages and system analysis languages, to alleviate
costs when a system description language must inevitably change with use cases and time. In figure 1,
second-stage coupling between the Bridging Abstraction Model and the Analysis Model will remain tight,
but first-stage coupling between the System Model and the Bridging Abstraction Model should be as loose
as possible to accommodate new or evolving System Models. Importantly, due to the Bridging Abstraction
Model’s stability, the task of writing and maintaining the second-stage transformations should have enough
return-on-investment that might be adopted by a dedicated team, as opposed to diverse analysts.

Many new ideas are variations on old ones, and the process in figure 1 may classify as such, a transplant
of best practices from software to systems engineering. The methodology’s novelty is in its methods and
tools which address large research challenges exist to make this work for systems engineering:
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e The Bridging Abstraction Metamodel - an explicit, analysis-neutral, and human- and machine-
readable metamodel which captures the underlying commonalities shared by all discrete-event
logistics systems. As the research project evolved, it quickly became clear that the bridging
abstraction model would be iteratively developed for years to come. Modeling a system’s structure
is usually the lowest-hanging fruit, modeling behavior (think processes) is usually more challenging,
and modeling control (think business rules) is usually most challenging of all. Also, most candidate
languages for authoring this metamodel (UML, SysML, Ecore, OPM, entity-relationship diagrams,
and more - the language of the language) are object-oriented, and object-oriented systems modeling
can be an unfamiliar way of thinking.

e Model-to-model transformations. To transform a System Model to a Bridging Abstraction Model in
figure 1, the mechanism has evolved from UML stereotype application, to declarative specifications
in general-purpose transformation languages including QVT and ATL, to a custom model-to-model
transformation language and engine described further in section 3.

o Understanding the space of questions about production systems and the analyses capable of
answering them. This challenge is intimately related to deep domain knowledge. If and when an
implementation of the methodology supports a critical mass of routine produceability questions, a
new challenge will arise - how to make productive use of a “question-answering genie” by asking
the right questions. The authors envision that this will require capturing higher-level processes
(diagnosis, continuous improvement, design, etc.) and the questions asked during each step of those
processes’ execution.

An extensive discussion of the methodology’s processes, methods, and tools can be found in Thiers
(2014), Sprock and McGinnis (2014), and Sprock (2016). Search for and experimentation with new methods
and tools continues, for example a method of using model library blocks which are executable versions
of bridging abstraction model elements, to the greatest extent possible, when building analysis models in
a domain without a canonical language.

3 PILOT PROJECT

By late 2014 the methodology had matured on paper, and a pilot project was conducted in 2015 to demonstrate
efficacy, that an implementation of the methodology could in fact reduce the time required to answer a
frequently-asked question by at least an order of magnitude, in a repeatable way while specification of
the products, their process plans, planned facilities, and available resources continually change. The steps
involved were:

Step 1: Have the user choose a frequently-encountered scenario for which push-button formulation of
discrete-event simulation models, to answer a variety of questions, could be very valuable. The scenario for
this project involved evaluating manufacturing capacity for composite part fabrication, with the frequently-
asked question “What is a minimum number of resources required to support a given production rate?” Of
particular interest are composite layup mold and autoclave resources, which for large aerospace parts can
be very expensive with long sourcing lead times.

Step 2: For the chosen scenario, create a system description language. This step requires capturing
analysis-neutral semantics which users employ to talk about their business and represent it in information
systems. This language iteratively evolved during the pilot project, and its state at the final iteration is
captured in figure 3. Note that this is a schema-level model and not of any particular production system
instance - it serves as a common definition for facilities, manufacturing processes, alternatives to them,
desired future states for them, and more.

Does the language in figure 3 qualify as an abstract metamodel for describing arbitrary production
systems? Certainly not - this is one particular user’s schema, and a minimal one for a particular use
case, which may differ syntactically and even semantically from other users’ schemas. Important features
include batching at the autoclave (by part volume, or by a specific bill of part types and quantities), and also
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Figure 3: A system description language capturing production semantics for the scenario of evaluating
manufacturing capacity for composite part fabrication. The language of the language is Ecore.

resources paired with parts through multiple process steps (composite layup molds from pre-layup until
post-curing). These semantics also enable separating physical facility from functional process definitions,
because a key component of the capacity question is that process plans do not execute in a vacuum, but rather
execute in particular facilities which execute multiple process plans concurrently while sharing common
resources. Semantics which are not included, but may be imporant in other scenarios, include jobs with
deadlines, travel networks within and between facilities, routing control of jobs and resources, and more.

The methodology’s innovation is that analysis generator programs are only loosely coupled to the
system description language in figure 3, with the effect that those programs can keep working while the
language evolves (during the pilot project, the language evolved in approximately eight iterations spaced
one month apart). Said another way, the methodology relaxes the burden to make a system description
language “perfect” before investing in analysis generator programs which depend on it.

