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ABSTRACT

Consider the convex optimization problem minx f (g(x)) where both f and g are unknown but can be
estimated through sampling. We consider the stochastic compositional gradient descent method (SCGD)
that updates based on random function and subgradient evaluations, which are generated by a conditional
sampling oracle. We focus on the case where samples are corrupted with Markov noise. Under certain
diminishing stepsize assumptions, we prove that the iterate of SCGD converges almost surely to an optimal
solution if such a solution exists. Under specific constant stepsize assumptions, we obtain finite-sample error
bounds for the averaged iterates of the algorithm. We illustrate an application to online value evaluation
in dynamic programming.

1 INTRODUCTION

Consider the convex optimization problem

min
x∈X
{F(x) = f (g(x))} . (1)

where F : ℜn 7→ℜ is the objective function, f : ℜm 7→ℜ is referred as the outer function, g : ℜn 7→ℜm

is referred as the inner function, and X is a convex and compact set in ℜn. We assume throughout that
the objective function F is convex and has at least one minimal solution in X , whereas f and g can be
nonconvex. We also assume that f and g have Lipschitz continuous gradients.

We are interested in the simulation setting where values and gradients of f (·) and g(·) can only
be queried from a sampling oracle and their samples are subject to Markov noise. A related stochastic
optimization problem is

min
x∈X

E
[

fw
(
E
[
gv(x) | w

])]
, (2)
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where fw and gv are random realizations of the unknown deterministic functions f and g, respectively.
Another related problem is the sample average approximation to problem (2), given by

min
x∈X

1
N

N

∑
i=1

fwi

(
1
N

N

∑
j=1

gvi j(x)

)
,

in which the expectation is replaced by empirical means over some data set{
{wi,vi j}N

j=1

}N

i=1
.

Stochastic composition problems (1)-(2) find wide application in data analytics and operations research.
Examples of applications include statistical learning, dynamic programming, estimation of large deviation
rate and risk-averse optimization; see (Wang, Fang, and Liu 2016) Sections 4 and 5. Note that the
composition of two stochastic functions is also related to three-stage stochastic programming, for which
at least O(1/ε4) sample paths are needed to reach an ε-optimal solution; see (Shapiro, Dentcheva, and
Ruszczyński 2014) Section 5.8.

For the case where unbiased samples are available, (Wang, Fang, and Liu 2016) has proposed and
analyzed a class of stochastic compositional gradient/subgradient descent methods (SCGD). The SCGD
involves two iterations of different time scales, one for estimating x∗ by a stochastic gradient-like iteration,
the other for maintaining a running estimate of g(x∗). Almost sure convergence and rate of convergence
have been obtained, assuming that all samples are independent and identically distributed.

In this paper, we will focus on the application of SCGD to Markov sampling oracles. We emphasize
that SCGD is a simulation-driven method. It finds the optimal solution to problem (1) even if one can
only simulate the outer and inner functions. Markov noise is very common in Monte Carlo simulation and
simulation of dynamic systems. An example of problem (1) with Markov simulator is the online value
evaluation problem which arises from dynamic programming; see Section 5 for more details.

However, Markov noise makes the analysis much more complicated, because samples per iteration
now become severely biased. Our analysis involves breaking down the iterate sequence into an infinite
number of segments with increasing lengths. In this way, we use the Markov property to control the overall
bias associated with iterates within the same segment. This leads to an almost sure convergence result as
well as several error bounds and sample complexity results. To the authors’ best knowledge, this is the
first convergence and rate of convergence result for stochastic composition optimization under a Markov
simulator.

Similar to several sources on convergence analysis of stochastic algorithms (see e.g., (Bertsekas and
Tsitsiklis 1989), (Kushner and Yin 2003), (Borkar 2008)), we use a supermartingale convergence argument
towards a specially constructed sequence. The idea of stochastic gradient is also related to the class
of incremental methods, which are developed for minimizing the sum of a large number of component
functions. These methods update incrementally by making use of one component at a time, through a
gradient-type or proximal-type iteration; see for example, (Nedić and Bertsekas 2001), (Bertsekas 2011),
(Nedić 2011), (Wang and Bertsekas 2016) and (Wang, Chen, Liu, and Gu 2015). The SCGD method
considered in this paper also applies to the incremental problem minx f

(
∑

M
i=1 gi(x)

)
where component

functions gi are sampled according to a Markov chain. The idea of using two timescales existed in literature
of stochastic approximation; see for examples (Borkar 1997), (Bhatnagar and Borkar 1998), (Konda and
Tsitsikilis 2004). It is also related to the quasi-gradient methods that have been extensively studied by
(Ermoliev 1976). However, there has been little analysis on the convergence rate and sample complexity,
especially for the Markov case.

