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ABSTRACT 

We examine the use of the Fourier transform to discriminate dynamic behavior differences between 
congested and uncongested systems. Simulation continuous time statistic ‘trajectories’ are converted to 
time series for Fourier analysis. The pattern of Fourier component magnitudes across frequencies differs 
for congested versus uncongested systems. We use this knowledge to explore statistical process control 
methods to monitor nonstationary systems for transition from uncongested to congested state and vice versa. 
In a sense we are monitoring dynamic metamodel parameters to detect change in the dynamic behavior of 
the simulation.  CUSUM charts on Fourier magnitudes can detect such transitions, and preliminary results 
suggest that in some cases detection can be more rapid than for CUSUM charts based on queue length. 

1 INTRODUCTION 

The design and analysis of modern discrete-event stochastic simulation has been closely tied to queuing 
theory; many simulation models represent a network of queues. The strength of queuing theory, and of most 
simulation analysis methodology, has been in deriving long-run performance measures (moments, 
quantiles) for stationary systems. However, many systems in real life are not stationary over time, and a 
good understanding of the dynamic behavior of real systems can assist managerial decision making. 
Simulation models can help to design that decision support: characterizing dynamic behavior in a controlled 
simulation setting can be used to identify effective monitoring methods for real systems. Our objective is 
to explore simulation analytics methods, in particular Fourier representation, for simulation trajectory data.                

This study explores ways to help decision makers identify when parts of a system become congested, 
or move from congested to uncongested. This can be difficult for complex systems. Monitoring a moving 
average may lead to significant delays in detection. If monitoring queue length, the value must be relatively 
high (or low) to take into account the auto-correlated nature of the data. We examine the characteristics of 
simulated system trajectories, or sample paths using time series based classification methods.  

Section 2 gives motivation for the proposed approach, and contrasts it with previous work in frequency 
domain analysis for simulation. Section 3 highlights technical and theoretical issues raised by this approach. 
Section 4 presents experimental findings, and Section 5 discusses results and outlines future work. 

2 MOTIVATION, STRATEGY AND RELATED WORK 

Our main goal is to develop a more effective approach to use dynamic data to identify or distinguish 
congested from uncongested queuing systems. We expect that by looking at dynamic changes of 
performance indicators over time, we identify whether the system is becoming congested or not. Real-time 
managerial decisions to reallocate system resources could then achieve less waste, and better performance. 
This work is exploratory: we conduct computation experiments to explore whether Fourier representation 
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of simulation trajectories is an effective discriminator between congested and uncongested states. There are 
two questions we need to answer before proceeding. First, we need a reasonable definition of system 
congestion. Second, we must choose dynamic performance indicators to monitor and analyze.  

2.1 System Congestion 

There are various definitions of system congestion in various application areas. The most common 
definitions for queuing systems is related to the utilization for a server or servers. For a network of queuing 
systems, we consider its congestion level to be driven by the queue with the highest utilization.  

A stable stationary system must have an arrival rate to service rate ratio strictly less than one, or a 
utilization strictly smaller than one. Otherwise, the queue will theoretically build up without bound. For 
nonstationary systems, the requirement for long-term stability is more complex, but congestion will be 
related to the dynamically changing utilization value. For nonstationary systems, we define system 
congestion as a state over a period of time rather than as a system property over all time. Choosing the 
length of a time period should take managerial decision making constraints into consideration.  

An M/M/1 queuing system has average queue length of 81 when the system utilization is 0.9. We 
recognize that classifying a utilization of 0.9 as congested is context dependent, but for this study we use 
0.9 utilization to assess behavior of simulated systems in a congested state. For sufficient contrast, we use 
utilizations of .6 to represent uncongested system behavior. Some may consider .6 to be fairly congested. 

