Proceedings of the 2016 Winter Simulation Conference
T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds.

INPUT UNCERTAINTY QUANTIFICATION FOR SIMULATION MODELS WITH
PIECEWISE-CONSTANT NON-STATIONARY POISSON ARRIVAL PROCESSES

Lucy E. Morgan, Andrew C. Titman, David J. Worthington

Statistics and Operational Research Centre for Doctoral Training in Partnership with Industry
Lancaster University
Lancaster, LA1 4YR, UK

Barry L. Nelson

Department of Industrial Engineering & Management Sciences
Northwestern University
Evanston, IL 60208 USA

ABSTRACT

Input uncertainty (IU) is the outcome of driving simulation models using input distributions estimated by
finite amounts of real-world data. Methods have been presented for quantifying IU when stationary input
distributions are used. In this paper we extend upon this work and provide two methods for quantifying
IU in simulation models driven by piecewise-constant non-stationary Poisson arrival processes. Numerical
evaluation and illustrations of the methods are provided and indicate that the methods perform well.

1 INTRODUCTION

Within simulation models, more often than not, the true input models driving the system are unknown.
These models can sometimes be estimated by observing the real-world system but this causes additional
uncertainty to arise within the simulation, known as input uncertainty (IU). Overlooking input uncertainty
is still a common error in the simulation community. Once the input distributions are estimated from the
data they are typically assumed to be correct; this can be risky if the sample of real-world data is small as
the models are unlikely to be correct and could result in misleading outputs. The survey by Barton (2012)
showed that in some cases input uncertainty overwhelms stochastic estimation error, the error arising from
the generation of random variates during the simulation; it should, therefore, not be ignored.

Recently input uncertainty techniques have been implemented in the commercial software Simio (Simio
LLC) making it easier for simulation users to quantify the effect of input uncertainty without having to
manually implement a complex statistical procedure. However, this software is limited to i.i.d processes.
For a review of input uncertainty quantification techniques see the survey papers by Barton (2012) or Song
et al. (2014).

In operations research input models are often arrival processes. Examples include call centers, supply
chains or accident and emergency departments where customers or demand can occur according to either
a stationary or non-stationary arrival process. Input uncertainty for non-stationary arrival processes is yet
to be addressed. This paper aims to fill this gap by quantifying input uncertainty in piecewise-constant,
non-stationary Poisson arrival processes. Piecewise-constant arrival rate functions are often used in practice
in simulation studies as they provide flexibility and are conveniently fit to count data. They are included in
many software packages such as Simio (Simio LLC), SIMULS (Simul8 Corporation) and Arena (Rockwell
Automation). It is therefore a natural step to want to quantify the uncertainty propagated to the simulation
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output due to non-stationary arrival processes. We extend two existing methods for quantifying IU due
to i.i.d. input processes to cover non-stationary Poisson processes with piecewise-constant arrival rates
estimated from count data. Further, we improve one method by exploiting the knowledge that the process
is Poisson allowing it to handle arrival processes with many rate changes. We also demonstrate how
change-point analysis can be used to obtain a parsimonious representation of the piecewise-constant arrival
rate function.

The paper is organised as follows. In Section 2 we present background on current IU quantification
techniques and discuss methods for modelling of non-stationary Poisson arrival processes. Section 3 presents
our new methods, building on the work of Cheng and Holland (1997) and Song and Nelson (2015). This
is followed by an empirical evaluation and realistic illustration of the methods in Section 4. We finish with
conclusions and suggestions for further work.

2 BACKGROUND

An early contribution to the IU literature came from Cheng and Holland (1997) who modelled IU using a
Taylor series expansion of the mean response as a function of the input distribution parameters. An adaptation
of this method was later given by Lin et al. (2015) making use of internal gradient estimation, derived by
Wieland and Schmeiser (2006), to reduce quantification of input uncertainty to a single experiment. An
alternative approach was given by Song and Nelson (2015) who present a mean-variance effects model for
quantifying IU. This method, although not asymptotically justified, makes intuitive sense as the performance
measures are likely to depend greatly on the mean and variance of the input distributions.