Notation For x ∈ ℜn, we denote by x′ its transpose, and by ‖x‖ its Euclidean norm (i.e., ‖x‖ =√
x′x). The abbreviation “ a.s.−→” means “converges almost surely to,” while the abbreviation “i.i.d.” means

“independent identically distributed.” For a function f (x), we denote by ∇ f (x) its gradient at x if f is
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differentiable. For two sequences {yk} and {zk}, we write yk = O(zk) if there exists a uniform constant
c > 0 such that ‖yk‖ ≤ c‖zk‖ for each k with probability 1. For simplicity, we will use the O(·) notation
frequently to avoid defining too many constants. It does not affect the convergence and asymptotic rate of
convergence results.

2 SIMULATION ORACLE, ALGORITHM, AND ASSUMPTIONS

Suppose that we have access to a Conditional Sampling Oracle (CSO) such that:

• Given some y ∈ℜm, the CSO returns a noisy gradient ∇ f (y)+w ∈ℜm.
• Given some x ∈ X and conditioned on w, the CSO returns g(x)+ v ∈ℜn and ∇g(x)+ ṽ ∈ℜn×m.

We focus on the case where the sample errors v, ṽ,w are Markov random variables with a zero-mean invariant
distribution.

For solution of the stochastic program (1), we use the stochastic compositional gradient (SCGD) method
proposed by (Wang, Fang, and Liu 2016), taking the form of Algorithm 1. Note that xk ∈ℜn, yk ∈ℜm,
vk,wk ∈ℜm, ṽk ∈ℜn×m, ∇g is the n×m matrix with each column being a gradient of the corresponding
entry of g, {αk}, {βk} are sequences of positive scalars in (0,1), and ΠX denotes the orthogonal projection
onto X with respect to the Euclidean norm ‖ · ‖.

Algorithm 1 Stochastic Compositional Gradient Descent
Input: x0 ∈ℜn, y0 ∈ℜm, CSO, number of queries T , positive stepsizes {αk},{βk} ⊂ (0,1).

1: for k = 0,1, . . . ,T do
2: Query CSO for the sample values of g at xk, obtaining g(xk)+ vk and ∇̃g(xk)+ ṽk.
3: Update

yk+1 = (1−βk)yk +βk(g(xk)+ vk). (3)

4: Query CSO for the sample gradient of f at yk+1, obtaining ∇ f (yk+1)+wk.
5: Update

xk+1 = ΠX
{

xk−αk(∇g(xk)+ ṽk)(∇ f (yk+1)+wk)
}
. (4)

6: end for
Output: The averaged iterate 1

T ∑
T
k=1 xk.

In the case where f is a linear function and w≡ 0, Algorithm 1 is equivalent to the classical stochastic
gradient/approximation method. In the case where f is nonlinear, the auxiliary variable yk plays the
important role of “tracking” the unknown value g(xk), so that the iteration for xk behaves like a gradient
descent update.

Let us denote by Fk the collection of random variables

{x0, . . . ,xk,y0, . . . ,yk,(w0,v0, ṽ0), . . . ,(wk−1,vk−1, ṽk−1)}.

For simplicity of analysis, we make the following assumptions regarding the structure of problem (1) and
the Markov property of the random process {(wk, ṽk,vk)}.
Assumption 1 (Boundedness and Continuity)

(i) The constraint set X is compact and convex.
(ii) The function g has bounded and Lipschitz continuous gradient over X .

(iii) The function f has bounded and Lipschitz continuous gradient over the set Y = {g(x) | x ∈ X}.
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Note that Assumption 1 requires the existence of Lipschitz constants without specifying their values.
These unspecified constants should play a role in the convergence rate of stochastic algorithms. However,
the focus of the current paper is the sample complexity, i.e., how the convergence rate relates to the number
of oracle queries. For simplicity of analysis, we will omit these constants in the big O notation. For the
same reason, we assume boundedness of the constraint set as well as the gradients.

Assumption 2 (Markov Noise in the Conditional Simulation Oracle)

(i) The random variables {(w0,v0, ṽ0),(w1,v1, ṽ1),(w2,v2, ṽ2), . . .} are uniformly bounded with prob-
ability 1.