2.2 Performance Indicator: Queue Length  

For queuing systems, many performance measures are affected by system congestion: the number of entities 
in the system or number of waiting entities, delaying time of entities, the utilization of servers, and idle/busy 
time of servers are a few. We use queue length at one or more servers as the focus of this study. It is feasible 
to get real-time values for queue length from a simulation or a real system. Delay time can only be calculated 
after an entity finishes service, resulting in later identification. From a managerial view, the utilization is 
not directly observable, while the congestion level is directly observable by queue length, and directly 
linked to system capacity limits. We hypothesize that dynamic changes in queue length might signal a 
transition to high utilization, perhaps sooner than simply monitoring queue length. 

2.3 Converting Simulation Trajectory Data into Time Series 

Queue length is a continuous time statistic of a discrete event simulation. Its piecewise constant value 
changes when an entity in the queue begins service or when an entity arrives at a busy server. An example 
of a queue length trajectory is shown in the upper part of Figure 1. To convert this data into a time series, 
one might assign a ‘time’ index to each change in the queue length statistic, but this would treat long 
sojourns at a particular queue length value the same as short sojourns at that value. We propose sampling 
the queue length statistic at equal spacing along the trajectory, as in the lower part of Figure 1. 

2.4 Time Series Classification Methods 

The shape of the trajectory from different simulation systems can vary in characteristic ways. Some of the 
differences can be identified visually. Figure 2 shows queue length trajectories for M/M/1 queues with 
different utilizations. Congested systems have trajectories that wander, with high autocorrelation. Low-
utilization queue length trajectories exhibit a series of spikes of short duration with intervening intervals of 
zero queue length. While the focus here is on Fourier analysis of time series to discriminate between 
congested and uncongested states, there are other time series classification methods that could be employed. 
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2.4.1 Shapelets 

Over the past several decades, there has been considerable research in time series classification. A novel 
method, time series shapelets, has shown potential in machine learning for image data  (Ye et al. 2010, 
Rakthanmanon and Keogh 2013). A shapelet is a subsequence of a time series that in some sense maximally 
represents a class. They are usually local patterns in a time series, characteristic highly a class of time series 
(Mueen, et al. 2011).  

Figure 1: A sample queue length trajectory and a derived time series. 

Figure 2: Trajectory of M/M/1 systems with utilizations from 0.5 to 1.1. 
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2.4.2 Autocorrelation Function 

Congested queueing systems exhibit high autocorrelation for many performance measures, including queue 
length. Blomqvist (1967) showed that the rate of decrease of autocorrelation is strongly dependent on 
utilization for the M/G/1 queue. Figure 3 shows autocorrelation plots for queue length for the multi-teller 
bank example in Law and Kelton (2000). The autocorrelation pattern clearly differs for the four-teller and 
seven-teller systems. Both have the same arrival rate, so effective utilization is much lower in the seven-
teller system. The autocorrelation is closely connected to the Fourier power spectrum, as we discuss below. 
 
 

 
Figure 3: Autocorrelation plots for queue length for the multi-teller bank in Law and Kelton (2000). 

2.4.3 Time Series Models 

Time series models such as MA, ARMA and ARIMA (Box, Jenkins, and Reinsel 1994) can be fitted to 
time series data, and differences in fitted model coefficients could be used to discriminate between 
congested and uncongested systems. This discriminant can be powerful for comparing two stationary 
systems (as is the simple discriminator of average queue length). Difficulties arise in nonstationary 
situations, when changes might be not just time series model parameters, but the form of the time series 
model as well. 

