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ABSTRACT

Surrogate methods, motivated from expensive black box simulations, are efficient approaches to solve
stochastic simulation optimization problems. However, estimating an appropriate surrogate model can still
be computationally challenging when the data size gets large. In this paper, we propose a new optimization
algorithm based on a previously proposed Additive Global and Local Gaussian Process model (AGLGP).
This algorithm leverages the global and local features of an AGLGP model and can automatically switch
between a global search (for a promising region) and a local search (within the promising region). The
algorithm proceeds by globally narrowing down the search space sequentially, but allows it to escape from
the current search region. We numerically illustrate the mechanism behind the algorithm in an example.

1 INTRODUCTION

In practice, simulation models are widely built to model and analyze the behavior of real systems, and can
evaluate the system behavior with different sets of parameters. When tasked with an optimization problem,
simulations can be adopted iteratively to evaluate the performance of the model when simulation is run
using parameters generated by optimization algorithms. Given an objective function f (θ), where the design
parameters θ have a feasible region Θ, a general target of global optimization is to find the optimal solution
θ ∗ that satisfies f (θ ∗) = minθ∈Θ f (θ). In this paper, we focus on a continuous objective function f with
a continuous feasible region on a compact subset of Rd . Embedded with stochastic noise, f (θ) cannot be
obtained directly, but rather sample observations with noise y(θ ,w) can be observed, where w denotes the
stochastic effects. Here we are interested in the stochastic optimization problem where f (θ) = E(y(θ ,w)).

To solve such problems, there are generally two classes of approaches: direct methods and surrogate-
based methods. Popular direct methods include adaptive random search such as COMPASS (Hong and
Nelson 2006), nested partition (NP) methods (Shi and Ólafsson 2000), and other heuristic methods such
as genetic algorithm and simulated annealing approaches. These direct methods are applied directly into
the simulator and the search is conducted on the simulator. COMPASS provides an efficient method to
find local optimal solutions in a stochastic environment. NP systematically partitions the feasible region
into subregions, assesses the potential of each region, and then concentrates the computational effort in
the most-promising region. Some direct methods have been shown to be globally convergent, but they
typically require a large number of simulations to obtain adequately good solutions.

Surrogate methods estimate a surrogate model (also known as metamodel, or response surface model)
with few simulations in the search procedure, to quickly evaluate the performance at any given point in
the domain space without the need to run the simulator at every potential point. Such methods provide
the information of the entire surface for better identifying the points for further simulation. The Gaussian
Process (GP) model has been used in various types of black-box optimization problems. A review of
global optimization algorithms for deterministic computer models has been conducted by Jones (2001).

978-1-5090-4486-3/16/$31.00 ©2016 IEEE 827



Meng and Ng

The Efficient Global Optimization (EGO) algorithm (Jones et al. 1998) is a popular and widely used
algorithm that determines the next evaluation point by maximizing the expected improvement (EI) from
the current optimal solution. Huang et al. (2006), Picheny et al. (2013), and Quan et al. (2013) further
extended this framework to stochastic simulation with homogeneous or heterogeneous variance.

However, in GP-based optimization algorithms like EGO, the estimation of the GP model requires
an inversion of an n×n covariance matrix in each iteration, which might require a significant amount of
computational effort if the number of evaluation points is large. The matrix inversion in GP estimation
can also encounter numerical problems if the evaluation points are close to each other, resulting in an
ill-conditioned matrix. This can happen often in global optimization problems, when the algorithm exploits
solutions around potential good points. Rasmussen and Williams (2006) discusses various approximation
schemes, but these techniques are complicated and can be computationally intensive so that they are not
suitable for iterative search algorithms with model fitting in each iteration.

In this paper, we focus on optimization problems where the number of evaluations observed can get large
(growing to thousands for simulations that run relatively fast in minutes) as iterations progress to find the
optimal point. In such cases, traditional GP-based search algorithms can become computationally expensive
and unable to handle the problem. However, a global surrogate-based approach is still attractive as it can
provide global information about the response to better guide the exploration and improve convergence
(Stephens and Baritompa 1998). Sun et al. (2014) proposed a Gaussian-based Search (GPS) algorithm
which built the sampling distribution based on a quickly constructed GP model to overcome some of the
computational expense; but it is mainly designed for discrete optimization problems with small variances.
More sophisticated and efficient estimation schemes are required for heterogeneous noisy simulations.