(ii) There exists a scalar ρ ∈ (0,1) such that with probability 1,∣∣E [(wt ,vt , ṽt) |Fs]
∣∣≤ O(ρ t−s+1),

∣∣E [ṽtwt |Fs]
∣∣≤ O(ρ t−s+1), ∀ 0 < s < t.

Assumption 2(ii) is critical to our analysis. The first part
∣∣E [(wt ,vt , ṽt) |Fs]

∣∣≤O(ρ t−s+1) requires that
the additive sampling error (wt ,vt , ṽt) becomes asymptotically zero-mean, whose conditional bias decreases
to zero at a geometric speed. This is a typical property of Markov chain sampling oracle. The second part∣∣E [ṽtwt |Fs]

∣∣≤ O(ρ t−s+1) requires the sample errors of the outer and inner functions be asymptotically
uncorrelated. This is satisfied when the inner samples are simulated conditioned on the outer sample while
being corrupted with Markov noise.

In contrast to the prior work (Wang, Fang, and Liu 2016) which assumes independent samples,
Assumption 2 allows the samples to be corrupted with Markov noise instead of i.i.d. zero-mean noise. For
simplicity of analysis, we assume that sample errors are uniformly bounded instead of having bounded
second moments.

Under Assumptions 1 and 2, we will show in Theorem 1 that the SCGD algorithm converges almost
surely to an optimal solution, in the case where certain diminishing stepsizes are used. In Theorem 2 and
Theorem 3, we will provide upper bounds on the sub-optimality of the averaged iterates of SCGD, in the
case where constant stepsizes are used.

3 MAIN RESULTS

In this section, we give the main results on the convergence and rate of convergence for SCGD under Markov
noise. Our first result states that the SCGD algorithm converges to an optimal solution with probability 1,
as long as the two stepsize sequences diminish to zero at favorable rates.
Theorem 1 (Almost Sure Convergence) Let Assumptions 1-2 hold. Let the stepsizes {αk} and {βk} be
decreasing positive scalars such that

∞

∑
k=0

min{αk,βk}= ∞,
∞

∑
k=0

(
α

2
k +β

2
k +

α2
k

βk

)
< ∞.

In addition, let there be a sequence of increasing integers {N0,N1, . . .} such that

∞

∑
t=0

αNt +βNt +

(
Nt+1−1

∑
k=Nt

(αk +βk)

)2
< ∞.

Then the SCGD Algorithm 1 generates a sequence {(xk,yk)} such that ‖yk+1−g(xk)‖
a.s.−→ 0 and xk converges

almost surely to an optimal solution of problem (1).

In Theorem 1, a key requirement is ∑
∞
k=0

(
α2

k
βk

)
< ∞, which implies that αk � βk for k sufficiently

large. In other words, the algorithm produces consistent estimates of the optimal solution only if the x-step
updates conservatively while the auxillary y-step updates aggressively fast.
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For an example, the stepsizes αk = k−1 and βk = k−3/4 satisfy all the conditions required by Theorem 1
if we choose Nt = t5/3. The main proof idea is to construct a special sequence of merit functions based on
the subsequence {XNt}∞

t=1. Since Nt increases superlinearly fast, the overall sample error incurred between
the Nt-th and Nt+1-th iterates become less and less biased as t→∞. The formal proof is deferred to Section
4.

Our second result concerns the expected optimality error when constant stepsizes are used. The analysis
follows from that of Theorem 1.
Theorem 2 (Constant Stepsize Error Bound) Let Assumptions 1-2 hold, and let the stepsizes be constant
scalars

αk = α, βk = β , k = 1, . . . ,T,

where α,β ∈ (0,1). Then the averaged iterate generated by Algorithm 1 using T oracle queries satisfies

E

[
F

(
1
T

T

∑
t=0

xt

)
−F∗

]
≤ O

(
1

T α
+α +

β 2

α
+

α

β
+

√
ρ

1−ρ

(α +β )3/2

α

)
.

Suppose that the total number of oracle queries T is known in advance. Theorem 2 allows us to pick
values of the constant stepsizes α,β in order to optimize the error bound. This lead to the following
sample-error complexity result.
Theorem 3 (Sample-Error Complexity) Let Assumptions 1-2 hold, and let the stepsizes be constant scalars

αk =
1

T 5/6 , βk =
1

T 2/3 , k = 1, . . . ,T.