2.4.4 Fourier Decomposition 

Frequency domain representation of time series have been used for many years in the economics literature. 
An analysis of economic time series data has found and verified a basic smooth declining shape of Fourier 
coefficient magnitudes exists in economic data from various sources (Granger 1966, Levy and Dezhbakhsh 
2003). In spite of the presence of business cycles, seasonality and trends in economic data, the same basic 
shape is found regardless of these factors. For time series data, a discrete Fourier transform (DFT) is 
necessary. This is most commonly implemented using the fast Fourier transform (FFT) algorithm. Our 
choice of Fourier representation for simulation trajectory data is motivated by the connection between the 
Fourier transform and the autocorrelation function. The Wiener-Khinchine Theorem (Chatfield 1989) states 
that the Fourier transform of the autocorrelation function of a function is the power spectrum for a Fourier 
transform of the function itself. So the rapidly decreasing autocorrelation of uncongested systems should 
mean relatively large high-frequency components in the power spectrum, i.e. in the magnitude of the 
Fourier coefficients for the original time series. 
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2.5 Fourier Methodology 

We know that a signal can be represented in both time and frequency domains. For the same signal, its 
representation on each domain is linked by the Fourier transform. The Fourier transform for a function x(t) 
is  
 .)()( ∫

∞

∞−

−= dtetxfs jft   

For piecewise constant trajectories such as queue length, we hypothesize that examining the magnitude 
of the Fourier transform for different frequencies can reveal aspects of the rate and magnitude of queue 
length changes. In addition to the motivation from the connection of utilization-to-autocorrelation-to-
Fourier coefficients, consider the Fourier transform of a unit pulse function. Although this is a simple case, 
the Fourier transform of a sum of any number of trajectory elements is the sum of the Fourier transforms 
of each element. Note that phase differences can result in reduced magnitudes – the resulting Fourier 
coefficient magnitudes may decrease. The magnitude of the real and complex components of the Fourier 
transform for the unit impulse depend on the specific location in time of the pulse. In Figure 4a the pulse is 
from - t/2 to t/2 and of amplitude H = 1. The Fourier transform for such a pulse, located evenly about zero, 
has no complex component. It is s(f) = Htsin(πtf)/πtf , in this case with H = 1 and t = 1, which is plotted in 
Figure 4b. The Fourier representation scales with the amplitude of the pulse, and the frequency composition 
tends to spread (with decreasing magnitude near the zero frequency) for decreasing pulse width. Figure 4c 
shows the Fourier transform for a pulse of width t = 0.25. There is a larger high frequency content (relative 
to the zero frequency magnitude) for a pulse of shorter duration, again suggesting relatively larger high 
frequency components for Fourier transform of a short-duration spike, common in queue length trajectories 
for uncongested systems. 

 
 
 
 
 
 

 
 

 
 a. Unit pulse, 1.0 pulse width b. Fourier for 1.0 pulse width c. Fourier for 0.25 pulse width 

Figure 4: Fourier representations for unit pulses of width 1 and 0.25. 

Although the queue length function is continuous over time, we represent it as a discrete time series as 
shown in Figure 1 and analyze it via the FFT.  Epstein (2005) shows that the discrete approximation 
approximates the continuous Fourier transform “very well indeed,” even for piecewise continuous 
functions. It is possible to reconstruct a continuous-time signal in time domain by interpolating discrete 
signal values in the frequency domain from the output of Fourier transform. By comparing it with original 
trajectory, we can decide which sampling rate to use, balancing fidelity and calculation effort. With 2N 
points one can characterize frequencies up to N cycles per period. For piecewise continuous functions, 
Epstein suggests that the FFT is an adequate approximation for frequencies up to some value well less than 
N/6. So for our purposes, we made the sampling rate 5-10x larger than the duration of features of interest. 

2.5.1 Representation and Reconstruction 

We define an infinite signal 𝑥𝑥(𝑡𝑡) in the time domain, and 𝑠𝑠(𝑓𝑓) in the frequency domain. We can represent 
our signal at any instant t as: 
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𝑥𝑥(𝑡𝑡) = �𝑎𝑎𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐{2𝜋𝜋𝑓𝑓𝑛𝑛𝑡𝑡 + 𝜙𝜙𝑛𝑛} = �𝑋𝑋�𝑛𝑛𝑒𝑒𝑗𝑗2𝜋𝜋𝑓𝑓𝑛𝑛𝑡𝑡 
 
where the sum is indexed by n, the set of frequencies in the discrete Fourier decomposition. The size of 
contribution 𝑎𝑎𝑛𝑛 , and its phase 𝜙𝜙𝑛𝑛  at t=0 is defined by 𝑠𝑠(𝑓𝑓)  at the appropriate frequency 𝑓𝑓𝑛𝑛 . Fourier 
coefficients 𝑋𝑋�𝑛𝑛 could also be written in terms of magnitude and phase as 