Moreover, the EGO algorithm and its extensions are faced with an expensive optimization problem
to find the next evaluation point when the domain space is large (as it requires evaluating the expected
improvement for all possible points). Regis and Shoemaker (2007) introduce the Stochastic Response
Surface (SRS) method that simplifies this optimization problem by carefully generating a small set of
random candidate points to evaluate in each iteration. They show that the algorithm is convergent without
needing to solve an expensive optimization problem at each step.

In this paper, we propose a combined global and local optimization (CGLO) algorithm that applies the
Additive Global and Local Gaussian Process (AGLGP) model (Meng and Ng 2015), which is an additive
surrogate that consists of a global model that captures the global trend and local models that capture the
local residuals. Based on the global model, a promising local area is selected in the global search stage,
and an adaptive local search algorithm that incorporates the local model helps to search in the local area.
To reduce the computational burden from optimizing the search criteria, the SRS method is adopted in both
the global and local search stages. With the fast estimated AGLGP model, the CLGO spends less time for
model estimation in each iteration, while with a two-stage searching criterion, it systematically searches
promising regions with a global stage and then searches more deeply into the region with the local stage.
The balance of the two in an iterative manner provides more opportunities to exploration and exploitation
both locally and globally than a single stage/single criterion approach. So the CGLO significantly improves
the efficiency of traditional GP-based optimization algorithm when the data size gets large. The rest of the
paper is organized as follows. Section 2 gives an overview of our approach and then reviews the background
of the components of the approach: the AGLGP model, the expected improvement criterion we adopt and
the SRS method. In Section 3, we provide the details of the combined global and local search algorithm.
Numerical results are reported in section 4, followed by conclusions in section 5.

2 BASICS AND NOTATIONS

The general framework of CGLO algorithm is shown in Figure 1. Here we adopt the AGLGP model as
a surrogate for optimization, leveraging its global model for a global search and its local model for a
local search. We also adopt the SRS method with the expected improvement as the searching criterion for
both the global search and local search stages. We define the notations used for the AGLGP model and
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Figure 1: General framework of CGLO.

algorithm development in Table 1. Since we are focusing on stochastic simulations, multiple replications
can be allocated to each evaluation point x, and the average of replications will be taken as the observation
at each x, i.e., y(x) = ∑r

w=1 yw(x)/r.

Table 1: Parameter Definitions.

Parameter Definition Param Definition

Rk,k = 1, ...,K Non-overlapping local region XΩ Complete domain space ∪K
k=1Rk

x = (x1, ...,xn) n evaluation points y Simulation observations at x
xi = (xi1, ...,xid) d-dimension evaluation point xg m inducing points

xi
g = (xi1

g , ...,x
id
g ) d-dimension inducing point yg Latent global observations at xg

xk
l = (x1

l , ...,x
rk
l ) rk evaluation points in local region Rk yk

l Latent local residuals at xk
l

Ωg nc candidate points for global search x0
g Point selected by global search

Ωl nl candidate points for local search x∗ Point selected by local search

T Total budget size n0 Number of initial designs

rmin Minimum replications for a new point Bt,s Budget for search step

Bt Budget allocated in iteration t Ni Budget for evaluation point xi

Bt,a Budget for allocation step Bt,b Budget for optimal solution

2.1 AGLGP Model

The AGLGP model (Meng and Ng 2015) assumes that the stochastic simulation response can be modeled
as a realization of a random process

y(x) = f (x)+ ε(x) = fglobal(x)+
K

∑
k=1

wk f k
local(x)+ ε(x), wk =

{
1, x ∈ Rk
0, x /∈ Rk

(1)

where f (x) is the deterministic mean function of the stochastic response. The random noise ε(x) has a
normal distribution ε(x)∼ N(0,σ 2

ε (x)), which is independent and identically distributed across replications
and uncorrelated at different locations. The mean function f (x) can be further decomposed to a global model
fglobal(x), which models the global trend, and K local models with each local model f k

local(x) modeling
the residual process that is unexplained by fglobal(x) in local region Rk, where ∪K

k=1Rk = XΩ. To capture
the global trend, a set of m inducing points are used (where m � n), so the selection of inducing points
is crucial for good estimation of the model. The GP models fglobal(x) and f k

local(x) are assumed to be
piece-wise independent.