Then the averaged iterate generated by Algorithm 1 using T oracle queries satisfies

E

[
F

(
1
T

T

∑
t=0

xt

)
−F∗

]
≤ O

((
1+
√

ρ

1−ρ

)
· 1

T 1/6

)
.

In Theorem 3, the stepsizes are chosen in a way such that the asymptotic error bound is minimized. Note
that such stepsizes do not satisfy the conditions required by Theorem 1 for almost sure convergence. To the
authors’ best knowledge, one cannot get the best sampler-error complexity and almost sure convergence
simultaneously. This illustrates a tradeoff between pathwise convergence and minimal expected error.

When the noises are independent (ρ = 0), the simulation oracle generates unbiased sample at every
query. In this case, the error bound can be improved to O(1/T 1/4) with α = 1/T 3/4 and β = 1/

√
T , which

matches the error bound obtained in the earlier work (Wang, Fang, and Liu 2016).
When the noises are Markov (ρ > 0), the error-sample complexity deterioriates from O(1/T 1/4) to

O
((

1+
√

ρ

1−ρ

)
· 1

T 1/6

)
. We conjecture that the result of Theorem 3 can be further improved to achieve

O(1/T 1/4). This remains an open question for future research.

4 PROOF OF CONVERGENCE

In this section, we develop the almost sure convergence and convergence rate results step by step. The key
to the Markov-noise analysis which differs from the classical analysis is to divide the sequence of iterates
{xk}∞

k=0 into a sequence of increasingly long segments{
(xN0 , . . . ,xN1−1), . . . ,(xNt , . . . ,xNt+1−1), . . .

}
,

where the segment length Nt+1−Nt increases to infinity as t→ ∞. As long as the segments are properly
constructed, we can use the Markov property of the CSO to show that the overall error incurred within the
t-th segment (xNt , . . . ,xNt+1−1) is increasingly close to be zero-mean, as t→ ∞. This allows us to apply a
coupled supermartingale analysis to a specifically constructed merit function and prove the convergence.
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4.1 Preliminaries

The main idea of the convergence analysis is that the two sequences {xk− x∗} and {g(xk)− yk+1} are
coupled in their asymptotic behaviors and they converge together to zero. Our proof will use the following
coupled supermartingale convergence lemma by Robbins and Siegmund (Robbins and Siegmund 1971) .
Lemma 1 (Supermartingale Convergence (Robbins and Siegmund 1971)) Let {zk}, {uk}, {ak} and {bk}
be sequences of nonnegative random variables so that

E [zk+1 | Gk]≤ (1+ak)zk−uk +bk, for all k ≥ 0 w.p.1,

where Gk denotes the collection z0, . . . ,zk,u0, . . . ,uk,a0, . . . ,ak,b0, . . . ,bk. Also, let ∑
∞
k=0(ak +bk)< ∞ with

probability 1. Then zk converges almost surely to a random variable and ∑
∞
k=0 uk < ∞ with probability 1.

Lemma 2 (Basic Facts) Let Assumptions 1-2 hold. Then with probability 1 for any t,k > 0,

(a) ‖xk+1− xk‖ ≤ O (αk) , ‖xk+t − xk‖ ≤ ∑
k+t−1
i=k O(αi).

(b) ‖yk+1− yk‖ ≤ O (βk) , ‖yk+t − yk‖ ≤ ∑
k+t−1
i=k O(βi).

(c) For all y1,y2 ∈ Y , ‖g(y1)−g(y2)‖ ≤ O (‖y1− y2‖) .

Proof. The proof directly follows from Assumptions 1-2 and triangle/matrix norm inequalities. �

Let us analyze the iteration for xk. We will show that it behaves in a way similar to a gradient descent
step.
Lemma 3 (Contraction of the x-Iteration) Let Assumptions 1-2 hold, let x∗ be an arbitrary optimal solution
of problem (1), and let F∗ = F(x∗). Then with probability 1, for any k > 0

E
[
‖xk+1− x∗‖2 |Fk

]
≤ ‖xk− x∗‖2−2αk (F(xk)−F∗)+O

(
α

2
k +

α2
k

βk

)
+αkE [L1(xk, ṽk,wk) |Fk]+βkE

[
‖g(xk)− yk+1‖2 |Fk

]
,

(5)

where L1 is a function given by L1(xk, ṽk,wk) =−2(xk− x∗)′ṽk(∇ f (g(xk))+wk)−2(xk− x∗)′∇g(xk)wk.

