
Proceedings of the 2016 Winter Simulation Conference
T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds.

OPTIMIZING CONDITIONAL VALUE-AT-RISK VIA GRADIENT-BASED ADAPTIVE
STOCHASTIC SEARCH

Helin Zhu
Joshua Hale
Enlu Zhou

H. Milton Stewart School of Industrial and Systems Engineering
Georgia Institute of Technology

755 Ferst Drive, NW,
Atlanta, GA 30332, USA

ABSTRACT

Optimizing risk measures such as Conditional Value-at-Risk (CVaR) is often a difficult problem, because
1) the loss function might lack structural properties such as convexity or differentiability, since it is usually
generated via black-box simulation of a stochastic system; 2) evaluation of CVaR usually requires rare-
event simulation, which is computationally expensive. In this paper, we study the extension of the recently
proposed gradient-based adaptive stochastic search (GASS) method to the optimization of CVaR. Instead
of optimizing CVaR at the risk level of interest directly, we propose to initialize the algorithm at a small
risk level, and then increase the risk level at each iteration adaptively until the target risk level is achieved,
while the algorithm converges to an optimal solution of the original problem. It enables us to adaptively
reduce the number of samples needed to estimate the CVaR at each iteration, and improves the overall
efficiency of the algorithm.

1 INTRODUCTION

Risk measures such as Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are widely studied in
various fields to quantify the extreme behaviors of functions of interest. Loosely speaking, VaR characterizes
the tail (e.g., 99%) quantile of a distribution, and CVaR characterizes the conditional mean of the tail portion
of a distribution. VaR, as one of the earliest risk measures introduced in financial risk management, is easy
to understand and interpret for practitioners. CVaR, as a classic coherent risk measure (see, e.g., Artzner
et al. (1999)), exhibits nice properties such as convexity and monotonicity for optimization. They have been
extensively used in the financial industry, especially after the financial crisis in 2008. An abundant literature
has dedicated to studying the estimation and optimization of risk measures under various settings, see, e.g.,
Rockafellar and Uryasev (2000), Rockafellar and Uryasev (2002), Alexander et al. (2006), Trindade et al.
(2007), Hong (2009), Hong and Liu (2009), etc.

In general, optimizing risk measures over continuous decision variables is a challenging problem,
especially when the underlying loss function does not possess good structural properties such as convexity
or differentiability. Traditional gradient-based optimization methods often are not applicable, since little
problem-specific knowledge is known when the loss function is evaluated via black-box simulation of a
stochastic system. In contrast, model-based optimization methods are good alternatives as they impose
minimal assumptions on the problem structure, which include annealing adaptive search (AAS) (Romeijn
and Smith (1994)), the cross-entropy (CE) method (Rubinstein (2001)), model reference adaptive search
(MRAS) (Hu et al. (2007)), gradient-based adaptive stochastic search (GASS) (Zhou and Hu (2014)), etc.

The main idea of model-based methods is to introduce a sampling distribution, which often belongs to
a parameterized family of densities, over the solution space, and iteratively update the sampling distribution
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(or its parameter) by drawing and evaluating candidate solutions according to the sampling distribution.
The hope is to have the sampling distribution more and more concentrated on the promising region of the
solution space where the optimal solutions are located, and eventually become a degenerate distribution
on one of the global optima. Therefore, finding an optimal solution in the solution space is transformed
to finding an optimal sampling distribution parameter in the parameter space. A key difference among
the aforementioned model-based methods lies in how to update the sampling distribution. For example,
in MRAS and GASS, the updating rule on the sampling distribution parameter is derived by converting
the original (possibly non-differentiable) deterministic optimization problem into a differentiable stochastic
optimization problem on the sampling distribution parameter, and then applying stochastic approximation
schemes. Compared with gradient-based methods, model-based methods are more robust in the sense that at
every iteration they exploit the promising region of the solution space that has already been identified, while
maintaining the exploration of the entire solution space. The updating rule on the sampling distribution
parameter controls the balance between the exploration and the exploitation.

Although all the aforementioned model-based methods are designed for deterministic optimization
problems, they can be extended to risk (CVaR or VaR) optimization problems in which the exact risk
values are replaced with sample estimates (though might be biased). However, a straightforward extension
usually leads to an algorithm that is computationally expensive, due to the rare-event simulation required in
estimating the risk values. This issue is even more severe when a large risk level (close to 1) is of interest.
It inspires us to think about the following question: is it possible to initialize a model-based algorithm
for a risk optimization problem with a small risk level (close to 0), and then adaptively adjust or increase
the risk level at every iteration until the target risk level is achieved, while the algorithm converges to an
optimal solution of the original problem? The hope is that the algorithm will consume less simulation
budget (since the risk level is small) during the “warm-up” phase of the algorithm, solve problems that are
close to the original one during the “convergence” phase of the algorithm, and eventually achieve budget
saving. The key to this question lies in finding a way to link the updating rule on the risk level with the
updating rule on the sampling distribution parameter.