There are also Bayesian techniques that can be implemented to assist in quantifying uncertainty.
Chick (2001) first employed Bayesian techniques enabling the incorporation of prior knowledge of input
distributions into simulation modelling. In this method prior information is used for the selection of the
input distributions only and input uncertainty is still calculated using the frequentist approach of finding and
subtracting the simulation estimation error from the total uncertainty. Zouaoui and Wilson (2010) extended
this technique using the posterior probability of the candidate distributions to weight the simulation response
but again use frequentist techniques for IU quantification. Recently Xie et al. (2014) developed a fully
Bayesian approach for quantifying uncertainty using Gaussian processes to find the posterior distribution
of the simulation performance measure of interest. This is then summarized by a credible interval which
can easily be dissected to find an estimate for the input uncertainty.

Modelling non-stationary Poisson arrival processes (NSPPs) is also key to our problem. Using Poisson
processes has its advantages: they have good properties that make them easy to simulate using thinning
or inversion. Kuhl and Wilson (2009) consider both parametric and non-parametric approximations, with
respect to NSPPs.

Our focus in this paper is on count data and we model the rate function, A (), as a piecewise-constant
function over ¢ intervals. The intervals, (0,#],(t1,%],...,(f;—1,%,], will represent the intervals over which
the rate is unchanged. Chen and Gupta (2011) give a way to identify, from count data, where change
points in the rate function occur using hypothesis testing. This technique will be utilised in Section 4 as a
pre-processing tool to reduce the number of parameters in our model. Employing piecewise-constant A ()
is justified by Henderson (2003) who showed that asymptotically, increasing the number of observations
of a process whilst simultaneously decreasing the interval size leads to the true arrival rate function of
interest under mild conditions.

3 METHODS

Before considering IU quantification for piecewise-constant NSPPs we set up our approach by reviewing
two existing techniques for quantifying input uncertainty in simulation models with stationary input arrival
processes.
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For ease of explanation consider simulation of a single queue with two driving processes. Let the true
input distributions be denoted by F¢; in reality these distributions are unknown and therefore estimated

distributions F will be used to drive the simulation. We will assume the arrivals follow a Poisson process,
with true rate parameter A¢, denote this by F,. The service distribution, depending on the situation, may
be estimated by a parametric or non-parametric distribution but for ease of exposition we treat it as a
parametric distribution with true parameter 0¢; denote this Fg. Note that the form of Fg will have an
effect on the approach we will take. This gives the parameter space (1¢,0¢) where 8¢ is a row vector of
parameters from the service distribution.

Given real-world data we have independent counts, Ny, N,...,Ny,, of the arrival process, observed m;
times over the interval [0,7"), and observations X;,X>, ..., X, of the service process. Therefore (1¢,0¢) can

be estimated by their maximum likelihood estimators (MLEs) (A, 6) For example assuming the arrivals

follow a Poisson process implies that the arrival counts can be represented by a Poisson distribution,
Ni,Na,...,Ny, ~ Poisson(A°T), and the MLE of the arrival rate is therefore

5 _ TN

m, T

This gives the estimated distributions F; and Fy used to drive the simulation. The simulation goal is to

estimate 1 (A¢,0¢), the expected value of the output of the simulation given the true input parameters. We
describe the output from replication j of the simulation by

Yi(1,0) =n(A4,0)+¢;(1,0) j=12,....n

where € represents stochastic noise and has mean 0 and variance 6%(A,0). Given the MLEs (1,5) a
nominal performance measure estimate of 1(1¢,0°¢) is

This has variance Var[Y (1,0)] which breaks down into input uncertainty and simulation estimation error.
Note that most simulation studies ignore input uncertainty because it is believed to be difficult to quantify.
In reality input uncertainty is just the variance of the expected value of the output of the simulation with

respect to the estimated parameters (A, 6), this can be denoted by
o = Var[(%,8)] = Var[E(¥ (1.,8)[2.,6)]

The other contribution to uncertainty in the output of the simulation comes from simulation estimation
error caused by the generation of random variates during the simulation. Simulation estimation error is

denoted by 2 (1,5) /n which can be estimated using the sample variance S°/n.