Proof. By using the definition of xk [cf. Eq. (4)], the nonexpansiveness of ΠX , and the fact x∗ ∈ X , we have

‖xk+1− x∗‖2 ≤ ‖xk− x∗−αk(∇g(xk)+ ṽk)(∇ f (yk+1)+wk)‖2

= ‖xk− x∗‖2 +α
2
k ‖(∇g(xk)+ ṽk)(∇ f (yk+1)+wk)‖2−2αk(xk− x∗)′(∇g(xk)+ ṽk)(∇ f (yk+1)+wk)

= ‖xk− x∗‖2 +α
2
k ‖(∇g(xk)+ ṽk)(∇ f (yk+1)+wk)‖2−2αk(xk− x∗)′∇g(xk)∇ f (g(xk))

−2αk(xk− x∗)′ṽk(∇ f (g(xk))+wk)−2αk(xk− x∗)′∇g(xk)wk

+2αk(xk− x∗)′(∇g(xk)+ ṽk)(∇ f (g(xk))−∇ f (yk+1))

= ‖xk− x∗‖2 +α
2
k ‖(∇g(xk)+ ṽk)(∇ f (yk+1)+wk)‖2−2αk(xk− x∗)′∇g(xk)∇ f (g(xk))

+αkL1(xk, ṽk,wk)+uk,

(6)

where we define uk to be

uk = 2αk(xk− x∗)′(∇g(xk)+ ṽk)(∇ f (g(xk))−∇ f (yk+1)).
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By using matrix norm inequalities, the Lipschitz continuity of ∇ f , and the boundedness of xk, ∇g(xk), and
ṽk, we obtain

uk ≤ 2αk‖xk− x∗‖‖∇g(xk)+ ṽk‖‖∇ f (g(xk))−∇ f (yk+1)‖
≤ O(αk)‖g(xk)− yk+1‖

≤ βk‖g(xk)− yk+1‖2 +O

(
α2

k
βk

)
.

By the convexity of F = f ◦ g and the chain rule of differential, we obtain ∇g(xk)∇ f (g(xk)) = ∇F(xk),
therefore

(xk− x∗)′∇g(xk)∇ f (g(xk))≥ F(xk)−F∗.

Taking expectation on both sides of Eq. (6) and applying the preceding inequalities, we obtain

E
[
‖xk+1− x∗‖2 |Fk

]
≤ ‖xk− x∗‖2 +O

(
α

2
k +

α2
k

βk

)
−2αk (F(xk)−F∗)

+αkE [L1(xk, ṽk,wk) |Fk]

+βkE
[
‖g(xk)− yk+1‖2 |Fk

]
.

By using Assumptions 1 and 2, we can verify that L1(x, ṽ,w) is Lipschitz continuous in x∈ X and is bilinear
in (ṽ,w). Thus we have completed the proof. �

Let us we analyze the behavior of yk, which is obtained by averaging past samples {g(xt)+ vt}k
t=0

as an approximation to the unknown quantity g(xk). The next lemma shows that the approximation error
‖yk+1−g(xk)‖ decreases “on average” according to a supermartingle-type inequality.
Lemma 4 (Contraction of the y-Iteration) Let Assumptions 1-2 hold. Then with probability 1, for all k

E
[
‖yk+1−g(xk)‖2 |Fk

]
≤ (1−βk)‖yk−g(xk−1)‖2 +O

(
α2

k
βk

+α
2
k +β

2
k

)
+βkE

[
L2

(
(xk−1,yk),vk

)
|Fk

]
.

(7)

where L2 is a function given by L2

(
(x,y),v

)
= (y−g(x))′v.

Proof. By using the definition of yk [cf. Eq. (3)], we have

yk+1−g(xk)+ ek = (1−βk)(yk−g(xk−1))+βkvk, (8)

where we define ek = (1−βk)(g(xk)−g(xk−1)). By using Assumption 1 we obtain

‖ek‖ ≤ O (‖xk− xk−1‖)≤ O (αk) . (9)

Taking squared norm expectation on both sides of Eq. (8) and using Assumptions 1-2, we have

E
[
‖yk+1−g(xk)+ ek‖2 |Fk

]
= (1−βk)

2‖yk−g(xk−1)‖2 +β
2
k E
[
‖vk‖2 |Fk

]
+2(1−βk)βkE

[
(yk−g(xk−1))

′vk |Fk
]

≤ (1−βk)
2‖yk−g(xk−1)‖2 +O(β 2

k )+2(1−βk)βkE
[
(yk−g(xk−1))

′vk |Fk
]
.