𝑋𝑋�𝑛𝑛 = 𝐴𝐴𝑛𝑛 + 𝑗𝑗𝐵𝐵𝑛𝑛 
where the magnitude �𝑋𝑋�𝑛𝑛� = �𝐴𝐴𝑛𝑛2 + 𝐵𝐵𝑛𝑛2/𝑁𝑁 , the phase 𝜙𝜙𝑛𝑛 = 𝑡𝑡𝑎𝑎𝑎𝑎−1(𝐵𝐵𝑛𝑛

𝐴𝐴𝑛𝑛
) , and N is the total number of 

frequencies.  Because our signal is only within a finite time period [0,𝑇𝑇], the FFT assumes the signal repeats 
itself outside of this interval to plus and minus infinity. Consequently it can only contain frequencies which 
are multiple of a fundamental frequency 𝑓𝑓0 = 1/𝑇𝑇. As a result, we can express the time series in the form 

𝑥𝑥(𝑡𝑡) = � 𝑎𝑎𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐{2𝜋𝜋𝑓𝑓𝑛𝑛𝑡𝑡}
𝑁𝑁

𝑛𝑛=0
+ � 𝑏𝑏𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠{2𝜋𝜋𝑓𝑓𝑛𝑛𝑡𝑡}

𝑁𝑁

𝑛𝑛=0
 

where 𝑎𝑎𝑛𝑛,  𝑏𝑏𝑛𝑛 characterize the magnitude and phase of the nth frequency  component corresponding to 𝑓𝑓𝑛𝑛 =
𝑛𝑛𝑓𝑓0. Also according to the symmetry of trigonometry, we have 𝐴𝐴0 = 𝑎𝑎0, 2𝐴𝐴𝑛𝑛 = 𝑎𝑎𝑛𝑛,−2𝐵𝐵𝑛𝑛 = 𝑏𝑏𝑛𝑛. 

Since the output of FFT returns complex numbers representing Fourier coefficients 𝑋𝑋�𝑛𝑛  at each 
frequency, we can calculate the corresponding value of 𝑎𝑎𝑛𝑛,  𝑏𝑏𝑛𝑛  and reproduce the signal value by 
interpolating them into above equation at discrete time points. In fact, reconstruction using a subset of the 
full set of Fourier components will approximate the observed time series. Thus Fourier representations can 
be thought of as a metamodel for the dynamic behavior of a discrete-event simulation. Figure 5 gives a 
graphical representation of the magnitude of the Fourier components for the discretized trajectory shown 
in Figure 1. 

 

 
Figure 5: Fourier magnitudes for the M/M/1 queue trajectory in Figure 1. 

2.6 Distinction from Prior Frequency Domain Simulation Research 

The Fourier approach that we take is distinct from the frequency domain sensitivity analysis by Schruben 
and Cogliano (1981) and the many subsequent papers. In that research, simulation input parameters were 
deliberately varied periodically to determine sensitivity of simulation output to the input parameters. By 
varying different input parameters sinusoidally at (carefully chosen) different frequencies, sensitivities for 
multiple parameters could be determined from only two simulation runs. We do not seek sensitivity 
information, and do not sinusoidally vary parameters for that purpose, rather we seek to characterize a 
system’s dynamic behavior by its Fourier signature, for use in discriminant analysis and process monitoring.  