3.1 Cheng and Holland

Cheng and Holland (1997) consider only parametric distributions as inputs to the simulation model. This
simplifies input uncertainty to parameter uncertainty. Using a Taylor Series approximation, if 1(4,0) is
twice continuously differentiable then to first order it can be expressed as

n(A,8) ~ n(A°,0°)+Vn (1,6 ((2.0) — (A,6°))"

where V1 (A¢,0¢) is the gradient of the expected value of the performance measure with respect to the
input parameters A and 0. Input uncertainty, Var[n(4,0)], can then be approximated by

Var[n(4,8)] ~ Vn(A°,0°) Var(1,8)Vn (A°,0°)". (1)
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In reality, none of the terms on the right-hand side of Equation (1) are known and so must be estimated.
If the two input distributions are assumed independent, then Var(l 9) can be denoted by

Var(/ﬂ\t,a) = < Vai)(),) Va:)(/e\) )

This can be estimated by \//z;r(/l\, 6) =11 (/}:, 6), the inverse Fisher information matrix of the MLEs evaluated
at (1,0).

Estimation of the gradient is critical. One method is to use the internal gradient estimator of Wieland
and Schmeiser (2006), as seen in Lin et al. (2015). This enables Vn(?t,a) to be evaluated using no
additional simulation effort. We specialise this gradient estimation method to our situation below. Although
based on similar ideas, the gradient estimation described here is distinct from the Taylor series expansion
of n(i,é) employed by Cheng and Holland (1997).

Firstly consider a simulation model with a single input distribution, let this describe arrivals to a system
and be approximated by real-world data where arrival count observations Ni,N,...,N,,, ~ Poisson(A°T).
We assume arrivals are simulated over the full interval [0,7). From these observations A can be found,
this is then, for the purpose of this method, considered to be the true arrival rate A°. In replication j, the
rate A is used to drive the simulation and the count of the number of simulated arrivals in the interval is
recorded. Denote this by d; for replication j. This count can then be used to re-estimate the arrival rate;
we call this estimate A j Where A j=4d;/T. Note that we assume E[A il = 2 since the parameter 2 was used
to run the simulation over j replications. This results in pairs of observations (Y, A ;). Assuming the output
of the simulation depends on the input models, as is most likely the case, then (Yj,ij) are expected to be
dependent. Moreover, if their joint distribution is assumed to be approximately bivariate normal then

E[Y;(A)|A)) = n(A) + 23551 (4 — A) = & + 81 4

where I, is the covariance between Y; and A; and Xj is the variance of A;. Here the derivative of the

expected response with respect to A, the gradient, estimated at A equals 6; = /12 which can easily be
estimated using least squares regression.

This method can be extended when there are multiple input distributions, which is often the case in
simulation models. Recall in our simulation model there is an arrival and service distribution. To find 0,
for the service distribution, this method is just repeated with respect to @. This gives n independent and
identically distributed (i.i.d) vectors (Y}, (AJ,O ), j=1,2,.

Lin et al. (2015) suggest the joint distribution of (Y, (7L 1,9 )) should now be considered multivariate
normal, a natural extension of the previous approach, which gives

The gradient of Vn (1,6 is 8 which, again, can be obtained by least squares regression. We now have
A

)
estimates of both Var(4,0) and Vn(A¢,0) and can therefore quantify IU using Equation (1).