Figure 2 illustrates the general idea of the AGLGP model, which is an additive combination of a
global model and local models. To fit the model, the entire space is divided into several nonoverlapping
local regions via classification techniques like Support Vector Machine (SVM) (as shown in Figure 3).
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Figure 2: AGLGP model.
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Figure 3: Inducing points and local regions.

To obtain inducing points to fit the global model, within each local region, we further separate points
into clusters based on a set of equally spaced contour lines from the minimum observation value to the
maximum observation value. This avoids clustering points that have large variability together. The purpose
of this clustering of similar observations (in both x and y space) is to obtain a cluster centroid which can
reasonably represent the observations in the cluster and be a representative point (called an inducing point)
of the cluster. With a good spread of evaluation points in the domain, the inducing points (although fewer)
will also have a good spread in the entire space and will be able to capture the global trend.

As the global model fglobal(x) is a latent process modeling only the inducing points, it is not reasonable
to include noise in the global model. It is assumed that fglobal(x) can be modeled by a deterministic GP
model with a mean β0 and covariance σ2rg(xi − x j,θθθ), where σ2 is the variance of the global component
and rg(·) is the correlation structure with a sensitivity parameter θθθ . Given the set of inducing points and
the global evaluations yg, the best linear unbiased global predictor can then be written as

ŷglobal(x) = β0 +g′G−1
m (yg −1′β0), (2)

where g = (g(x−xi
g), · · · ,g(x−xm

g )), Gm is an m×m covariance matrix with i jth element g(xi
g −x j

g). The

global predictor interpolates yg since ŷglobal(x
j
g) = β0 + e′i(yg − 1′β0) = yi

g. With the fitted global model,
the global predictors at x are ŷglobal = (ŷglobal(x1), ..., ŷglobal(xn)). The residuals, which include both the
residuals from the signal function and the random noise, are then obtained by yl = y− ŷglobal and modeled by

another stochastic GP model ylocal(x) = ∑K
k=1 wk f k

local(x)+ ε(x), where f k
local(x)∼ N(0,τk

2rk(xi
l − x j

l ,αααk)),
and αααk is the sensitivity parameter for the local model. We assume that the residual process is correlated
within a local region while independent across the regions, so different correlation functions are allowed
in different regions. This enables the flexibility to capture nonstationarity in the process. Given K local
regions R = (R1, ...RK), the local predictor is given by

ŷlocal(x) = lk′(Lk +ΣεΣεΣε)
−1yk

l , ∀x ∈ Rk, (3)

where lk = (lk(x−xi
l), ...lk(x−xrk

l )) and Lk is covariance matrix with ( jh) element lk(xh
l −x j

l ), ∀x j
l ,x

h
l ∈ xk

l .

The quantities ΣεΣεΣε = diag(σ̂2
ε (x

1
l ), ..., σ̂

2
ε (x

rk
l )) and σ̂2

ε (x
i
l) can be estimated from the sample variance. So

the overall AGLGP predictor can be expressed by

ŷ(x) = ŷglobal(x)+ ŷlocal(x) = β0 +g′G−1
m (yg −1′β0)+ lk′(Lk +ΣεΣεΣε)

−1yk
l , ∀x ∈ Rk. (4)
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As yg and yk
l are latent processes that cannot be observed directly, the predictive distribution of any

input x can be derived by integrating out the random variable yg and yk
l , see Meng and Ng (2015). In

Section 3, we will discuss an alternative sequential estimation method that first estimates the global model
and its parameters from the marginal likelihood of the global model and then estimates the local model
and its parameters from the predictive residuals. This sequential approach is computationally faster and
can be better incorporated into the optimization algorithm.

2.2 Expected Improvement

The EGO algorithm (Jones et al. 1998) sequentially selects evaluation points based on the EI criterion,
which balances the trade-off between exploration (searching the entire space for regions that have not been
explored before) and exploitation (searching around the current optimal solution for better solutions). At
a point x0, the EI function is defined as

EI(x0) = E[max(ymin − y(x0),0)].

where ymin is the observed best function value while y(x0) is a random variable that models the uncertainty of
the function value at x0, where y(x0)∼ N(ŷ(x0), ŝ2(x0)) with predictive mean ŷ(x0) and predictive variance
ŝ2(x0)). The point that maximizes the EI function will be selected for next evaluation either due to its
low predictive mean (for exploitation) or due to its high predictive variance (for exploration). Huang et al.
(2006) proposed an augmented EI (AEI) function for stochastic simulation systems. The AEI accounts
for the influence of the random noise ε(x) and considers selecting and adding replications on the existing
evaluation points other than searching for new points.