In this paper, we will focus on the extension of a specific model-based methods—GASS by Zhou and
Hu (2014) to the optimization of risk measures. We choose GASS because it could also be interpreted as a
gradient-based scheme of a reformulated problem, in which a Newton-like updating rule is applied on the
sampling distribution parameter, and thus the gradient (even the Hessian) of the reformulated problem can
be viewed as a signal that empirically measures the algorithm’s emphasis between the exploration of the
entire solution space and the exploitation of the promising region. Therefore, we could adjust the risk level
adaptively using the information contained in the gradient (e.g., its norm) at every iteration. In particular,
we will propose an updating rule that increases the risk level proportionally to the decrease in the norm of
the gradient. To the best of our knowledge, this work is among the first to apply model-based algorithms
to risk optimization problems, and among the first to propose a risk optimization scheme that adaptively
adjusts the risk level. Due to the space limit, we will only focus on CVaR optimization, and the extension
of the proposed algorithm to VaR optimization (and possibly other risk measures such as probability of
large loss) is straightforward. We also leave the convergence analysis of the proposed algorithm to future
work.

The rest of the paper is organized as follows. In Section 2, we will formulate the CVaR optimization
problem. Then we extend GASS algorithm, which is originally developed for deterministic non-differentiable
optimization problems, to the CVaR optimization problem. The detailed algorithms are presented in Section
3, in which Algorithm 1 (referred to as “GASS-CVaR”) is a straightforward extension of GASS and
Algorithm 2 (referred to as “GASS-CVaR-ARL”) further incorporates an updating rule for adaptive risk
level adjustments. In Section 4, we illustrate the performance of the proposed algorithms by carrying out
numerical tests on several benchmark loss functions. We conclude the paper in Section 5.
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2 GENERAL FRAMEWORK

Consider a scalar loss function of the form l(x,ξx), where x ∈X ⊆ Rdx represents the decision variables,
and ξx represents the randomness in the loss function and its distribution may or may not depend on x.
The loss function l(x,ξx) can be evaluated either directly or through simulation. Furthermore, to ease the
presentation, assume l(x,ξx) admits an almost everywhere (a.e.) positive and continuous probability density
function (p.d.f.) p(t;x), and thus a continuous and strictly increasing cumulative distribution function (c.d.f.)
P(t;x) for all x ∈X . The objective is to minimize the CVaR of the loss function l(x;ξx) at a risk level
of interest α∗ (0 < α∗ < 1) with respect to (w.r.t.) x ∈X . That is, to solve the following stochastic
optimization problem:

min
x∈X

Cα∗,l(x)
4
=CVaRα∗ (l(x,ξx)) , or equivalently, max

x∈X
−Cα∗,l(x), (1)

where CVaRα∗ (l(x,ξx)) is defined by

CVaRα∗ (l(x,ξx))
4
= Eξx [l(x,ξx)|l(x,ξx)≥Vα∗,l(x)]

=
1

1−α∗
Eξx [l(x,ξx)1{l(x,ξx)≥Vα∗,l(x)}]

=Vα∗,l(x)+
1

1−α∗
Eξx

[
(l(x,ξx)−Vα∗,l(x))

+] ,
(2)

where 1{A} is 1 if event A is true and 0 otherwise, (u)+ = max(u,0), and Vα∗,l(x) is the VaR of l(x,ξx)
at risk level α∗, i.e.,

Vα∗,l(x) =VaRα∗ (l(x,ξx))
4
= inf{t : P(t;x)≥ α

∗}= P−1(α∗;x). (3)

Note that the inverse c.d.f. P−1(α∗;x) exists because P(t;x) is strictly increasing in t.
Problem (1) might be difficult to solve when l(x;ξx) lacks structural properties such as convexity and

differentiability. Most of the gradient-based algorithms might fail. Instead, we seek model-based methods
to solve problem (1). In principle, we could extend GASS algorithm in Zhou and Hu (2014) to solve the
CVaR optimization problem (1).

2.1 Main Idea

Similar to many other model-based methods, the main idea of GASS is to introduce a parameterized
sampling distribution over the solution space, and update the parameters of the sampling distribution
iteratively towards the promising region of the solution space. Let us illustrate the main idea in a general
framework, where one aims to maximize a deterministic function L(x) over x ∈X .