Step 3: Make the question precise. This step should become superfluous once a certain level of
maturity of tool support is realized, but it is imperative during early pilot projects. The task is to determine
what information a question-asker expects in an answer, and how to extract or infer that information from
simulation output. For the question “What is a minimum number of resources needed to support a given
production rate?”, suppose that the answer returned is ‘““x and y units of resource types A and B are
minimum amounts needed to support, on average, 20 planes per month.” Is that sufficient, or are risk
qualifiers also expected such as “x and y units of resource types A and B will yield only 19 planes in o% of
months and only 18 planes in B% of months”? A large item for future development is returning answers
with interpretations, risk qualifiers, and more. The methodology enables a decision-support tool, not a
decision-making one, because decision-making should reflect a human assessment of risk, which might be
the x-axis on some form of Pareto-frontier plot which is returned as a question’s answer.

Making the question precise also involved effort which was unique to the first project. Since the bulk of
the work was software development, a spiral development paradigm was followed with an iteration period
of about one month. The question “What is a minimum number of resources needed to support a given
production rate?” became the capstone of a series of milestone questions:
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o  What is the (expected) (Raw Cycle Time) of a certain (Job)? A discrete-event simulation model to
answer this question is the simplest-interesting one imaginable.

o  What is the (expected) (Throughput) of regularly executing a certain (Job)? Answering this question
requires only process simulation, without the context of a manufacturing facility, other process
plans executing concurrently in that facility, resource-sharing paradigms, and more.

o  What is the (expected) (Throughput) of making certain (Product)s in a certain (Facility)? Answering
this question requires simulating a single manufacturing facility executing multiple process plans
concurrently while sharing common resources. All that separates answering this question from the
capstone question is adding an optimizer to search for minimum resource numbers.

o  What is a minimum number of resources needed to support a certain throughput? Interestingly, an
optimizer was never actually added; the pilot project sponsor recognized it as a simple extension and
chose to better use the time adding fidelity to the system description, and in turn the automatically-
generated simulation models.

Step 4: Map the front-end system model to the back-end bridging abstraction model, as much as
needed to answer the question. Efficacy of the methodology depends on the loosest-possible coupling
between these two models, and the loosest we can imagine is a declarative specification of a model-to-model
transformation, an example of which is shown in figure 4.

<TokenFlowNetworkMap=
<!-- ProcessNestworks —->
—<ProcessNetworkMap sysDefnElement="#//Job" executionSemantics="SequencingDependencies" allInstances="false"
userPromptForInstances="The question concerns the raw cycle time of one or more Job instances. Which ones?">
<!—-- Processss ——>
— <ProcessMap sysDefnElement="#//{Job/componentJob" alllnstances="true" recursiveSearchForNestedNetworks="true">
<InferenceMap tfnInference="InferEdges SuccessorProcesses" sysDefnProperty="successorJobs"/>
</ProcessMap>
— <ProcessMap sysDefnElement="#//Job/componentOperation" alllnstances="true" recursiveSearchForNestedNetworks="false">
<InferenceMap tfnInference="InferEdges SuccessorProcesses" sysDefnProperty="successorJobs"/>
<PropertyMap tfnProperty="executionTime RandomVariableModel" sysDefnProperties="time-mean, time-stdev, time-units"
function="RandomVariableModel"/>
</ProcessMap>

<!-- Questions —->
<Question subject="RawCycleTime"/>
</ProcessNetworkMap>
</TokenFlowNetworkMap=>

Figure 4: A model-to-model transformation from the System Model to the Bridging Abstraction Model to
answer a question about raw cycle time.

The XML in figure 4 is a low-level representation which users should not be expected to interact
with directly - usability improvements should make authoring and updating declarative specifications
of model-to-model transformations much more user-friendly. At the project’s beginning, the authors
had imagined performing these mappings via the mechanism of UML stereotype application (Batarseh
et al. 2012). However, that quickly became untenable due to inflexibility - applying a UML stereotype
effectively defines a one-to-one transformation rule, which constrains the system model and the bridging
abstraction model to look very similar and only effectively differ in syntax. The authors next considered
general-purpose and standardized model-to-model transformation languages including QVT or ATL, but
transformation specifications were quite verbose, and it was quickly realized that incorporating knowledge
of the transformation’s target enables dramatic simplification. This simplification incurs a loss of flexibility,
but flexibility which was not needed, consistent with Cleenewerck and Kurtev (2007)’s conclusion that
“The problem of translational semantics in Model-Driven Engineering is better to be approached with a
domain-specific transformation language instead of with a general purpose one.” Future work includes
reconciling the custom and domain-specific transformation language with a standard such as QVT.
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Step 5: Create instance models and press go. To push-button answer a produceability question, the
final step requires quickly describing a question’s subject - instances of products, processes, resources, and
facilities. The metamodel in figure 3 is analogous to software class definitions which can engender large
numbers of object instantiations, and this step requires creating those object instantiations. In the pilot
project this was done in a tabular and Excel-like environment, and an excerpt is shown in figure 5.