A two-stage sequential optimization (TSSO) algorithm (Quan et al. 2013) further extended the EGO
framework to the heterogeneous case, which comprises of a search stage to determine the next evaluation
point and an allocation stage to evaluate the best optimal solution by running simulations at each evaluated
point according to Optimal Computing Budget Allocation (OCBA) strategy. The search criterion is defined
by the modified EI function

mEI(x0) = E(max[ymin − z(x0),0]). (5)

where z(x0) is a normal random variable with mean given by MNEK predictor (Yin et al. 2011) and variance
given by spatial prediction uncertainty. By ignoring predictor uncertainty caused by random variability,
the search stage can focus on new points with a low predicted response or a high spatial uncertainty.

2.3 Stochastic Response Surface Method

Regis and Shoemaker (2007) introduced a Stochastic Response Surface (SRS) method that simplifies the
optimization problem of finding the next evaluation point. The SRS method follows the same framework
with the EGO algorithm, i.e., simulate at initial designs and iteratively fit or update a response surface
model, select the next evaluation point, run simulations at the selected point. Differently, SRS selects
the next evaluation point only among the set of candidate points without having to evaluate all possible
solutions. This sampling framework is shown to have nice convergence properties and has wide adaptability.
It can be applied to various metamodel based optimization approaches and search criteria (like the EI, the
probability of improvement). The probability distribution such as uniform or normal distributions can be
applied to generate candidate points.

3 COMBINED GLOBAL AND LOCAL OPTIMIZATION WITH AGLGP MODEL

In this section, we explain in detail the development of the CGLO algorithm that incorporates the global
and local characteristics of the AGLGP model. From Figure 1, we know that each iteration of the algorithm
comprises of a global search stage (step 2,3) and a local search stage (step 4,5,6). Local search here
emphasizes the search in the promising local region. The terminology is not to be confused with the search
for a local solution to the optimization problem.
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The global search stage separates the whole space into several local areas and applies a modified EI-type
function to identify which area has a small number of evaluated points or a low global trend while the local
search stage explores and exploits in the promising area with mEI (see Equation (10)). So they combine to
realize the exploration and exploitation of the whole space, balancing the efforts between the current local
area and the other unexplored local areas in a stochastic environment. The algorithm switches between
these two stages adaptively to quickly identify the promising regions. In the following subsections, we
will explain in detail each search stage.

3.1 Global Search Stage

In the global search stage, the CGLO algorithm focuses on narrowing down the entire space to a promising
local area based on an estimated global model, which incorporates the latent variables yg in equation (2).
Here we describe an alternative method to estimate the predictive global and local models sequentially. To
determine the global predictive mean and variance, we first derive the marginal likelihood can be derived
as

p(y|xg) = N(β0,GnmG−1
m Gmn +Λ+ΣεΛ+ΣεΛ+Σε),

where ΛΛΛ = diag(Gn −GnmG−1
m Gmn). The global predictive mean and variance at a point x can then be

shown to be

ŷg(x) = β0 +g′Q−1
m Gmn(Λ+ΣεΛ+ΣεΛ+Σε)

−1(y−1′β0), (6)

ŝ2
g(x) = [Gnn −g′G−1

m g]+g′Q−1
m g. (7)

where Qm = Gm +Gmn(Λ+ΣεΛ+ΣεΛ+Σε)
−1Gnm. With the assumption of a deterministic global model, equation

(2) interpolates at the inducing points to give the global trend yg. We observe that although the global
model is assumed deterministic, the global predictors can only be estimated through the noisy observations
y (Equation 6), and this noise is reflected in the mean squared prediction error in equation (7). The term in
brackets in (7) is the mean square error of a deterministic GP model, which takes zero at inducing points,
but the second term in the right hand-side is positive, reflecting how the intrinsic noise inflates the mean
squared error. In this global stage, we adopt the SRS framework in the evaluation of the search criterion.

3.1.1 Generation of Candidate Points

To generate the candidate points to evaluate the EI search criterion at, we first define the vector Ωg as
the set of candidate points, which includes nc items inside. The following condition will be imposed on
the selection of candidates. [C1] The components in Ωg have to be equally spread out across the entire
space and be at least equal to the number of local regions such that there exists at least one candidate point
in each local region. Possible choices to spread these points include the Latin Hypercube design and the
Treed partitioning approach that divides up the entire space by making binary splits on the value of each
single variable (Breiman et al. 1984). Based on numerical tests, we find that about nc = 10k points is an
reasonable choice for k dimensional problems.