We introduce a parameterized family of densities { f (x;θ) : θ ∈Θ⊂Rdθ } as the sampling distribution,
where θ represents the parameter that will be updated over iterations. Consider a simple reformulation as
follows:

H(θ)
4
=
∫

L(x) f (x;θ)dx.

Then H(θ) ≤ L(x∗) = L∗, where x∗ denotes the optimal solution or one of the optima, and L∗ denotes
the optimal function value. Note that the equality is achieved if and only if all the probability mass of
f (x;θ) concentrates on a subset of the set of global optima. Given the existence of such a θ , we can solve
the reformulated problem maxθ∈Θ H(θ) instead of the original problem, since the optimal parameter will
recover the optimal solution and the optimal function value.

The advantage of the reformulated problem over the original problem is that it is differentiable in θ

under mild regularity conditions on f (x;θ), and the gradient is easy to derive as follows:

5θ H(θ) =5θ

∫
L(x) f (x;θ)dx =

∫
L(x)
5θ f (x;θ)

f (x;θ)
f (x;θ)dx = E f (·;θ) [L(x)5θ ln f (x;θ)] .
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Note that an unbiased estimator of 5θ H(θ) could be obtained by drawing samples xi i.i.d.∼ f (x;θ), i =
1, ...,N, evaluating L(xi)5θ ln f (xi;θ), and taking the sample average of {L(xi)5θ ln f (xi;θ) : i = 1, ...,N}.
Therefore, one could solve the reformulated problem via a (stochastic) gradient-based method. Specifically,
the method iteratively carries out the following two steps:

1. Generate candidate solutions according to the sampling distribution.
2. Based on the evaluation of the candidate solutions, update the parameter of the sampling distribution

via gradient search.

Intuitively, it combines the relative fast convergence of gradient search with the robustness of model-based
optimization in terms of maintaining a global exploration of the solution space.

2.2 Review of GASS

Based on the above main idea, now let us describe the full-blown GASS algorithm. We introduce a shape
function Sθ : R→ R+, where the subscript θ signifies the possible dependence of the shape function on
the parameter θ , and it satisfies the following conditions: for every θ , Sθ (y) is strictly increasing in y
and bounded from above and below for finite y; moreover, for every fixed y, Sθ (y) is continuous in θ .
The purpose is to make the objective function positive while preserving the order of the solutions and in
particular the optimal solution. Moreover, the shape function adds flexibility to the algorithm by giving a
user the freedom to choose a weighting scheme on the samples based on sample function evaluations. For
example, a good choice of the shape function Sθ (·) is

Sθ (L(x)) =
1

1+ exp(−S0(L(x)− γθ ))
, (4)

where S0 is a large positive constant, and γθ is the (1−ρ)-quantile

γθ

4
= sup

r

{
r : Pf (·;θ) {x ∈X : L(x)≥ r} ≥ ρ

}
, (5)

where Pf (·;θ){A} denotes the probability of event A w.r.t. f (·;θ). Notice that Sθ (·) could be viewed as a
continuous approximation of the indicator function 1{L(x)≥ γθ} that eliminates the L(x) values below γθ .

For an arbitrary but fixed θ ′ ∈Θ, let us define

H(θ ;θ
′)
4
=
∫

Sθ ′(L(x)) f (x;θ)dx, and h(θ ;θ
′)
4
= lnH(θ ;θ

′). (6)

By the condition on the shape function and the fact that ln(·) is a strictly increasing function, solving the
original problem is equivalent to solving the problem maxθ∈Θ h(θ ;θ ′) for any fixed θ ′. Following the main
idea outlined before, Zhou and Hu (2014) propose a stochastic search algorithm that iteratively carries out
the following two steps:

1. Generate candidate solutions from f (x;θk), where θk is the parameter obtained at iteration k.
2. Update the parameter from θk to θk+1 using a Newton-like iteration for maxθ h(θ ;θk).

Note that the second step requires to compute the gradient and Hessian of h(θ ;θk), which, as shown by
Zhou and Hu (2014), have analytical expressions as the expectations under certain probability measures. In
particular, if the sampling distributions are chosen to be an exponential family of densities in the following
Definition 1, then these expressions can be further simplified.
Definition 1 A family { f (x;θ) : θ ∈Θ} is an exponential family of densities if it satisfies

f (x;θ) = exp
{

θ
T

Γ(x)−η(θ)
}
, (7)
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where Γ(x) = [Γ1(x), ...,Γd(x)]T is the vector of sufficient statistics, η(θ) = ln{
∫

exp(θ T Γ(x))dx} is the
normalization factor to ensure f (x;θ) is a p.d.f., and Θ = {θ : |η(θ)|< ∞} is the natural parameter space
with a nonempty interior.

