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ABSTRACT

In this paper, we consider the simulation budget allocation problem to maximize the probability of selecting
the best simulated design in ordinal optimization. This problem has been studied extensively on the basis
of the normal distribution. In this research, we consider the budget allocation problem when the underlying
distribution is exponential. This case is widely seen in simulation practice. We derive an asymptotic
closed-form allocation rule which is easy to compute and implement in practice, and provide some useful
insights for the optimal budget allocation problem with exponential underlying distribution.

1 INTRODUCTION

The simulation-optimization (SO) problem is a non-linear optimization problem, which is often too complex
to be evaluated analytically due to the uncertainty and dynamic relationships between the parts involved.
Therefore, stochastic simulation becomes a powerful modeling and software tool for analyzing modern
complex systems. Although the advance of computer technology has dramatically increased computational
power, efficiency is still a significant concern because 1) simulation experiment is usually time consuming;
2) many simulation replications are typically required for an accurate estimate of performance (Lee et al.
2010).

In order to address this concern, Ranking and Selection (R&S) problems are widely studied in order
to intelligently allocate the simulation budget and improve simulation efficiency. The indifference-zone
(IZ) approach aims to provide a guaranteed lower bound for the probability of correct selection (PCS),
assuming that the mean performance of the best design is at least δ ∗ better than each alternative, where
δ ∗ is the minimum difference worth detecting (Dudewicz and Dalal 1975; Rinott 1978; Kim and Nelson
2001; Nelson et al. 2001). Another popular approach is optimal computing budget allocation (OCBA),
which allocates the samples sequentially in order to maximize PCS under a simulation budget constraint
(Chen et al. 2000). In addition, the optimal selection problem with the expected opportunity cost (EOC), a
common quality measure other than PCS, was considered in Gao and Shi (2015). OCBA highly improves
the efficiency of budget allocation by intelligently controlling the number of simulation replications based
on the mean and variance information (Chen and Lee 2011). Chen et al. (2008), and Gao and Chen (2015)
further extended the OCBA method to optimal subset selection problem. For a comprehensive review of
this field, see Branke et al. (2007), and Kim and Nelson (2007).

The OCBA method is widely used because of its high efficiency as well as that it establishes a simple,
intuitive and closed-form expression to formulate the budget allocation problem. The OCBA method is
developed under the assumption that the underlying distribution is normal. However, the normal distribution
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assumption may not always reflect practice when the sample size is not large enough. Glynn and Juneja
(2004), Hunter and Pasupathy (2013), and Pasupathy et al. (2015) extended the budget allocation method by
employing large deviations (LD) approach for non-normal distribution context. Broadie et al. (2007) gave
some analyses of the algorithm provided in Glynn and Juneja (2004) in the setting of heavy-tailed systems.
Moreover, as in Broadie et al. (2007), even though the use of the LD approach provides the flexibility
for the underlying distribution to be general, it is computationally intensive and difficult to implement in
practice. A closed-form allocation function is still hard to be derived. This opens up the question which
is the main topic of this paper.

In this paper, we consider the problem of optimal allocation of computing budget to maximize the PCS
when the underlying distribution is exponential. Exponential distribution occurs naturally when describing
the lengths of the inter-arrival times in a homogeneous Poisson process, and it is widely used in queuing
network (Asmussen 2008). In this paper, we derive an asymptotic closed-form simulation budget allocation
rule, called OCBA-exp, based on large deviations theory for exponential distribution problem. The proposed
OCBA-exp is easy to compute and implement in practice, and can provide some useful insights for the
exponential distribution problem.

The rest of the paper is organized as follows: in the next section, we derive an allocation scheme based
on large-deviations theory and then carry out an asymptotic analysis. The performance of the proposed
method is illustrated with numerical examples in Section 3. Section 4 concludes the paper.

2 EFFICIENT SIMULATION BUDGET ALLOCATION

In this section, we formulate the budget allocation problem when the underlying distribution is exponential
and provide some useful insights for them.