For each candidate point in a local region Rk, the local area is a subset of the local region and defined
as the neighborhood of this candidate point xi, i.e., Bi = {x ∈ Rk : ||x−xi|| ≤ ||x−x j||∀x j ∈ Ωg∩Rk}. The
local area where the most promising point lies will be selected as the the most promising area. If there is
one candidate point in each local region, the local areas are defined the same as local regions. In Section
3.1.2, we will explain how the most promising point is selected.

3.1.2 Global Expected Improvement

We propose to use the EI-type function due to its ability to balance between exploration and exploitation
across the entire space. When the EI function based on the global model is applied to identify the most
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promising point, note that it only reflects the information of inducing points as ŝ2
g(x) can only reflect the

spatial uncertainty given the inducing points instead of the true observations. Hence, applying the EI
function alone is not sufficient to reflect the density and spread of the observations.

With the global model, when a point has high spatial uncertainty, it indicates that there are few or no
inducing points in the area of the point. When there are no inducing point, which indicates no observations,
exploration should be done in that area. When there are few inducing points, this implies two possibilities
on the distribution of observations. If the few inducing points is due to few observations in that area, it
is worth to explore there, while if the few inducing points is due to a large number of observations (with
small variability among them) in that area being very similar and hence clustered together requiring only
one inducing point to closely represent them, there is little need to further explore in that area as it has
many observations that are all close together there already. To avoid expending budget in areas that already
have dense observations, we propose a modified global EI function for the global search,

gEI(x) = E{max(ygmin − yg(x),0)} · 1

1+ eni/t−5
. (8)

where ygmin is the lowest predicted global quantity among the current inducing points. The quantity yg(x)
is a normal random variable with mean ŷg(x) and variance ŝ2

g(x). It consists of the EI function on the
global model and a penalty factor designed to account for the diminishing return of selecting the same
candidate point as the observations become more dense around it. Together, this criterion is able to explore
and exploit the areas with few inducing points and few observations. We select the promising point x0

g by
maximizing the gEI from the candidate points Ωg.

To identify a promising candidate point that has few observations around, the density of the observations
within its neighborhood has to be evaluated. The penalty factor has ni, the number of neighbors of each
candidate point xi

c, and this decreases as ni increases. Specifically, neighbors of xi
c ∈ Rk is defined as

B(xi
c) = {x ∈ xk

l : ||x− xi
c|| < ||x− x j

c|| ,∀x j
c ∈ Ωg ∩Rk, j �= i}, with each observation x classified to its

nearest candidate point in the same local region.
By introducing the penalty factor, the gEI can jump quickly between local areas and better explore the

entire space. The user-defined parameter t controls the steepness of the function, which represents how
fast the gEI decreases with the increase of neighbor observations. Given ni, the larger the t, the larger the
factor. The factor approaches zero when ni/t = 10, so a possible choice for t is t = MAX/(10nc), where
MAX is the maximum number of evaluated points allowed given the total budget, and nc is the number of
global candidate points.

3.2 Local Search Stage

Here we provide the details on the local search. Once the candidate point x0
g is selected by the global

search, the local area in which x0
g lies will be selected as the promising area and a local model (equation

3) is constructed in the local region Rk where it lies to capture the local residuals in this region. The
local model is estimated only with the data yl(xi) = y(xi)− ŷg(xi),∀xi ∈ Rk. Then the overall model can
be expressed as

ŷ(x) = ŷg(x)+ ŷl(x) = β0 +g′Q−1
m Gmn(Λ+ΣεΛ+ΣεΛ+Σε)

−1(y−1′β0)+ lk′(Lk +ΣεΣεΣε)
−1yk

l ,∀x ∈ Rk. (9)

In this stage, we search deeply into the promising area based on the overall model followed by extra
evaluations are conducted in this selected local region. Similar to TSSO (Quan et al. 2013), the local
search stage can be further divided into a search step and an allocation step. In the search step, the mEI in
Equation (10) is used to sequentially select a number of new points until a switching criterion for another
iterative global search is satisfied. After the search step, additional simulation replications are intelligently
distributed among all evaluated points. By ignoring predictor uncertainty caused by random variability,
the mEI function in the search step assumes that the observations are made with infinite precision so the
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same point is never selected again. This allows the algorithm to quickly escape from a local optimum in
the region. The random variability is further managed in the allocation step.