Proposition 1 below provides the corresponding analytical expressions of the gradient and Hessian of
h(θ ;θ ′) when an exponential family of densities is used as the sampling distributions. We refer to Zhou
and Hu (2014) for the detailed derivations.
Proposition 1 If { f (x;θ) : θ ∈Θ} is an exponential family of densities, then the gradient and Hessian of
h(θ ;θ ′) in (6) have closed-form expressions as follows:{

5θ h(θ ;θ ′)
∣∣
θ=θ ′

= Eq(·;θ ′) [Γ(x)]−E f (·;θ ′) [Γ(x)] ,

52
θ

h(θ ;θ ′)
∣∣
θ=θ ′

=Varq(·;θ ′) [Γ(x)]−Var f (·;θ ′) [Γ(x)] ,
(8)

where

q(x;θ
′) =

Sθ ′(L(x)) f (x;θ ′)∫
Sθ ′(L(x)) f (x;θ ′)dx

is a “re-weighted” p.d.f., and Eq(·;θ ′) [·] and Varq(·;θ ′) [·] denote the expectation and variance w.r.t. q(·;θ ′),
respectively.

Note that the Hessian 52
θ

h(θ ;θ ′)
∣∣
θ=θ ′

might not be negative semi-definite. To ensure the parameter
updating is along the ascent direction of h(θ ;θ ′), we approximate52

θ
h(θ ;θ ′)

∣∣
θ=θ ′

by−(Varθ ′ [T (x)]+εI),
which is a slight perturbation of the second term in 52

θ
h(θ ;θ ′)

∣∣
θ=θ ′

and negative definite. Here ε is a
small positive number and I is an identity matrix of proper dimension. A Newton-like updating of θ is as
follows:

θk+1 = ΠΘ

{
θk +βk

(
Var f (·;θk)[Γ(x)]+ εI

)−15θ h(θ ;θk)
∣∣
θ=θk

}
= ΠΘ

{
θk +βk

(
Var f (·;θk)[Γ(x)]+ εI

)−1 (Eq(·;θk) [Γ(x)]−E f (·;θk) [Γ(x)]
)}

, (9)

where βk is a positive step-size, and ΠΘ{·} denotes the projection operator that projects an iterate back
onto the parameter space Θ by choosing the closest point in Θ.

In practical implementation, we still need to evaluate or estimate the expectation and variance terms
in (9). Notice that the expectation term E f (·;θk)[Γ(x)] can be calculated analytically in most cases. For
example, if the chosen exponential family of densities is the Gaussian family, then E f (·;θk)[Γ(x)] reduces
to the mean and second moment of the Gaussian distribution. The variance term Var f (·;θk)[Γ(x)] might not
be directly available, but it could be estimated by the sample variance using the candidate solutions drawn
from f (·;θk). Specifically, suppose Nk i.i.d. samples {xi

k : i = 1, ...,Nk} are drawn from f (x;θk), then

1
Nk−1

Nk

∑
i=1

Γ(xi
k)Γ(x

i
k)

T − 1
N2

k −Nk

(
Nk

∑
i=1

Γ(xi
k)

)(
Nk

∑
i=1

Γ(xi
k)

)T

is the sample estimate of Var f (·;θk)[Γ(x)]. The remaining term Eq(·;θk)[Γ(x)] can be estimated based on
the principle of importance sampling, noting that Eq(·;θk) [Γ(x)] ∝

∫
Sθk(L(x))Γ(x) f (x;θk)dx. Therefore, we

could estimate it by ∑
Nk
i=1 wi

kΓ(xi
k), where {wi

k : i = 1, ...,Nk} are normalized weights given by

wi
k =

Sθk(L(x
i
k))

∑
Nk
j=1 Sθk(L(x

j
k))

, i = 1, ...,Nk.

730



Zhu, Hale, and Zhou

2.3 Extension of GASS to Optimization of CVaR

When the CVaR of the loss function Cα∗,l(x) could be evaluated exactly for all x ∈X , we can directly
extend the scheme described above to the CVaR minimization problem (1). Since the loss function is
usually evaluated via simulation, its p.d.f. and c.d.f. are generally not available. Thus, the CVaR of
the loss function, Cα∗,l(x), could not be evaluated analytically; however, it could be estimated via Monte
Carlo simulation. In particular, suppose M samples of the loss function {l(x,ξ 1

x ), l(x,ξ
2
x ), ..., l(x,ξ

M
x )} are

simulated, and then sorted in ascending order as l(x,ξ (1)
x )≤ l(x,ξ (2)

x )≤ ...≤ l(x,ξ (M)
x ), which forms the

empirical distribution of the loss. A natural estimator of Cα∗,l(x) is the CVaR of the empirical distribution
of the loss, which is as follows:

Ĉα∗,l(x)
4
= V̂α∗,l(x)+

1
M(1−α∗)

M

∑
m=1

(
l(x,ξ m

x )−V̂α∗,l(x)
)+

, (10)

where
V̂α∗,l(x)

4
= l
(

x,ξ (dα∗Me)
x

)
(11)

is the VaR of the empirical distribution of the loss that plays the role of VaR estimator, and dα∗Me is the
smallest integer that is greater than or equal to α∗M.