3.2 Song and Nelson

Song and Nelson (2015) suggest a different approximation of the mean function. Their approach is applicable
to both parametric and non—parametric distributions, unlike the approach of Cheng and Holland (1997). We
therefore let the output of the ] rephcatlon of the simulation, given the collection of mput distributions

F, be denoted by ¥ J(ﬁ) =E[Y ( )|F] +¢&;, where the distribution of &; could depend on F.
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They assume that the output mean E[Y(ﬁ) |1A""] can be represented as a function of the mean, u(F) and
variance, 6%(F), of the input distributions alone. Since E[Y ( )]F] is a random variable dependent on F it

can be thought of as a function, n(ﬁ), which, in the case of our queueing illustration, Song and Nelson
(2015) approximate as

N(F) ~ o+ B W(F;) +va 0%(F;) + Bo 1(F;) +ve 67(Fp).

This is called a mean-variance effects model, and it can be extended to any number of stationary input
distributions.

Song and Nelson (2015) fit this model by generatmg B bootstrap samples from F then using the
empirical distribution of these bootstrap samples, F to drive B simulations. Empirical distributions are

used to obviate the need to refit a parametric distribution to each bootstrap sample from F, and because it
makes certain variance and covariance terms (see below) easier to compute.
Consider our assumption that the observed arrival counts follow a Poisson process with true rate AT.

Here the mean and variance of the observed counts, t(F; ) and 62(Fy), both equal AT, simplifying the
mean-variance model. Note that Song and Nelson (2015) did not consider the use of counts to estimate the
arrival rate, as we do here. Now only one regression coefficient is needed to represent the arrival process

N(F) ~ Bo+ By, 1(F;) + Bo 11(Fy) +ve 02 (Fy). 2)

In addition, in this case the bootstrap samples are easy to fit to a Poisson process using the MLE, A.
Therefore, the bootstrap simulations can be driven by Poisson processes rather than empirical distributions;

this makes the method more accurate. These two insights are key to our approach.

From Equation (2) we derive input uncertainty, 67,

Var[n (F)] = Var[Bo+ By 1(F;) + Bo 1(Fo) +vo 02 (Fp)],
= B} Var[u(F;)] + B3 Var[u(Fa)) + v§ Var[o?(Fp)] +2vePe Coviu(Fp), 0% (Fe)],  (3)

assuming independence among the input distributions. Expression (3) can be approximated, through the
use of bootstrap sampling, by

~ ~ . A~k A~
Var[n (F)] = Var[n (F)[F] ~ Var[n (F ) |F],
where
Ak A ~ ~
Var[n(F)[F] = B7 Var[u(F;)|F; ]+ Bg Var[u (Fg ) | Fo) +v Var[o® (Fg ) | Fo] +2ve o Cov|u(Fg ), 0> (Fg) | Fo].
Firstly looking at the arrival distribution, if we let FZ* denote the Possion distribution fitted by the

parametric bootstrap sample of arrival counts, then Var[,u(Fz* ;] = Var[)AL*|F1] = /m; T. For the service

process, which we will assume to be non-parametric, f; , [.L(ﬁg ) and Gz(fo* ) are given by the mean and
second sample central moment of the bootstrapped sample X[, X', ... X7, . As the number of observations
increases this approximation is asymptotically justified and expressions for the variance and covariance
can be found by

M3
Var[u(Fg)|Fo] = —2
w7 Fol = 2
PR M4_(M2)2
Var[o?(Fg )| Fo ~ %
- i M
Cov[u(Fp), 0> (Fg)|Fe] ~ m—;’
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where M‘]; is the k™ central moment of fg and since ﬁg is an empirical distribution M = Z;’Z’l (Xg; — Xo )k /mg.

To find the regression coefficients the bootstrap experiments are used to fit a regression model. Least
squares regression about 1(F) can then be used to evaluate Py, 3;, g and vg. This gives all components
needed to calculate input uncertainty using Equation (3).

When deciding which method to use in practice, the form of the input distributions is key, as is
the amount of data available. Cheng and Holland (1997) require all input distributions to be parametric
and therefore the method could be said to have less flexibility. Conversely, Song and Nelson (2015) can
handle both parametric and non-parametric distributions but difficulty arises in computing the variance and
covariance terms needed to quantify IU for some parametric distributions. Note that in our case we exploit
the fact that for Poisson distributions this is easy.