(10)

By using the basic inequality ‖a+b‖2 ≤ (1+ ε)‖a‖2 +(1+1/ε)‖b‖2 for any ε > 0, we have

‖yk+1−g(xk)‖2 ≤ (1+βk)‖yk+1−g(xk)+ ek‖2 +(1+1/βk)‖ek‖2.
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Taking expectation on both sides and applying Eqs. (9)-(10), we obtain that

E
[
‖yk+1−g(xk)‖2 |Fk

]
≤ (1−βk)‖yk−g(xk−1)‖2 +O

(
a2

k
βk

+α
2
k +β

2
k

)
+2βkE

[
(yk−g(xk−1))

′vk |Fk
]
,

for all k with probability 1. By letting L2

(
(x,y),v

)
= 2(y−g(x))′v , we obtain Eq. (7). It can be easily

seen that L2 is Lipschitz continuous in (x,y) and linear in v. �

4.2 Almost Sure Convergence

Next we develop our first main result. Its proof idea is to combine the results for the x-iteration and
y-iteration (Lemmas 3 and 4) and to make use of the Markov property (Assumption 2(ii)).

Proof of Theorem 1. Define the random variable

Jk = ‖xk− x∗‖2 +2‖yk−g(xk−1)‖2.

We multiply Eq. (7) with 2 and take its sum with Eq. (5), and obtain

E [Jk+1 |Fk]≤ Jk−2αk (F(xk)−F∗)−βkE
[
‖yk+1−g(xk)‖2 |Fk

]
+ εk

+αkE [L1(xk, ṽk,wk) |Fk]+2βkE [L2((xk−1,yk),vk) |Fk] .
(11)

where we define εk to be the deterministic sequence given by

εk = O

(
α

2
k +β

2
k +

α2
k

βk

)
,

and L1,L2 are functions defined in Lemmas 3 and 4 respectively.
We take an arbitrary sequence of increasing integers {Nt}. Let t,k be positive integers such that

Nt ≤ k < Nt+1. Recall that L1(xk, ṽk,wk) = −2(xk− x∗)′ṽk(∇ f (g(xk))+wk)− 2(xk− x∗)′∇g(xk)wk. By
using the Lipschitz continuity and bilinearity of L1(x, ṽ,w) in x and (w, ṽ) respectively, and by using
Assumption 2(ii), we obtain

E [L1(xk, ṽk,wk) |FNt ] = E [L1(xNt , ṽk,wk) |FNt ]+E [(L1(xk, ṽk,wk)−L1(xNt , ṽk,wk) |FNt ]

≤ O (|E [wk |FNt ] |+ |E [ṽk |FNt ] |+ |E [ṽkwk |FNt ] |)+O (E [‖xk− xNt‖ |FNt ])

≤ O

(
ρ

k−Nt+1 +
k

∑
i=Nt

αi

)
.

Similarly, we also have

E [L2(xk−1,yk),vk |FNt ] = E [L2(xNt−1,yNt ),vk) |FNt ]+E [L2(xk−1,yk),vk)−L2(xNt−1,yNt ),vk) |FNt ]

≤ O (|E [vk |FNt ] |)+O (E [‖xNt−1− xk−1‖+‖yk− yNt‖ |FNt ])

≤ O

(
ρ

k−Nt+1 +
k

∑
i=Nt

(αi +βi)

)
.

We also have

−E [F(xk)−F∗ |FNt ]≤−(F(xNt )−F∗)+O (E [‖xk− xNt‖ |FNt ])≤−(F(xNt )−F∗)+
k

∑
i=Nt

O(αi),
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and

−E
[
‖yk−g(xk−1)‖2 |FNt

]
≤−‖yNt −g(xNt−1)‖2 +O (E [‖xNt−1− xk−1‖+‖yk− yNt‖ |FNt ])

≤−‖yNt −g(xNt−1)‖2 +
k

∑
i=Nt

O(αi +βi).

Taking expectation on both sides of (13) conditioned on FNt and applying the preceding relations, we
obtain

E [Jk+1 |FNt ]≤ E [Jk |FNt ]+ εk−2αk (F(xk)−F∗)−βkE
[
‖yk+1−g(xk)‖2 |FNt

]
+O

(
ρ

k−Nt+1(αk +βk)+(αk +βk)
Nt+1−1

∑
i=Nt

(αi +βi)

)
.