Although the estimator Ĉα∗,l(x) is biased, it is strongly consistent under mild regularity assumptions
on the distribution of l(x,ξx) (see, e.g., Trindade et al. (2007)). In principle, we can use it as a replacement
for Cα∗,l(x) and plug it into GASS algorithm.

3 ALGORITHMS: GASS-CVAR, GASS-CVAR-ARL

Now let us formally present the following algorithm, which is referred to as GASS-CVaR, for simulation
optimization of CVaR.
Algorithm 1 Gradient-based Adaptive Stochastic Search for Optimization of CVaR

1. Initialization: Choose an exponential family of densities { f (x;θ) : θ ∈ Θ}, and specify a small
positive constant ε , initial parameter θ0, sample size sequence {Nk} that satisfies Nk→∞, simulation
budget sequence {Mk}, and step size sequence {βk} that satisfies ∑

∞
k=0 βk = ∞,∑∞

k=0 β 2
k < ∞. Set

k = 0.
2. Sampling: Draw samples {xi

k
i.i.d.∼ f (x;θk) : i = 1,2, ...,Nk}. For each xi

k, evaluate the loss function
scenarios {l(xi

k,ξ
i, j
k ) : j = 1, ...,Mk} by simulation, and sort them in ascending order, denoted by

l
(

xi
k,ξ

i,(1)
k

)
≤ l
(

xi
k,ξ

i,(2)
k

)
≤ ·· · ≤ l

(
xi

k,ξ
i,(Mk)
k

)
.

Compute the corresponding CVaR estimate at target risk level α∗:

Ĉα∗,l(xi
k) = l

(
xi

k,ξ
i,(dα∗Mke)
k

)
+

1
Mk(1−α∗)

Mk

∑
j=1

(
l
(

xi
k,ξ

i, j
k

)
− l
(

xi
k,ξ

i,(dα∗Mke)
k

))+
.

3. Estimation: Compute the normalized weights ŵi
k according to

ŵi
k =

Sθk

(
−Ĉα∗,l(xi

k)
)

∑
Nk
j=1 Sθk

(
−Ĉα∗,l(x

j
k)
) , i = 1, ...,Nk,
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and then Eq(·;θk)[Γ(x)] and Var f (·;θk)[Γ(x)] are estimated via Êq(·;θk)[Γ(x)] = ∑
Nk
i=1 ŵi

kΓ(xi
k),

V̂ar f (·;θk)[Γ(x)] =
1

Nk−1 ∑
Nk
i=1 Γ(xi

k)Γ(x
i
k)

T − 1
N2

k−Nk

(
∑

Nk
i=1 Γ(xi

k)
)(

∑
Nk
i=1 Γ(xi

k)
)T

.

4. Updating: Update the parameter θ according to

θk+1 = Π
Θ̃

{
θk +βk

(
V̂ar f (·;θk)[Γ(x)]+ εI

)−1(
Êq(·;θk)[Γ(x)]−E f (·;θk) [Γ(x)]

)}
,

where Θ̃⊆Θ is a non-empty compact and convex constraint set.
5. Stopping: Check if some stopping criterion is satisfied. If yes, stop and return the current best

sampled solution; else, set k := k+1 and go back to step 2.

In the initialization step (step 1) of GASS-CVaR (Algorithm 1), the conditions on the sample size and
step size sequences are imposed to facilitate the convergence of the algorithm. In the sampling step (step
2), notice that the CVaR estimates are biased. Therefore, the convergence of the original GASS algorithm
does not directly apply to GASS-CVaR. We leave the convergence analysis of GASS-CVaR to future work.
In the estimating step (step 3), as mentioned before, one common choice of the shape function Sθ (·) is in
the form of expression (4). Moreover, the quantile level ρ in (5) controls the percentile of elite samples
that are used to update the sampling distribution at the next iteration, and balances the exploitation of the
neighborhood of the current best solutions with the exploration of the entire solution space. For example,
when a smaller ρ is used, less elite samples are used, and thus less emphasis is put on exploration. In the
updating step (step 4), the iterate is projected onto a convex and compact subset Θ̃⊆ Θ instead of Θ, in
order to guarantee numerical stability and fast computation of the projection. In the stopping step (step 5),
a common stopping criterion used in practice is that the norm of the gradient falls below a pre-specified
threshold.