The use of bootstrapping by Song and Nelson (2015) means given any number of observations of either
process we should be able to obtain the same approximation of IU. Unlike the method by Cheng and Holland
(1997) which relies on asymptotic theory, as m — oo, and therefore may not give a good approximation
of input uncertainty when m is small. But being asymptotically justified could be seen as an advantage,
Song and Nelson (2015) rely on their intuitive model which may not perform well in situations where the
output of the simulation cannot be described well by the first two moments of the input distributions.

It will be of interest to see if the strengths and weaknesses of either method translate to cases where
non-stationary arrival processes are included in the simulation model; this will be covered in Section 4.

3.3 Non-stationary Arrival Processes

We now present two methods for quantifying input uncertainty in simulation models driven using at least
one piecewise-constant, non-stationary Poisson arrival process. These methods build upon the work of
Cheng and Holland (1997) and Song and Nelson (2015) but introduce the idea of modelling the input arrival
distributions using arrival count observations instead of inter-arrival time observations. The assumption
that these arrival counts follow a Poisson distribution is key to our new methods and leads to a useful
simplification in both cases.

Consider a piecewise-constant NSPP with ¢ distinct arrival rates over the intervals [0,¢),
[t1,2),...,[t4—1,T). Each interval can be considered as a single input distribution to the simulation
with the observation interval matching the simulation interval. Again let us consider a simple queueing
model with a stationary service distribution and an arrival process described by a piecewise-constant NSPP.
The parameter space is now (Ai,4s,...,4,4,0) where 0 is a row vector describing the parameters of the
service process.

We start by describing the Taylor series approximation method for quantifying input uncertainty in
this situation. Observed arrival counts in each interval are independent implying no dependence between
Fy,,Fy,, ..., F),. Equation (1) therefore becomes

o7 = Var[n(A,0)] ~ Vi (A¢,0°)Var(A,0)Vn (A°,6°)".

This requires estimation of the gradient, V1 (4¢,0°¢), and variance matrix, Var(x ,5) The independence
of the ¢ arrival processes gives the following diagonal variance matrix

Var(/)\,l) 0 e 0
0 Var(4,)
Var(/}:q) 0
0 0 Var(0)

~

Since the arrival counts are assumed to be Poisson, closed form-equations exist foreach Var(4;),i=1,2,...,q.
Gradient estimation is also no harder in the non-stationary case using the internal gradient estimation method

375



Morgan, Nelson, Titman, and Worthington

of Lin et al. (2015). This requires evaluation of A;, for i = 1,2,...,q and least squares regression of ¥ ' with
respect to the parameter space (A j,é ;j)- One concern with this approach is the validity of the first-order
approximation if ¢ becomes large over many short intervals. A possible way around this would be to merge
small intervals with similar arrival rates using change-point analysis within the pre-processing stage of the
experiment; this idea is explored further in Section 4.

Our second method, to be referred to as the mean-variance approximation, makes use of a mean-variance
effects model in the same way as Song and Nelson (2015) but uses arrival counts to model the input arrival
distribution instead of inter-arrival times. Again we consider each interval of the arrival process as a distinct
distribution, each with arrival rate A;, for i = 1,2,...,q. Assuming the arrival counts follow a Poisson
process means 'U(FZ) = GZ(FZ_) for i =1,2,...,q, as seen in Section 3.2, allowing a simplification of
the mean-variance effects model. The arrival process therefore only contributes g elements, ,u(F%) for
i=1,2,...,q, to the mean-variance effects model, rather than 2¢. This is a significant simplificaiton when
there are many intervals. Formulae exist for both (i (F; ) and Var[,u(FZ_)} making the method simple to
implement.