In the notation below, we will use Bt to denote the number of replications allocated to the local search
stage at iteration t, which can be separated into the searching budget Bt,s for the search step and the allocation
budget Bt,a for the allocation step, i.e.,Bt = Bt,s +Bt,a. The detailed framework and budget required for
each step are described in the next subsections.

3.2.1 The Search Step

In this step, we again follow the SRS framework to evaluate the search criterion. As the search step
continues to select new evaluation points until a switching criterion is satisfied, the number of points
selected in the search step nt is dynamically decided in each iteration. Each new evaluation point is
simulated with rmin replications, and the budget Bt,s = nt × rmin is also dynamically decided based on nt .
The candidate points Ωl have to be uniformly generated within the neighborhood of x0

g, which is defined

as B0 = {x ∈ Rk : ||x−x0
g|| ≤ ||x−x j||∀x j ∈ Ωg ∩Rk and x j �= x0

g}, and then mEI is maximized among Ωl .

mEI(x) = E(max[ymin − z(x),0]), x ∈ Ωl. (10)

where ymin is the predicted response at the sampled points in the promising region with the lowest sample
mean, and z(x) is a normal random variable with mean given by the AGLGP predictor and variance given by
spatial prediction uncertainty ŝ2

z = Lnn − l′L−1
n l. Since the mEI function ignores the predictive uncertainty

caused by the random noise, the same point will never be selected again once simulated. Each time when
a new evaluation point is simulated, the local model and ymin will be updated accordingly and a new set
of candidate points Ωl will be generated. The evaluated points in the local region Rk will be reclustered
and the inducing points get updated. The clustering technique is easily implemented.

Switching Criterion The switching criterion dynamically decides whether we continue with the
local search in the current local region or return to the global search. It is reasonable to continue searching
in the current local region if the new observations and the updated clusters do not make much changes to
the location of inducing points, and hence to the global model. However, even if the inducing points do
not change much, the evaluations of the gEI function among the global candidate points can change when
either the EI changes or the penalty factor reduces. When these occur, a switch back to the global search
stage can identify a different promising region.

So the switching criterion proposed here is defined by the increase or the change of location in the
inducing points or a maximum number of new evaluated points nmax. If the criterion is satisfied, we jump
out of the local search step for a new iteration of the global search. This reduces the number of iterations
between the global and local search. The refitting of the global model is only done when the global model
or the gEI changes. By defining the switching criterion, we also limit the budget exhausted in this step
by nmax × rmin. If the remaining budget is smaller than the limit (T −∑t−1

i=1 Bi < nmax × rmin), additional
simulations should focus on the allocation step for finding the optimal solution.

3.2.2 The Allocation Step

Since the search step focuses on searching for new evaluation points in the local region, the allocations
step is dedicated to distribute additional simulations among the evaluated points for better evaluation of
the noisy observations. For every evaluated points, more simulation replications can be allocated for two
purposes. Firstly, to improve the fit of the global model for a more efficient global search, more simulation
replications should be allocated to improve the clustering and the estimation of inducing points. Secondly,
to improve the local model estimation and the local optimal value (i.e., global optimal in the local region),
more simulation replications are needed to improve the observations at the evaluated points. Here, we
dynamically decide the budget allocated at this step by taking the maximum of budget allocated to each
point that satisfies both the purposes.
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To improve the clustering and estimation of inducing points within a local region, the effect of the
random noise on the clustering technique has be to evaluated. An evaluation point might get wrongly
clustered based on the defined contour lines. Given the contour lines, we define that a point is wrongly
clustered if its noisy observation falls into a different cluster from its best cluster, defined as the cluster
where its true mean value (first two terms of equation 1) falls into. To decide which evaluation point is
likely to be wrongly clustered and how much budget should be allocated to bring it to its best cluster, an
evaluation criterion related to the distance to the contour lines and the noise variance is used. It is explained
by equation (11) and (12) below.