3.1 GASS with Adaptive Risk Level

When the risk level of interest α∗ is close to 1 (e.g. α∗ = 0.99), implementing GASS-CVaR could be
computationally expensive, since the CVaR evaluation in step 2 requires a large simulation budget Mk to
obtain good CVaR estimators. This issue is more severe as α∗ gets closer to 1. For example, for a fixed
x, suppose we want to estimate Cα,l(x) at three different risk levels as follows: α1 = 0, α2 = 0.90, and
α3 = 0.99, where note that Cα1=0,l(x) = E[l(x,ξx)] is the expected loss. To achieve the same accuracy
in estimation of CVaR, the corresponding simulation budgets M1, M2, and M3 should result in equal
“effective” simulation budgets (1−αi)Mi, i = 1,2,3. Therefore, M2 = (1−α1)/(1−α2) ·M1 = 10 ·M1
and M3 = (1−α1)/(1−α3) ·M1 = 100 ·M1. This implies that the simulation budget required for CVaR
estimation could be easily up to tens of times even hundreds of times compared with the simulation budget
required for the estimation of expectation.

To save simulation budget and improve the overall efficiency of GASS-CVaR, we propose to initialize
the algorithm at a small risk level α0 (e.g., α0 = 0), and adaptively increase/update the risk level αk at
every iteration until the target risk level α∗ is achieved and the algorithm converges simultaneously. Since
a lower risk level implies that a smaller simulation budget Mk is required to achieve desired accuracy for
CVaR estimation, the hope is to adaptively save simulation budget at each iteration by solving a problem
that is similar to the original one but less computationally expensive. A good updating rule on the risk
level should 1) achieve significant budget savings when the algorithm is in the “warm-up” phase, i.e., when
it puts more emphasis on exploration of the entire solution space; 2) solve problems that are close to the
original one when the algorithm is in the “convergence” phase, i.e., when it put more emphasis on the
exploitation of the promising region that has been identified, so that good solutions of the original problem
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can be found. The key to such an updating rule lies in finding an empirical indication on the algorithm’s
balance between the exploration and the exploitation.

Note that GASS-CVaR maintains the structure of a gradient-based optimization scheme, and thus the
gradient (even the Hessian) used in the updating step (step 4) could be regarded as the empirical indication
on the balance between the exploration and the exploitation. It is natural to design the updating rule on
the risk level using the information contained in the gradient obtained at every iteration. For example,
note that GASS-CVaR converges when the norm of the gradient hits zero. Then one could increase the
risk level at every iteration proportionally to the decrease in the norm of the gradient from the previous
iteration. In particular, we propose the following version of GASS algorithm with adaptive risk levels,
which is referred to as GASS-CVaR-ARL. We do point out that more sophisticated updating rules on the
risk level could be incorporated in the future.
Algorithm 2 GASS-CVaR with Adaptive Risk Levels

1. Initialization: Initialize the algorithm similar to step 1 in GASS-CVaR. Set initial risk level α0.
2. Draw candidate solution samples and simulate the loss function scenarios similar to step 2 in

GASS-CVaR. Compute the corresponding CVaR estimate at the risk level αk:

Ĉαk,l(x
i
k) = l

(
xi

k,ξ
i,(dαkMke)
k

)
+

1
Mk(1−αk)

Mk

∑
j=1

(
l
(

xi
k,ξ

i, j
k

)
− l
(

xi
k,ξ

i,(dαkMke)
k

))+
.

Record the best solution x∗k found at this iteration: x∗k = argmini Ĉαk,l(x
i
k).

3. Estimation: Compute the normalized weights ŵi
k according to

ŵi
k =

Sθk

(
−Ĉαk,l(x

i
k)
)

∑
Nk
j=1 Sθk

(
−Ĉαk,l(x

j
k)
) , i = 1, ...,Nk,

and then Eq(·;θk)[Γ(x)] and Var f (·;θk)[Γ(x)] are estimated via Êq(·;θk)[Γ(x)] = ∑
Nk
i=1 ŵi

kΓ(xi
k),

V̂ar f (·;θk)[Γ(x)] =
1

Nk−1 ∑
Nk
i=1 Γ(xi

k)Γ(x
i
k)

T − 1
N2

k−Nk

(
∑

Nk
i=1 Γ(xi

k)
)(

∑
Nk
i=1 Γ(xi

k)
)T

.

Compute the gradient gk via

gk = Êq(·;θk)[Γ(x)]−E f (·;θk) [Γ(x)] .