(12)

Applying the preceding relations inductively for k = Nt , . . . ,Nt+1−1 and using the facts ∑
Nt+1−1
k=Nt

ρk−Nt+1 ≤
ρ

1−ρ
, αk ↓ 0, βk ↓ 0 we obtain

E
[
JNt+1 |FNt

]
≤ JNt +

Nt+1−1

∑
k=Nt

εk−2
Nt+1−1

∑
k=Nt

αk (F(xNt )−F∗)−
Nt+1−1

∑
k=Nt

βkE
[
‖yNt+1−g(xNt )‖2 |FNt

]
+O

 ρ

1−ρ
(αNt +βNt )+

(
Nt+1−1

∑
k=Nt

(αk +βk)

)2
 .

(13)

We note that the stepsize assumptions imply that ∑
∞
t=0 ∑

Nt+1−1
k=Nt

εk ≤ ∑
∞
k=0 O(α2

k +β 2
k +α2

k /βk) < ∞, and

that ∑
∞
t=0

(
αNt +βNt +

(
∑

Nt+1−1
k=Nt

(αk +βk)
)2
)
< ∞. These together with the fact F(xk)−F∗ ≥ 0 suggest

that the supermartingale convergence Lemma 1 applies to Eq. (13).
By applying Lemma 1 to Eq. (13), we obtain that JNt converges almost surely to a random variables

as t→ ∞, and w.p.1,

∞

∑
t=0

Nt+1−1

∑
k=Nt

(
αk (F(xNt )−F∗)+βkE

[
‖yNt+1−g(xNt )‖2 |FNt

])
< ∞.

This together with the stepsize assumption ∑
∞
k=0 min{αk,βk}= ∞ further implies that w.p.1,

liminf
t→∞

(
F(xNt )−F∗+E

[
‖yNt+1−g(xNt )‖2 |FNt

])
= 0.

Note that the sequence {xNt} is bounded with probability 1. Consider an arbitrary sample trajec-
tory of {(xNt ,yNt )} such that the corresponding JNt converges. By the continuity of F , the sequence
{(xNt ,E

[
‖yNt+1−g(xNt )‖2 |FNt

]
)} must have a limit point (x̄,0) with x̄ being an optimal solution,

i.e., F(x̄) = F∗. Also we have ‖yNt − g(xNt−1)‖ ≤ E [‖yNt+1−g(xNt )‖ |FNt ] +O(αk + βk)→ 0. Since
the choice of x∗ is arbitrary, we take x∗ = x̄. On this sample trajectory, we have shown that JNt =
‖xNt − x̄‖2+2‖yNt −g(xNt−1)‖2→ 0 and xNt → x̄. Therefore xNt converges almost surely to a random point
in the set of optimal solutions of problem (1) and ‖yNt −g(xNt−1)‖

a.s.−→ 0, as t→ ∞.

Finally, since ∑
∞
t=0

(
∑

Nt+1−1
k=Nt

(αk +βk)
)2

< ∞, we have ∑
Nt+1−1
k=Nt

αk ≤ ∑
Nt+1−1
k=Nt

(αk +βk)→ 0. We have,
as k→ ∞,

‖xk− xNt∗(k)‖ ≤
Nt+1−1

∑
k=Nt

O (αk)→ 0, where t∗ = max
t
{Nt ≤ k}.

Therefore xk converges almost surely to an optimal solution. Similarly ‖yk+1−g(xk)‖
a.s.−→ 0. �
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4.3 Constant Stepsize Error Bounds

Following the line of analysis of Theorem 1, we continue to prove the rate of convergence results.
Proof of Theorem 2 and Theorem 3. For any increasing integers {Nt}, we take expectation on

both sides of Eq. (12) and apply it inductively, yielding

E
[
JNt+1

]
≤ E [JNt ]−2

Nt+1−1

∑
k=Nt

αkE [F(xk)−F∗]

+
Nt+1−1

∑
k=Nt

O

(
α

2
k +β

2
k +

α2
k

βk

)
+O

ρ
αNt +βNt

1−ρ
+

(
Nt+1−1

∑
k=Nt

(αk +βk)

)2
 .