We have presented two techniques for approximately quantifying input uncertainty in simulation models
with piecewise-constant non-stationary Poisson input processes. However, it may also be of interest to
determine the overall contribution of the arrival process to IU to evaluate whether it overwhelms the
uncertainty contribution from other input distributions or whether there is a specific interval that contributes
substantially to the total IU. Similarly in a simulation model with L input distributions it would be useful
to establish the relative contribution of the /' input distribution to input uncertainty as this can be used to
indicate where more data should be collected if follow-up analysis were to be carried out.

When the input distribution is stationary, Lin et al. (2015) and Song and Nelson (2015) give ways
to approximate the contribution of the // input model. These techniques can also be used alongside our
two new methods for finding the contribution to TU of the arrival process. Consider the i interval of the
arrival process, FZ-' Using a Taylor series expansion its contribution <z (mz), is given by

e~ ~

¢z, (m3) = Vn (3 Var(A) v (4;)"

where the gradient, Vn (I,), approximates d1(A,0)/dA; and the variance is given by Var(?fl-). When the
mean-variance approximation method is used this translates to

¢z (my) = B Varlu(F; ).

1

Now if we were interested in finding the total contribution of the arrival process this is just the sum of the
contributions of the ¢ individual intervals

ca(my) = cp, (ma,) +ea,(mpy) + -+ +cp, (my,).

Whichever approach is used to quantify input uncertainty, an approximation of the contribution of the /'
input model to input uncertainty can be found. From here quantifying the relative contribution of the [/
input distribution, r;(m;), is simply r;(m;) = ¢;(m;)/o7. This indicates which input distribution contributes
the most to IU and therefore where further input data collection may be required.

4 EMPIRICAL EVALUATION

In this section we empirically evaluate and compare our methods using a tractable M(t)/M /e queueing
model. An illustration of using the methods to quantify IU in a realistic call center setting is also presented
to highlight the need for IU quantification in simulation models with non-stationary input processes.
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4.1 M(t)/M /> Queueing Model

We firstly evaluate our methods by considering the M(r)/M /> queueing model since it has well-known
behaviour and calculation of the contribution of the i input distribution, Var[E(Y (F}))|F] fori=1,2,...,p,
is analytically possible. We can therefore assess the quality of the proposed methods from Section 3 against
the true values and compare their respective performance.

We investigated the effect of the size of the observed samples of arrival counts and the speed of
convergence to steady state within each interval on the performance of our methods. Notice that fast
convergence to steady state is analogous to having ¢ distinct M /M /oo queues and for stationary input
distributions we know the mean-variance (M-V) and Taylor series approximation (TSA) methods both
perform well. The system performance measure we selected was the expected number in the system over
the whole period, E(N), which for an infinite server system is also the expected number of busy servers.
This measure is linear in A; for i = 1,2,...,¢ and we therefore expected the approximations to be good.

The experiment is as follows. We considered an M(r)/M /e queueing system over a T = 4 hour
period. The arrival rate was assumed to change hourly according to a piecewise-constant function with
rates A (1) = (41,242,243, A4); the service distribution was assumed to be stationary with service rate y. To
mimic the effect of input uncertainty, the system was “observed” for m days recording the arrival counts
and approximately r = m x 60 x (A; + A2 + A3 + A4) service times, one service time for each arrival. These
provided the data for the fitted input models.

The experiment was split into two sub-experiments with different arrival processes and service rates
reflecting “quick™ and “slow” speeds of convergence to steady state. Within each sub-experiment we
tested different values of m to see if the number of observations of the arrival counts has an effect on the
performance of either method. To enable comparability between the two sets of experiments, m and r are
chosen such that the total number of arrivals is the same for each level of sample size. The square root of
the true analytical contribution from each parameter was recorded, for compatibility with the performance
measure estimate, along with the percentage relative error of both methods in each scenario. In the M-V
method B = 40 bootstrap samples each of n = 500 replications of the simulation were run. The entire
experiment was repeated for 4 = 1000 macro-replications. The averaged results can be found in Tables 1
and 2. L

When calculating the analytical values there is no formula for calculating Var[E(Y (Fy))|F,], although
for large enough y a very close approximation exists. This approximation was used in Experiment 1 but for
Experiment 2, where y = 0.05, it leads to over-estimation. We therefore simulated 1000 values of ¥ and

Table 1: Experiment 1(i): The analytical contribution of the i input distribution and the percentage

relative errors of the M-V and TSA methods when the arrival process is A(f) = (l L l) and service

- 30271273
rate Y = 0.2. Here E(N) = 1.94.