2.1 Notation

In this research, the best design is defined as the design with the smallest mean performance (the largest
mean performance could be handled similarly). The simulation output samples are exponentially distributed
and independent from replication to replication, as well as independent across designs. We introduce the
following notation:

n: total number of simulation replications (budget);
k: total number of designs;
Xi, j: output of the j-th simulation replication for design i;
µi: mean of design i, i.e., µi = E[Xi, j];
σ2

i : variance of design i, i.e., σ2
i =Var[Xi, j];

αi: proportion of the total simulation budget allocated to design i;
ni: number of simulation replications allocated to design i, i.e., ni = αin;
X̄i: sample mean of design i, i.e., X̄i =

1
ni

∑
ni
j=1 Xi, j;

S2
i : sample variance of design i, i.e., S2

i =
1

ni−1 ∑
ni
j=1(Xi, j− X̄i)

2.

We let the real best design t = argmini∈{1,2,...,k} µi. In this paper, we ignore the minor technicalities
associated with ni’s not being an integer.

Let Λi(θ) = logE[exp(θXi, j)] denote the log-moment generating function of Xi, j and Ii(·) be the
Fenchel-Legendre transform of Λi, i.e.,

Ii(x) = sup
θ∈R

(θx−Λi(θ)).

As presented in Glynn and Juneja (2004), rate function Gt,i(αt ,αi) = infx(αtIt(x)+αiIi(x)). Let x(αt ,αi)
be the unique solution to αtI′t (x)+αiI′i (x) = 0. Since αtI′t (x)+αiI′i (x) is strictly convex, the infimum is
obtained at x(αt ,αi), i.e., Gt,i(αt ,αi) = αtIt(x(αt ,αi))+αiIi(x(αt ,αi)), i = 1,2, ...,k, and i 6= t.
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Note that, ∂Gt,i(αt ,αi)
∂αi

= Ii(x(αt ,αi)) and ∂Gt,i(αt ,αi)
∂αt

= It(x(αt ,αi)), where i = 1,2, ...,k, and i 6= t.

2.2 Optimal Allocation Strategy

We consider the problem of selecting single best design from k alternative designs when the underlying
distribution is exponential. The goal is to find a simulation budget allocation that maximize the probability
of correct selection (PCS) or minimize the probability of false selection (PFS = 1−PCS) with ∑

k
i=1 αi = 1.

According to Glynn and Juneja (2004), large deviations approach is used to asymptotically minimize the
probability of false selection. In that study, the budget allocation problem is formulated as:

min lim
n→∞

1
n

logPFS

s.t.
k

∑
i=1

αi = 1.
(1)

As presented in Glynn and Juneja (2004), optimality conditions for general underlying distribution are as
follows:

k

∑
i=1,i 6=t

∂Gt,i(αt ,αi)/∂αt

∂Gt,i(αt ,αi)/∂αi
= 1, (2)

Gt,i(αt ,αi) = Gt, j(αt ,α j), for i, j = 1,2, ...,k and i 6= j 6= t. (3)

Apply these optimality conditions for the context of exponential underlying distribution. The probability
density function of exponential distribution

f (x) =

{
λe−λx x≥ 0,
0 x < 0.

Thus,
Ii(x) = λix−1− log(λix), i = 1,2, ...,k,

x(αt ,αi) =
αt +αi

αtλt +αiλi
, i = 1,2, ...,k and i 6= t,

Gt,i(αt ,αi) =−αt log
λt(αt +αi)

αtλt +αiλi
−αi log

λi(αt +αi)

αtλt +αiλi
, i = 1,2, ...,k and i 6= t,

where λi denotes the rate parameter of exponential distribution for design i.
According to Gao and Shi (2016),

Ii(x(αt ,αi)) =
∂Gt,i(αt ,αi)

∂αi
=

λi(αt +αi)

αtλt +αiλi
−1− log

λi(αt +αi)

αtλt +αiλi
, i = 1,2, ...,k and i 6= t. (4)

It(x(αt ,αi)) =
∂Gt,i(αt ,αi)

∂αt
=

λt(αt +αi)

αtλt +αiλi
−1− log

λt(αt +αi)

αtλt +αiλi
, i = 1,2, ...,k and i 6= t. (5)

Simplify (4) and (5) using Taylor expansion: log(x) = (x− 1)− (x−1)2

2 +O((x− 1)3), since 0 < λi < λt ,∣∣∣ λi(αt+αi)
αt λt+αiλi

−1
∣∣∣< 1 and

∣∣∣ λt(αt+αi)
αt λt+αiλi

−1
∣∣∣< 1,

log
λi(αt +αi)