4. Updating: Update the parameter θ according to

θk+1 = Π
Θ̃

{
θk +βk

(
V̂ar f (·;θk)[Γ(x)]+ εI

)−1
gk

}
,

where Θ̃ ⊆ Θ is a non-empty compact and convex constraint set, and update the risk level α

according to

αk+1 =

{
α∗− ‖gk‖2

‖gk−1‖2
(α∗−αk) , if ‖gk‖2 < ‖gk−1‖2 ,

αk, o/w,
(12)

where ‖·‖2 is the Euclidean norm.
5. Stopping: Check if some stopping criterion is satisfied. If yes, stop and return x∗= argmink Ĉα∗,l(x∗k)

and Ĉα∗,l(x∗) via simulation; else, set k := k+1 and go back to step 2.
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In the sampling step (step 2) of GASS-CVaR-ARL (Algorithm 2), since the current risk level αk is
smaller than the target risk level α∗, we could use a simulation budget Mk that is smaller than the one used in
GASS-CVaR to estimate the CVaR at risk level αk. For example, suppose one wants to keep the “effective”
simulation budget (1−αk)Mk as a constant. Then, in the initial iterations of the algorithm the budget savings
can be up to tens of times even hundreds of times (equal to (1−αk)/(1−α∗) precisely) since αk is close
to α0 = 0. The sampled best solution to the CVaR optimization problem at risk level αk is also recorded.
It can be viewed as a good solution to a CVaR optimization problem that is similar to the original one. In
the updating step (step 4), the updating rule (12) ensures that αk is non-decreasing, with the hope that αk
will eventually converge to the target risk level α∗. Furthermore, when ‖gk‖2 < ‖gk−1‖2, we can rewrite
(12) as α∗−αk+1

α∗−αk
=

‖gk‖2
‖gk−1‖2

. Loosely speaking, it implies the increase in risk level for the next iteration is
proportional to the decrease in the norm of the gradient from the previous iteration. It also ensures that the
target risk level is achieved when the norm of the gradient hits zero, i.e., when the algorithm converges. In
the stopping step (step 5), finding the best solution to the original CVaR optimization problem is achieved
via evaluating and comparing the CVaR values at the target risk level for all the best sampled solutions
found so far, and thus additional simulation budget is required; however, it is insignificant compared with
the overall budget consumed. We leave the convergence analysis of GASS-CVaR-ARL to future work.

Recall that, in GASS-CVaR-ARL, the risk level αk is updated in accordance with the decrease in the
norm of the gradient. It implies that the updating rule (12) keeps track of the algorithm’s balance between
the exploration and the exploitation, and makes adjustments on the risk level accordingly. Therefore, in
the “warm-up” phase of the algorithm, having a small α has little negative effect on the algorithm progress
since the algorithm put most of its emphasis on exploration; in the “convergence” phase of the algorithm,
the risk level αk is close to the target risk level α∗, and essentially the algorithm is solving problems close
to the original one. Thus, intuitively, we expect that the number of iterations that GASS-CVaR-ARL takes
to converge is similar to the one that GASS-CVaR takes to converge, which is also verified by the numerical
tests (presented in the next section). Since GASS-CVaR-ARL saves simulation budget at every iteration,
overall budget saving is achieved.

4 NUMERICAL EXPERIMENTS

We carry out numerical tests to compare the performance of GASS-CVaR and GASS-CVaR-ARL. In
particular, the loss functions tested are listed in the following, among which some are designed by adding
Gaussian noises to the continuous benchmark functions in Hu et al. (2007). However, we point out our
algorithms do not have much assumption on the structure of the loss function as well as the noise. For
convenience, let N (0,1) be a standard one-dimensional Gaussian distribution, and the loss function is in
the form of

li(x,ξx) = Li(x)+


√

1+100∑
D
d=1(xd−1)2 ·N (0,1), i = 0,1,3,4,√

1+100∑
D
d=1(xd−2)2 ·N (0,1), i = 2,5,

(13)

where D is the dimension of the solution space. Specifically, L0 =∑
D
d=1 x2

d ; L1 and L2 are respectively Powell
function and Rosenbrock function, which are badly scaled; L3 is Rastrigin function, which is multimodal
with a large number of local optima; L4 and L5 are respectively Pintér function and Levy function, which
are badly-scaled as well as multimodal. We test all functions with D = 10.

Notice that if Cα∗=0,li(x) = Li(x) = Eξx [li(x,ξx)] is of interest, then evidently x◦ = [0, ...,0]d is the
minimizer for i = 0,1,3,4, and x◦ = [1, ...,1]d is the minimizer for i = 2,5. As the risk level of interest α∗

increases, the minimizer of Cα∗,li(x), might be very different from x◦, since the loss is exposed to a lot noise
at x◦. In fact, the minimizer of Cα∗,li(x) will move towards the region where the mean loss and the noise
of the loss are balanced. In particular, for i = 0,1,3,4, it will move towards x = [1, ...,1]d , where the loss
has the least noise; for i = 2,5, it will move towards x = [2, ...,2]d . Note that, except for the loss function
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l0, the minimizers of Cα∗,li(x) and the minimum CVaR function values are not analytically available for
any other loss function listed in (13) when α∗ > 0.