Sample Size \ Method M \ Ay \ A3 \ Ag \ v Total | Magnitude

m=2 Analytical | 6.59 | 8.07 | 7.37 | 6.04 | 144 | 20.1 | =102
r =190 M-V (RE%) | 041 | 030 | -0.12 | 0.22 | -3.22 | -1.53

TSA (RE%) | 0.22 | 0.79 | 0.62 | 0.46 | -5.93 | -2.69
m =20 Analytical | 2.08 | 2.55] 2.33 | 1.91 | 454 | 637 | x102

r=1900 M-V (RE%) | 0.79 | 0.29 | 0.28 | 0.67 | -3.31 | -1.44
TSA (RE%) | -0.09 | 2.52 | -0.18 | 0.53 | -3.73 | -1.45
m =100 Analytical 093 | 1.14 | 1.04 | 0.85 | 2.03 | 2.85 x102

r = 9500 M-V (RE%) | 3.65 | 2.06 | 1.91 | 3.17 | -1.78 | 0.38
TSA (RE%) | 1.67 | 3.25 | 0.56 | 1.32 | -3.54 | -0.86
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Table 2: Experiment 1(ii): The analytical contribution of the i/ input distribution and the percentage

relative errors of the M-V and TSA methods when the arrival process is A(t) = (ﬁ, %, %, 11—2) and service

rate is Y = 0.05. Here E(N) = 1.84.

Sample Size \ Method M \ Ao \ A3 \ A4 \ v Total | Magnitude
m=238 Analytical 6.59 | 8.06 | 7.25 4.50 12.6 | 18.4 x 1072
r=190 M-V (RE%) | -0.46 | -0.34 | -0.03 | -0.11 | -2.87 | -1.20

TSA (RE%) | -1.02 | -0.57 | -0.69 | -0.16 | -5.76 | -2.28
m = 80 Analytical 2.08 | 2.55 | 2.29 1.42 4.00 | 5.84 x1072

r = 1900 M-V (RE%) | 2.39 | -1.27 | 2.06 | -4.19 | 227 | 0.07
TSA (RE%) | -1.27 | 2.53 | -0.93 | -1.87 | -3.62 | -0.77
m = 400 Analytical | 0.93 | .14 | 1.03 | 0.64 | 1.80 | 2.62 | x102
r = 9500 M-V (RE%) | -5.50 | -3.96 | 4.67 | -10.02 | -0.3 | 2.66
TSA (RE%) | -1.49 | -3.24 | 279 | 2.64 | -1.41 | 0.74

calculated E(N) using the parameter space (11,242,435, 44, ¥). The “analytical” values for Var[E(Y(I?V,)) |ﬁw]
reported in Table 2 are therefore the standard deviation of the 1000 observations of E(N).

Notice that the analytically calculated contributions for A4 and y are smaller in Experiment 2 compared
to Experiment 1. When convergence to steady state is slow more work is carried out outside of our window
of observation and therefore more service times are truncated by the end of the time period. This causes
a reduction in variance which explains the discrepancy between the contributions for A4 and y across the
two experiments. All other values match very closely between the experiments because virtually all the
work originating in the first three intervals is completed by the end time, 240 minutes, even in the system
that settles to steady state more slowly.