αtλt +αiλi
≈ (

λi(αt +αi)

λtαt +λiαi
−1)− 1

2
(

λi(αt +αi)

αtλt +αiλi
−1)2,

log
λt(αt +αi)

αtλt +αiλi
≈ (

λt(αt +αi)

λtαt +λiαi
−1)− 1

2
(

λt(αt +αi)

αtλt +αiλi
−1)2.
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Therefore,
∂Gt,i(αt ,αi)

∂αi
≈ α2

t (λi−λt)
2

2(αtλt +αiλi)2 , i = 1,2, ...,k and i 6= t,

∂Gt,i(αt ,αi)

∂αt
≈ α2

i (λi−λt)
2

2(αtλt +αiλi)2 , i = 1,2, ...,k and i 6= t.

(2) becomes: ∑
k
i=1, i 6=t α2

i /α2
t = 1, that is

α
2
t =

k

∑
i=1,i6=t

α
2
i . (6)

(3) becomes:

αt log
λt(αt +αi)

αtλt +αiλi
+αi log

λi(αt +αi)

αtλt +αiλi
= αt log

λt(αt +α j)

αtλt +α jλ j
+α j log

λ j(αt +α j)

αtλt +α jλ j
, i 6= j 6= t, . (7)

In order to reduce the total computational cost for identifying the best design, it is advisable to spend
more computational effort on good designs. That is, αt should be increased relative to αi, for i = 1,2, ...,k,
and i 6= t. Therefore, according to (6) we can assume αt � αi and αt log λt(αt+αi)

αt λt+αiλi
� αi log λi(αt+αi)

αt λt+αiλi
for all

i 6= t as n→ ∞. For more details, please refer to Glynn and Juneja (2004). This assumption enables us to
simplify (7) as

λt(αt +αi)

αtλt +αiλi
=

λt(αt +α j)

αtλt +α jλ j
, i 6= j 6= t.

That is,
λ j−λt

αi
=

λi−λt

α j
+

λi−λ j

αt
, i 6= j 6= t.

We further assume αt � αi for all i 6= t as n→ ∞, then

αi

α j
=

λ j−λt

λi−λt
, i 6= j 6= t.

For exponential distribution, mean µi =
1
λi

, variance σ2
i = 1

λ 2
i

. Thus,

αi

α j
=

σi/(µi−µt)

σ j/(µ j−µt)
, i 6= j 6= t.

By using two approximations: the Taylor approximation of the rate function and the assumption that
αt � αi, for all i 6= t as n→ ∞, we have the following result:
Theorem 1 Problem (1) can be asymptotically minimized when

α
2
t =

k

∑
i=1,i6=t

α
2
i , (8)

αi

α j
=

σi/(µi−µt)

σ j/(µ j−µt)
, for i, j = 1,2, ...,k and i 6= j 6= t. (9)
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2.3 Analysis of the Exponential Budget Allocation Rule

We provide some insights for the optimal allocation rules (8) and (9) demonstrated. We conduct a
simple numerical experiment to compare the number of simulation replications allocated to each design
by OCBA-exp and the traditional OCBA when the underlying distribution is exponential.

The traditional OCBA method allocates the samples sequentially in order to maximize PCS under the
assumption that the underlying distribution is normal (Chen et al. 2000, Chen and Lee 2011). In each
iteration, it allocates simulation replications to the candidate designs according to

α2
t

σ2
t
=

k

∑
i=1,i6=t

α2
i

σ2
i
, (10)

αi

α j
=

σ2
i /(µi−µt)

2

σ2
j /(µ j−µt)2 , i 6= j 6= t. (11)

It is interesting to find that the proposed optimality conditions (8) and (9) for OCBA-exp method have
structural similarities with the optimality conditions (10) and (11) for the traditional OCBA mehtod. (8)
and (10) show the relationship between αt and αi, while (8) does not have to consider the variance of design
during allocation procedure compared with (10). For optimality conditions (9) and (11), σi/(µi−µt) can
be intuitively considered as a noise to signal ratio for design i as compared with the observed best design
t. (9) and (11) show the relationship between αi and α j (i 6= j 6= t), and (9) demonstrates that the allocated
computing budget is proportional to the noise to signal ratio instead of the square of the noise to signal
ratio.