An observation with a large noise variance or a small distance to the contour lines has a high chance
of being wrongly clustered. The noise variance only decreases at the rate of 1/

√
r when averaging over r

replications, but we can be at least approximately 99.7% confident that one point xi is rightly clustered if

Δi ≥ 3σ̂2
ε (xi)/

√
Ni,v + ri. (11)

where Δi is the distance to the nearest contour line, Δi = miny∈Y |ȳ(xi)−y|, and σ̂2
ε (xi) is the sample variance

estimated through ri replications, and Ni,v is the additional simulations required for improving the cluster
where the evaluation point xi lies. Hence, Ni,v ≥ (3σ̂2

ε (xi)/Δi)
2− ri. As we don’t want to allocate too much

budget without the updated information, the evaluation budget allocated to each evaluated point in this step
is limited by a small number vmin (usually rmin). Specifically,

Ni,v =

{
min{�(3σ̂2

ε (xi)/Δi)
2�− ri,vmin} for (3σ̂2

ε (xi)/Δi)
2 > 1,

0 for (3σ̂2
ε (xi)/Δi)

2 ≤ 1.
(12)

For the second purpose of improving the local model estimation and the local optimal value, additional
replications are distributed with the goal of maximizing the probability of the correct selection of the local
optimum. OCBA provides a rigorous way of identifying the evaluated point with the best response. eTSSO
(Pedrielli and Ng ) proposed to dynamically decide the simulation effort for selecting the correct solution.
More budget should be allocated for evaluation when the noise is high, and when the noise is lower, more
budget is allocated only when the overall model fitting is good enough. Each region is initialized with a
equal budget Bk

1,b = B0,k = 1, · · · ,K, and in each iteration we increase the budget based on the noise level
and the budget that has already been exhausted in the selected promising region.

Bk
t,b =

{
Bk

t−1,b

(
1+ σ̂2

ε
ŝz+σ̂2

ε

)
k = k∗

Br
t−1,b k �= k∗

, Bt,b = Bk∗
t,b (13)

The factor in equation (13) is to balance between the noise at the current set of evaluation points (exploitation)
against the predicted noise in unexplored areas in this local region. So ŝ2

z is defined by the predictive mean
square error of the latest point selected by the search step given the updated local model and σ̂2

ε is the
estimate of the sample variance at the point to which the OCBA procedure assigns the largest number of
replications since it indicates the potential to exploit among the evaluation points. Assuming that each point
xi having a sample mean ȳi and a sample variance σ2

ε (xi), according to Theorem 1 provided by (Chen and
Lee 2010), the Approximate Probability of Correct Selection (APCS) can be asymptotically maximized
when the available budget tends to infinity and when

Ni,b

Nj,b
=

(
σε(xi)/Δb,i

σε(x j)/Δb, j

)2

, i, j ∈ {1,2, ...rk∗}, i �= j �= b (14)

Nb = σε(xb)

√√√√ n

∑
i=1,i�=b

(
Ni

σε(xi)

)2
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where Ni,b is the number of simulations allocated to the point xi, and Δb,i = ȳi − ȳb with ȳb denoting the
lowest sample mean in the current region. At the end of the allocation stage, the evaluated point with the
lowest sample mean will be selected as the global optimal in this region.

So finally we have Ni = max(Ni,v,Ni,b) to satisfy the two purposes of improving the estimation of
inducing points and improving the global optimal in the local region. Bt,a = ∑ri

j=1 Nj. We have to notice
that the allocation budget required is dynamically decided in each iteration. If the remaining budget
A = T −∑t−1

i=1 Bi −Bt,s < Bt,a, it is reasonable to allocate the remaining budget to find the best optimal
solution by OCBA since the additional budget for validating the global model only works for next iteration
of the global search.

3.3 An Algorithm Overview

The proposed global and local search are sequentially executed in each iteration. We initialize a space-filling
design n0 before the iterative search and evaluation. The algorithm can be formulated as follows.

Step 1: (Initialization) Run a size n0 space filling designs, with rmin replications allocated to each

point. Total initial replications B0 = n0rmin. t = 0.

Step 2: (Validation of overall model) Fit an AGLGP response model to the set of sample means, and

use cross validation to ensure that the AGLGP prediction is satisfactory.

While the available replications A = T −∑t
i=0 Bi > 0, t = t +1

Step 3: (Global Search) Search for the location xg
0 that maximizes the gEI criterion Equation (8)

given the set of candidates Ωg, and the local region with xg
0 is selected for local search.

Step 4.1: (Local Search Step) nt = 1. While nt <= nmax and A > 0,

(Fit/Update a local model) Fit or update the local model in the selected local region.

(Randomly Generate Candidate Points) Randomly Generate candidate points Ωl .