Further, the index used for the discrete Fourier calculations in prior frequency domain work was 
typically an entity index. Input parameters were varied with the entity index, and discrete-time output 
statistics were analyzed based on the index of the associated entities. Jacobson, Morrice and Schruben 
(1988) did examine using simulation clock time for the driving frequencies, but still analyzed output using 
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an entity index. There is a problem of interpretation, since the entity indices are spaced unevenly in time, 
unlike the points in the time series transformation in Figure 1. 

Hazra and Park (1994) used fixed-time increments, binning arrival and departure events to characterize 
the frequency response of an M/G/1 queue. Applied in the context of deliberate periodic variation of input 
parameters, their findings included a result that is useful in our setting: an M/G/1 queue acts as a low-pass 
filter for temporal variations in arrivals, and the pass-band decreases with increases in system utilization. 
In certain queueing systems, then, we might expect the Fourier representation to have relatively less high-
frequency content if the system is congested. Eick, Massey, and Whitt (1993) and Green, Kolesar and 
Svoronos (1991) examined queue trajectories with sinusoidal variation of arrival rates as well, 
characterizing the impact on the usual steady-state performance measures. Important below, Jagerman 
(1975) found that an Mt/M/s system saw a more rapid increase in the queue length distribution as a function 
of increasing arrivals, than for the decrease in the distribution as the system arrival rate decreased. This will 
be important for our experiments. 

3 TECHNICAL ISSUES 

Our exploratory investigation considered two issues: i) can patterns in the frequency domain discriminate 
the dynamic behavior of congested vs. uncongested systems, and ii) can statistical process control methods 
based on these findings be effective. In order to conduct computation experiments, several technical issues 
had to be examined.  

3.1 Potential Problems of the Time Interval Selection 

In order to apply FFT to an output sample path of queue length changes over time, the trajectory must be 
transformed into time series data. And we need to choose a time sampling interval small enough to enable 
capture of key dynamic features. If we select the minimal observed positive time interval observed between 
events in the original data as the time interval, the total number of points in the time series would be 
computationally intractable for some systems. On the other hand, if we use a too-large interval, we will fail 
to capture some queue length changes that occurred in the trajectory data. 

3.1.1 Time Interval Selection -- 10-k Percentile Value of Inter-arrival/Service time Distribution 

For the simulation systems in this paper, inter-arrival times have been assumed to be exponentially 
distributed. We consider using a 10-k percentile time of the corresponding exponential distribution as the 
sampling interval. There are two main reasons for this. First, since the queue length in a system will be 
strongly related to entity arrivals, by selecting the 10-k percentile value of the interarrival time distribution, 
the probability that the next arrival is in a different interval is 1-10-k. Second, this 10-k percentile value can 
be easily calculated for Poisson arrivals. 

In this paper, we will have used a 10-3 percentile value. This means, we expect to have around 0.001 
possibility to include more than one queue length change within new time interval, and around (0.001)2 
possibility to include consecutive two changes. If an inclusion is detected, we shift the event to the next 
interval and shift all later trajectory transition points by the same amount. This allows keeping all queue 
change events in the time series representation, with only a small perturbation to the original data values. 

In order use the fast FFT algorithm calculations (Cooley and Tukey 1965) we further decrease the 
interval value, to give a number of points over the duration of the simulation trajectory that is a power of 2. 

3.1.2 Time Interval Selection – Fidelity 

When using the adjusted distribution 0.001 percentile value as time interval resulted in total points at 220, 
or 1,048,576 to the MTB. Is this enough? There are two additional justifications that we considered for the 
time interval choice. First, the importance of short-duration queue length changes from a managerial 
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perspective. For the bank teller example, queue length changes of less than a second in duration probably 
have little meaning to the manager, and we suspect are not critical in determining system congestion. 

Second, a sufficient sampling rate guarantees the fidelity of our FFT. Combined with minimal 
managerially interesting time intervals, this can lead to a minimal time interval choice, based on the 
Nyquist-Shannon sampling theorem and the results in Epstein (2005). Thus we have discontinuity in our 
trajectory, and the FFT output from a relatively low sampling rate would actually represent a signal with 
strong ringing artifacts – the Gibbs phenomenon. In order to better separate systems with different 
congestion levels, we need to guarantee a more precise transform outcomes by sampling at higher than the 
Nyquist frequency for sine waves with period equal to the minimal interesting time interval. We further 
examined plots of the reconstructed signals to be satisfied that our sampling rates were adequate. 