Let total simulation budget n = 10000 which will be allocated to 10 designs. Design i has a distribution
of Exp((4+ i/10)−1), i.e., µi = σi = (4+ i/10), i = 1,2, ...,10. As µi and σi are known to us, we can
easily calculate the number of simulation replications allocated to each design, according to the optimality
conditions for OCBA-exp and OCBA, respectively. The budget allocation strategy for traditional OCBA
and the proposed OCBA-exp method is reported in Figure 1.

Figure 1: The budget allocation strategy for OCBA method and OCBA-exp method.

From the result, it is observed that the proposed OCBA-exp allocation method allocates more computing
budget to the inferior designs compared with traditional OCBA method. Design 3 to design 10 receive more
simulation replications calculated by OCBA-exp method compared with the traditional OCBA method. One
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of the possible reasons is that, with identical means and variances, exponential distribution has a heavier
tail than the normal distribution.

2.4 Sequential Budget Allocation Procedure

We develop a sequential simulation budget allocation procedure, called OCBA-exp, to implement the
optimality conditions (8) and (9). Each design is initially simulated with n0 replications, and additional
replications are allocated incrementally with ∆ replications in each iteration according to optimality conditions
(8) and (9). In summary, we have the following budget allocation procedure.

OCBA-exp Procedure
INITIALIZE Iteration counter l← 0;

Perform n0 simulation replications for all designs; nl
1 = nl

2 = ...= nl
k = n0.

LOOP WHILE ∑
k
i=1 nl

i < n DO

UPDATE First, calculate sample means X̄i =
1
nl

i
∑

nl
i

j=1 Xi, j, and sample variance S2
i =

1
nl

i−1 ∑
nl

i
j=1(Xi, j−

X̄i)
2, i = 1,2, ...,k, using the new simulation output; find t̂ = argmini∈{1,2,...,k} X̄i.

ALLOCATE Increase the computing budget by 4 and calculate the new budget allocation, nl+1
1 ,

nl+1
2 , ...,nl+1

k , according to (8) and (9).
SIMULATE Perform additional max(nl+1

i −nl
i,0) simulations for design i, i = 1,2, ...,k; l← l+1,

END OF LOOP
SELECT Select the design with the smallest sample mean.

3 NUMERICAL EXPERIMENTS

In this section, we test the proposed OCBA-exp procedure by comparing it with the traditional OCBA
method on two typical selection problems.

In order to compare the performance of these allocation approaches, we test them empirically on the
selection examples below.

Example 1: It has 10 designs. Design i has a distribution of Exp((4+ i/10)−1), i.e., rate parameter
λi = (4+ i/10)−1 and i = 1,2, ...,10.

Example 2: It has 10 designs. Design 1 has a distribution of Exp(4−1), i.e., rate parameter λ1 = 4−1,
and design 2 to design 10 have the same distribution of Exp(5−1), i.e., rate parameter λi = 5−1 and
i = 2,3, ...,10.

The sequential OCBA and OCBA-exp procedures allocate the computing budget with the objective
of selecting the best design, i.e., t = 1. We perform 10 initial replications for each design. Incremental
budget is 20, which will be allocated to the candidate designs according to (8) and (9) for the proposed
OCBA-exp method, and (10) and (11) for the traditional OCBA method. The estimate of PCS is based
on the average of 8000 independent replications of each procedure to the problem. The comparison of the
two approaches is reported in Figure 2.

From the results, it is observed that the proposed OCBA-exp method works better than the traditional
OCBA method when the underlying distribution is exponential. That is, the proposed OCBA-exp method
can better adapt to exponential underlying distribution structure. In addition, when dealing with relatively
difficult selection problem, the OCBA-exp method seems to demonstrate more advantages compared with
the traditional OCBA method.

4 CONCLUSIONS

In this study, an efficient simulation budget allocation rule is presented for exponential underlying distribution.
Thanks to its closed-form expression, the proposed OCBA-exp method is easy to compute and implement
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(a) Example 1 (b) Example 2

Figure 2: Comparison results of the two methods.

in practice. The objective is to maximize the probability of correct selection within a given computing
budget. Numerical testing indicates that the proposed OCBA-exp approach is more efficient than the
traditional OCBA method when the underlying distribution is exponential. We also perform some analysis
on the budget allocation method and provide some useful insights for determining the best design when
the underlying distribution is exponential.
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