(Select the Next Function Evaluation Point) Search for the location x∗nt
that maximizes the mEI

criterion Equation (10) from the candidate points Ωl and evaluate at x∗nt
with rmin replications.

(Re-cluster points in the selected local region) Break Step 4.1 if the number of inducing

points increases. Else, set nt = nt +1, A = A− rmin. end
Step 4.2: (Local Allocation Step) Decide the budget Bt,a based on equation (12) and equation (13). If

A > Bt,a, allocate Bt,a replications among evaluated points in the local region. Set A = A−Bt,a

Else, Use OCBA in equation (13) to allocated A replications among sampled designs. end
Step 5: (Return the Optimal Solution) Return the point with the lowest sample mean.

We note that the number of local regions is an important factor for the accuracy of AGLGP model, and
the fitting of the AGLGP model drives the performance of CGLO algorithm. Based on some numerical
evidence, we recommend to choose the number of local regions such that each local region has 200 to
600 evaluation points. If the number of the local regions is too large, the CGLO algorithm might waste
budget for exploiting an unpromising area due to the coarsely estimated AGLGP model. Conversely if the
number is too small, the estimation of AGLGP model will require significant computation time.

4 NUMERICAL STUDY

In this section, we test the following function as an example

max
0≤x1,x2≤100

g(x1,x2) = 10 · sin6(0.05πx1)

2((x1−90)/50)2 +10 · sin6(0.05πx2)

2((x2−90)/50)2 (15)

The same example is used by Sun et al. (2014). The function g has a global optimal of g(90,90) = 20,
and the second best local optimal is g(70,90) = g(90,70) = 18.95 (see Figure 4a). We introduce a noise
term that is normally distributed with mean 0 and variance σ2

ε (x1,x2) = 3(1+x1/100)2(1+x2/100)2. This
problem requires an efficient balance between exploration and exploitation with limited budget because it
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has 25 local optimums and the difference between the largest and the second largest local optimal values is
quite small. By introducing a large noise variance at the optimal area, it becomes more difficult to solve.

Figure 4b shows 10 macro-replications of the algorithm, with a total simulation budget T = 104

(approximately 800 evaluated solutions) in each macro replications. We initialize 20 points with Latin
Hypercube designs with a minimum of 10 simulations for each point. It shows that in each macro-replication,
the estimated optimal value keeps jumping from one solution to a better one over simulation runs. The
algorithm is shown to have a good scheme for global optimization since it can successfully escape from
local optimums until it get close to the global optimal area.

Results also show that over the 10 macro-replications, the algorithm can find a optimal solution that is
very close to the true optimal solution [90,90], and a optimal value that is close the the true optimal value
20. The average Euclidean distance to [90 90] is 0.7173 and the average of optimal value is 19.633. The
noise standard deviation around [90 90] can be as high as 1.97, but the evaluation scheme in the algorithm
can intelligently allocate more replications to distinguish the global optimal area from its neighboring
sub-optimal areas.

Although this example is a small example (with only 800 evaluation points), the results are promising.
The average total time taken to run the algorithm (excluding simulation time) as a ratio of the total
simulation time is 0.18. This indicates that the CGLO can efficiently deal with more expensive simulations
or potentially deal with a larger size of data.
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Figure 4: Estimated optimal value for test function g(x1,x2).

To compare the CGLO with other GP-based algorithms, we apply a two stage sequential optimization
(TSSO) algorithm (Quan et al. 2013) and a expected quantile improvement (EQI) algorithm (Picheny et al.
2013) to solve the problem. Figure 4c shows the average performances of all three algorithms over 30
macro-replications. We can see the CGLO is significantly better than TSSO and EQI with the same CPU
time. Note that the TSSO and EQI are built on the GP model, the estimation of which is much slower
than the AGLGP model as iteration goes on. The global search criterion of CGLO algorithm conducts a
faster explorative search that allows jump out of a locally optimal area before sufficiently exploiting the
local area by the local search.

5 CONCLUSION

This paper proposes a combined global and local search algorithm based on the AGLGP model. The
scheme systematically searches promising regions with a global stage and then searches more deeply into
the region with the local stage. We then derive an allocation strategy that intelligently allocates budget to
the evaluated points for the purpose of improving the metamodel fit and estimating the optimal solution. We
also study their numerical performance. For future work, we will compare efficiency with other adaptive
random search algorithms and GP-based search algorithms and theoretically derive its asymptotic behavior.
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