3.2 Frequency Component Selection for Discrimination 

In order to better differentiate systems, we need to select the Fourier coefficient magnitude value(s) which 
could best distinguish system trajectory characteristics. Define the magnitude of the (complex) Fourier 
coefficient at frequency 𝑓𝑓𝑛𝑛 as 𝐶𝐶𝑛𝑛 or C[n]. We examined three indicators of congestion: The first magnitude 
value 𝐶𝐶1(but this is just the mean queue length), the average value of the second through 𝑘𝑘1 coefficient 
magnitudes, 

∑ 𝐶𝐶𝑖𝑖𝑖𝑖∈[2,𝑘𝑘1]

𝑘𝑘1−1
 and the average coefficient magnitude over selected set of frequencies from k2-k3,  

∑ 𝐶𝐶𝑖𝑖𝑖𝑖∈[𝑘𝑘2,𝑘𝑘3]

𝑘𝑘3−𝑘𝑘2
. The first measure is the mean queue length, not really an interesting Fourier component but a 

legitimate competitor for discrimination. The second excludes the average, but is an average of the next 
few low frequency components. And the selection of 𝑘𝑘2  and 𝑘𝑘3  are based on examination of the time 
duration of small spikes mentioned above in relation to Figure 2. We use k1 = 5, and scan a trajectory to set 
k2 so that half of the observed spike interval values are less than the corresponding period, with 𝑘𝑘3 set larger.  

3.3 Statistical Process Control for Autocorrelated Data (SPC) 

Traditionally, control charts are used to continuously monitor system performances over time with specified 
upper and lower limits. The existence of a large amount of historical data set and the assumption that process 
observations are i.i.d are typical conditions to effectively and efficiently implement control charts (Snoussi 
et al. 2005). For this paper, the systems under study are often networks of queues. Output will exhibit 
significant autocorrelation. One strategy for monitoring autocorrelated time series is to fit a time series 
model such as those described above during a calibration period and then monitor the residuals via CUSUM 
or EWMA (Apley and Shi 1999; Runger, Willemain, and Prabhu 1995; Nenes and Taragas 2005). Our 
concern with this approach is the uncertainty in model form. Apley (2002) discusses handling uncertainty 
in parameter values, but potential epistemic uncertainty remains. This is of special concern if the 
nonstationarity evidenced in unknown changes in model form. The cumulative sum (CUSUM) chart was 
specifically proposed and tested for monitoring queue performance metrics of an M/M/1 queuing system. 
Chen and Zhou (2015) demonstrated that CUSUM was effective for monitoring estimated system 
parameters inter-arrival rate and service rate.  

4 EXPERIMENTS 

To test our proposed methods, we examined three different queuing systems with different levels of 
complexity. All three simulations used two different combinations of key parameter settings in order to 
achieve target levels of utilization, each setting with 50 replications. The systems were an M/M/1 queue 
with utilizations of 0.6 and 0.9, and the Multi-Teller Bank and Job Shop models from Law and Kelton 
(2000). The Multi-Teller Bank simulation used five tellers and utilizations of 0.6 and 0.9. For each system, 
two sets of experiments were performed: first, Fourier analyses of entire trajectories were computed, and 
coefficient magnitudes were examined for their ability to discriminate between congested and uncongested 
systems. Generally we found that Fourier magnitudes could be used to distinguish between congested and 
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uncongested systems, although this was weakest for the M/M/1 queue. Figure 6 shows magnitude 
comparison for congested and uncongested trajectories for the multi-teller bank simulation. There is little 
overlap in the average magnitude of  C[k2:k3] coefficients so the discrimination is good. 