RawMaterialSupplyProcess RawMaterialType WorkOrderReleaseProcess WorkOrderType Workstation
Cell Facility Job MobileResourceSharingProcess MobileResourceType Operation Product
InstancelD  time-mean (float) time-stdev (float) time-units (nvarchar(255)) processBatchSize (int) processParallelCapacity (int)

Operation1 |1 0.1 minutes 1 1

Operation2 |1 0.1 minutes 1 1

Operation3 |22 0.1 minutes 1 20

Operationd |4 0.1 minutes 5 100

Operation5 |1 0.1 minutes 1 1

Operationt |2 0.1 minutes 1 1

Operation7 |2 0.1 minutes 1 1

Operation8 |2 0.1 minutes 1 1

Operation9 |1 0.1 minutes 1 1

Operation10|1 0.1 minutes 1 1

Operation11|1 0.1 minutes 1 1

Figure 5: An excerpt from an instance model conforming to the system description language in figure 3.

The tables and their schema in figure 5 conform to the metamodel in figure 3 - Operation maps to
a table, and each attribute maps to a column. An instance model’s tables and schema are generated via
object-relational mapping, and a user describes the question’s subject by filling in the tables. This is a
modeling environment which could benefit from many usability improvements; one is that the tables shown
to users are effectively raw relational database tables, and adding a view layer will enable simplification,
organization, and hiding redundant data (for example, junction tables which follow from any attribute whose
multiplicity upper bound is > 1). Another improvement is that while tables and columns are shown in
figure 5 for each metamodel element in figure 3, knowledge of a user’s question enables visual filtering to
only tables and columns relevant to answering that question. Another improvement is adding visualization
- whatever a user’s system model, as table rows are populated a bridging abstraction model is being
constructed in the background, and visualization should be possible for at least process and facility views.
Usability improvements to this environment are critical to realizing the maximum possible reductions of
time and expertise required to answer routine produceability questions.

An example of a discrete-event simulation model and experiment which are automatically generated
upon pressing go are shown in figure 6.

4 CONCLUSIONS AND FUTURE WORK

Design-to-production transition is a complex business process, and the research described in this paper
supports that process by enabling designers to appreciate production consequences of design decisions
much earlier in a program’s design cycle than is possible today. A methodology was developed to enable
push-button answering produceability questions, and its novelty is its degree of separating concerns - it
separates system description from system analysis, and additionally separates concrete front-end system
description from abstract back-end description. A pilot project implementation supports system models
authored in the Ecore language, the set of questions enumerated in section 3, and push-button generation of
simulation models and experiments in the Simio, SimEvents, and Tecnomatix Plant Simulation languages
to answer those questions. The pilot project question concerned numbers of resources - a parametric change
- and the implementation was also demonstrated to accommodate structural changes, including changes to
process plans, changes to job-workstation assignments, refinement of resource types, description at levels
of abstraction, and more. At the time of writing, there is no functional difference between parametric and

1044



Thiers, Sprock, Graunke, McGinnis, and Christian

Treouput Cyderme Verkdrprocss
2o %7 12457

LayupMoldTypel

*

Job4_WorkOrder

Job10_WorkOrder)

Job3_Workorder

Job7_WorkOrder

Op11_Server 0p13_Server

O server

Job11_WorkOrder
Job2_WorkOrder

10bS_WorkOrder
) oo
Job6_Workorder

Job1_WorkOrd

B QNG S
RGO oo

Job8_WorkOrder_ReleaseProcess

Figure 6: An example of an automatically-generated discrete-event simulation model and experiment, in
the Simio language. The top half shows a physical facility view with shared resources and material supply,
and the bottom half shows functional process views.

structural changes since the implementation fully regenerates a simulation model for any change to the
instance model, although this may become more sophisticated in the future for efficiency.

At the pilot project’s end, the proof-of-concept software implementation was deployed to the pilot
customer. The customer estimates that for routine questions about production systems, a tool implementation
of the methodology can yield a dramatic reduction in the time, cost, and expertise requirements to use
simulation and other analysis types to answer those questions, at least an order-of-magnitude reduction.
Those reductions can be saved, or they can be spent to evaluate more production scenarios and their impacts,
consider more improvement ideas and alternatives, and explore more of a production system’s design space.
However, the customer also notes that several improvements are needed to reach an advanced Technical
Readiness Level (TRL) and produce a tool that analysts would welcome in their day-to-day work. The tool
is a modeling and model-transformation environment, and language and user-interface improvements are
needed for creating system description schemas, conforming system instance models, transformations to
bridging abstraction models, and automated analysis formulation processes. These improvements will help
delineate those types of questions about production systems which are in fact “routine”, and this could be
a surprisingly generous set.

It is hoped that this research might grow the market for Operations Research analyses. Statistical,
discrete-event simulation, and optimization analysis are capable of answering critically-important questions,
but the time, cost, and expertise requirements for their usage in the status quo can be prohibitive for all
but the largest companies. There are many avenues for future work, with the most pressing in the authors’
opinion being evolving system descriptions from mostly structure to more mature models including behavior
and control, and also understanding higher-level processes including design, diagnosis, and continuous
improvement. A deep understanding of industrial engineering systems, plus an ability to cost-effectively
employ operations research analysis as-needed, are prerequisites to making the design of production systems
as sophisticated as the design of products themselves.
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