(14)

We choose Nt = Mt for all t, where M is an arbitrary positive integer. Applying Eq. (14) repeatedly with
αk = α and βk = β yields

2
k

∑
t=0

E [F(xt)−F∗]≤ 2
dk/MeM

∑
t=0

E [F(xt)−F∗]

≤ E [J0]

α
+O (dk/MeM)

(
α +

β 2

α
+

α

β

)
+

O (dk/MeM)

αM
ρ(α +β )

1−ρ
+

O (dk/MeM)

αM
M2(α2 +β

2).

Minimizing the preceding upper bound over M for k sufficiently large, we take M =
(

ρ(α+β )
(1−ρ)(α2+β 2)

)1/2
and

obtain

2
k

∑
t=0

E [F(xt)−F∗]≤ E [J0]

α
+O(k)

(
α +

β 2

α
+

α

β

)
+O (k)

√
ρ

1−ρ
(α +β )3/2/α.

By the convexity of F , we have E
[
F
(1

k ∑
k
t=0 xt

)
−F∗

]
≤ 1

k ∑
k
t=1 E [F(xt)−F∗] and complete the proof

of Theorem 2. By applying the specific stepsizes α = 1
T 5/6 ,β = 1

T 2/3 , the results of Theorem 3 follow
immediately. �

5 APPLICATION IN DYNAMIC PROGRAMMING: ONLINE BELLMAN ERROR MINIMIZATION

Optimization involving compositions of expected-value functions is very common. As an example of using
stochastic optimization to solve dynamic programming, let us consider the Markov decision problem (MDP)
with states i = 1, . . . ,n. Finding an optimal policy for the MDP can be equivalently casted into solving the
fixed-point Bellman equation, i.e., finding J such that

J = max
a∈A
{ga +PaJ}, (15)

where J ∈ℜn is the optimal value-per-state vector (also known as value function), a∈ A is an action, ga ∈ℜn

is the transition reward-per-state vector given action a, Pa ∈ℜn×n is the matrix of transition probabilities
given action a, and the maximization is elementwise. The optimal policy is the state to action mapping
that achieves the elementwise maximization in the Bellman equation.

Suppose that we are given a fixed policy π : 1, . . . ,n 7→ A. Let the transition matrix and transitional cost
vector be Pπ ∈ℜn×n and gπ ∈ℜn, respectively. In order to improve the fixed policy via policy iteration,
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one needs to calculate the value function associated with policy π , which is the solution to an n×n system
of Bellman equations:

J = gπ +PπJ.

Meanwhile, the Bellman residual minimization approach is to solve the problem

min‖J− (gπ +PπJ)‖2

s.t. J ∈ S,
(16)

where S is a convex constraint set (e.g., a linear subspace spanned by a small number of features). When
S = ℜn, the the set of optimal solutions of (16) coincides that of the Bellman equation. In approximate
dynamic programming, the original high-dimensional problem may be solved by restricting J to some
parametric family, which translates to a constraint S in the residual minimization problem.

We consider the simulation setting where Pπ and gπ are not explicitly given. Instead, we are given a
simulator of the MDP which generates random state transitions under the fixed policy π . This simulator
produces a sample trajectories of state and reward pairs according to the unknown transition probabilities
Pπ :

{(ik,gk),(ik+1,gk+1), . . .} .

Such a simulator is a special case of the conditional sample oracle described in Section 2 and satisfies our
assumptions. We may rewrite the Bellman residual minimization (16) as

min
J∈S

n

∑
i=1

(J(i)−Eπ [gk+1 + J(ik+1) | ik = i])2 ,

which is a stochastic program that takes the form of problem (1). Therefore the proposed SCGD method
is able to solve the Bellman minimization problem using only the simulation trajectory {(ik,gk)}, without
knowing in advance the transition probabilities. The SCGD method can be applied to online policy
evaluation, where the samples {(ik,gk)} are generated from the actual stochastic system, rather than from
a simulator which has to restart after every state transition in order to maintain independence. Customized
algorithms and analysis for the dynamic programming application is a direction for future research.

6 SUMMARY

In this paper, we have considered a stochastic quasi-gradient scheme for minimizing the composition of
a stochastic nonlinear function and an expected-value mapping. We have focused on the case where the
function values and subgradient samples are perturbed with Markov noise. With certain diminishing step
size assumptions, the proposed stochastic compositional gradient method converges almost surely to an
optimal solution of the convex problem. We have derived finite-sample error bounds for the method,
which show that the algorithm’s performance indeed deteriorates when the noises are Markov instead of
independent.
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