 
 
 
 
 
 
 

 

Figure 6: Fourier coefficient magnitudes for congested/uncongested Multi-Teller Bank systems. 

4.1 Preliminary SPC Results 

For examining the effectiveness of Fourier methods for detecting change in congestion we employed the 
common testing regime of a fixed change in congestion (utilization) following the calibration period. In the 
SPC setting, the window of trajectory data used to determine Fourier coefficients is necessarily small. We 
used nonoverlapping windows whose lengths were determined by managerial considerations: how quickly 
might one wish to detect a shift? For the M/M/1 system the window was set to 10 minutes, with subgroup 
size 3. Note that there were only .6 or .9 arrivals per minute. For the Multi-Teller Bank (terminating 
simulation), the window was set to 15 minutes with 1 arrival or 1.5 arrivals per minute. For the Job Shop 
(non-terminating simulation), the window was set to 4 hours.   
 While discriminatory power is clear in Figure 6, the small window for SPC resulted in much lower 
power. Because there were many failures to detect in our M/M/1 experiments, we summarize those in Table 
1. Since the k2 and k3 values are set based on nominal system behavior, they were different for congested 
(2 and 5) from uncongested (5 and 25). For the downshift, k2-k3 and 2-5 are identical ranges.  

Table 1: SPC performance for the M/M/1 queue. Shift between utilizations of 0.6 and 0.9. 

 
 

Figures 7-8 show boxplots of the time until signal for each of the SPC statistics that we examined for 
the Job Shop and the Multi-Teller Bank. Each boxplot is based on 100 replications. Failure to detect 
replications are plotted at the upper limit. In Figure 7b local queue mean failed to detect in 90/100 
replications.  
 The preliminary results in the table above and the figures below suggest that the dynamic behavior of 
queue length, as characterized by nontrivial Fourier coefficients C[2:5] or C[k2:k3], can be used to detect 
changes in system congestion, and can be superior to SPC monitoring of local average queue length when 
systems move from a congested state to an uncongested state. We expect that the ability to detect trajectory 
shifts of this sort are disadvantageous for the queue length measure is related to the observation by Jagerman 
(1975) cited above. We expect that the autocorrelation of local average queue length (or C[1]) will be higher 
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than the autocorrelation for higher order Fourier coefficient magnitudes, perhaps a different view of the 
same phenomenon. 

 
 
 
 
 
 
 
 
 
 
 

 a. Uncongested-to-congested b. Congested-to-uncongested 

Figure 7: SPC average run length for congestion transition scenarios, Multi-Teller Bank. 

 
 
 
 
 
 
 
 
 
 
 

 
 a. Uncongested-to-congested b. Congested-to-uncongested 

Figure 8: SPC average run length for congestion transition scenarios, Job Shop. 

5 SUMMARY 

We have two interesting findings in this investigation. First, it appears that frequency domain methods can 
be used to distinguish the dynamic behavior of congested versus uncongested systems. Second, this power 
can be applied in a monitoring situation, to allow decision makers to react to changes in system dynamics. 
Simulation provides a mechanism to test such dynamic detection (and control) procedures before they are 
implemented on a real system. But these findings are preliminary; much remains to be done. 

First, we have not attempted to optimally select i) sampling frequency, ii) identification of Fourier 
components with maximal discriminatory power. Second, discriminatory power may be magnified by 
retaining the multivariate nature of the Fourier coefficients. In particular, using a multi-variate SPC method, 
may result in better and more accurate SPC signaling. And for all of these opportunities, it will be important 
to provide theoretical and empirical performance estimates, to be sure that the methods merit adoption. 

Finally, for the SPC method implemented here, we move the time window of ∆𝑡𝑡  width by ∆𝑡𝑡  to 
construct the next observation data for control charting. This corresponds to nonoverlapping batches. It may 
be possible to improve responsiveness using overlapping samples for construction of Fourier magnitudes, 
for SPC.   
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