In all the implementations, we use independent multivariate normal distribution N (µk,Σk) as the
parameterized sampling distribution f (x;θk) at iteration k, where µk = (µ1

k , ...,µ
D
k )

T is the mean parameter
and Σk = diag((σ1

k )
2, ...,(σD

k )2) is the covariance matrix. Thus, θk = (µ1
k , ...,µ

D
k ;(σ1

k )
2, ...,(σD

k )2)T . The
initial mean parameter µ0 are drawn randomly from the uniform distribution U [−30,30]D, and the initial
covariance matrix Σ0 is set to be Σ0 = 1000ID×D, where ID×D is the identity matrix of dimension D. From
the experiment results, we notice that the performance of the algorithms is insensitive to the initial mean
parameter as long as the initial covariance matrix is sufficiently large.

At iteration k, we use the shape function Sθk(·) in the form of expression (4) with S0 = 105 and
ρ = 0.1 in (5). The (1−ρ)-quantile γθk is estimated by the (1−ρ) sample quantile of the CVaR estimates
for all the candidate solutions generated at this iteration. The risk level of interest is α∗ = 0.99, and in
GASS-CVaR-ARL the initial risk level is set to be α0 = 0. The sample size of candidate solutions drawn
from the sampling distribution is set to be Nk = 1000, and the simulation budget used to estimate the
CVaR of the loss function is set in a way such that the effective simulation budget is (1−αk)Mk = 50.
Therefore, in GASS-CVaR Mk = 50/(1−α∗) = 50/0.01 = 5× 103 for all k, and in GASS-CVaR-ARL
Mk = 50/(1−αk) at iteration k with initial simulation budget M0 = 50/(1−0) = 50. The small positive
constant ε used to ensure the positive definiteness of the Hessian is set to be ε = 10−10, and the step size
βk is set to be βk = 50/(k+2000)0.6, which satisfies the assumptions in step 1 of both two algorithms.

We run both algorithms 50 times independently and summarize their average performance in Figure 1.
Recall that, except for the loss function l0, the minimum CVaR value is not readily available for any other
loss function. So we implement GASS-CVaR with constant sample size N = 103 and simulation budget
M = 105 to find them. In the upper-left plot for the loss function l0 in Figure 1, the y-axis represents
the ratio of CVaR values obtained by the algorithms to the true minimum CVaR value at the target risk
level α∗; for all the rest of the plots, the y-axis represents the same ratio, except that the true minimum is
replaced by the smallest CVaR values obtained from implementing GASS-CVaR with sample size N and
simulation budget M. We observe that both algorithms (GASS-CVaR and GASS-CVaR-ARL) perform well
in finding optimal solutions and minimum CVaR values. Moreover, GASS-CVaR-ARL converges faster
and often reduces the total number of function evaluations needed for convergence by 2-4 times, which
demonstrates the advantage of using adaptive risk level in GASS-CVaR-ARL.

Figure 2 includes two plots for the loss function l0: the left one plots the ratio of the CVaR values
evaluated at the means of the sampling distributions to the true minimum CVaR value (recall that it is
available for l0); the right one plots the trajectory of the risk level αk. We can see that the means of the
sampling distributions in both GASS-CVaR and GASS-CVaR-ARL converge to the optimal solution, and
GASS-CVaR-ARL achieves a faster convergence speed. Moreover, the risk level αk in GASS-CVaR-ARL
increases steadily to the target risk level α∗, which indicates that the norm of the gradient decreases steadily
to zero and the algorithm converges.

5 CONCLUSION

In this paper, we study the application of the recently proposed GASS algorithm for deterministic non-
differentiable optimization to the optimization of CVaR. Instead of optimizing CVaR at the risk level of
interest directly, we propose to initialize the algorithm at a small risk level, and then increase the risk
level at each iteration adaptively until the target risk level is achieved, while the algorithm converges to
an optimal solution of the original problem. It enables us to adaptively reduce the number of samples
needed to estimate CVaR at each iteration, and eventually improves the efficiency. The numerical results
demonstrate the advantage of incorporating such an adaptive updating rule on the risk level in the algorithm
by showing it achieves 2-4 times of budget savings for the tested loss functions.
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Figure 1: Average Performance of GASS-CVaR and GASS-CVaR-ARL.

Figure 2: CVaR at Mean of the Sampling Distribution and Trajectory of Risk Level.
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