From Tables 1 and 2 it is clear that as the amount of input data m increases the contributions decrease,
as they should. However, our interest here is in the relative errors of contribution estimation for the M-V
and TSA methods. When the contributions are small, precise estimation of them is harder. However, the
TSA method is asymptotically valid as m — oo so it tends to hold its relative error level across sample sizes.
The M-V approach, on the other hand, has relative errors smaller than TSA when m is small, but as m
increases the approximate nature of the mean-variance effects model causes the relative errors to increase
somewhat. Overall, the M-V method seems to be better when m is small, and TSA is better as m becomes
larger. The speed of convergence of the queue to steady state does not seem to affect the performance of
our methods for our chosen performance measure. Overall both methods can be said to perform well with
most approximations having relative error less than 5%.

4.2 Healthcare Call Center

We will now illustrate the impact of IU quantification in the simulation of a real-world system with a
non-stationary input process. We have data from an NHS 111 healthcare call center. In the UK these call
centers are used to advise people who have symptoms of an illness but are unsure where to get treatment.
The aim is to reduce congestion in hospital EDs or doctors surgeries caused by minor complaints.

The data was split into 96, 15-minute intervals spanning 24 hours. Of the 6 months of data we decided
to consider Wednesdays only as public holidays are unlikely to fall mid-week and therefore we would
expect no spikes in the arrival rate. Having 6 months worth of data meant we had m =26 Wednesdays to
consider and these were averaged to find the mean arrival rate within each interval which became our initial
piecewise-constant arrival rate function. While it is clear from the mean arrivals in each time interval that
the process is not stationary, extended periods of time where the rate was approximately constant could
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Figure 1: Change point analysis on the arrival rate of calls on Wednesdays.

also be observed. Further, it will be difficult to estimate, and not very meaningful to measure, contributions
from 96 tiny intervals. Therefore, rather using a large number of small intervals, or choosing arbitrary large
intervals, change-point analysis from Chen and Gupta (2011) was applied to let the data guide when to
merge periods where the arrival rates were not significantly different. This resulted in 8 periods of differing
length as seen in Figure 1. We would argue that this approach should be used routinely. For the purposes
of this analysis, we assume there is no uncertainty in the location of these change points.

In a realistic call center not only does the arrival rate change with time but so too does the number
of servers. Therefore, we simulated the 111 call center as an M(r)/G/s(t) queue. From two months of
service time-data the mean service time was 8.00 minutes and the standard deviation was 4.33 minutes. A
moment matching approach was used to fit a Gamma distribution with shape parameter y; = 3.408 and
scale parameter Y, = 2.347. Since we wanted to mimic having observed a service time for each arrival,
we created a synthetic “observed” service-data set of size r = 52,711 observations, corresponding to the
expected number of arrivals, and treated this as the real-world data.

The call center’s target level of service is P(Wait > 1min) < 0.05 for each caller. Approximately
proportional staffing was applied to each time interval and it was found that the waiting time target was
met at a level equivalent to 60% utilisation. This is our base case in the experiment as it is likely to be
close to the true staffing level the call center used. We also simulated the system with constant staff size
tuned to the expected arrival rate over the whole day (Case 1) and to 1.5 times this expected arrival rate
(Case 2). These staffing patterns are chosen as they highlight the danger of using stationary approximations
of input distributions. In practice someone may use the expected arrival rate over the whole day to set a
staffing schedule, ignoring the possibility of fluctuation in the arrival rate.

We investigated performance measures such as the probability of waiting more than 1 minute to be
served P(Wait > 1min), the expected number of people in the queue, E(N), and the expected waiting time
of customers, E(WTime) over the whole day. The results for the last of these, E(WTime), can be seen
in Table 3. We used B = 40 bootstrap samples, for which n = 100 replications of the simulation were
carried out for the M-V method. This process was repeated for 7 = 1000 macro-replications of the entire
experiment.

Notice first that M-V and TSA give similar, but not identical results. However, they agree on which
intervals are the highest and lowest contributors. In Case 1 the contribution of interval 6, Var[E(Y (F,))|Fy,].
is much larger than the contribution of any of the other intervals. This coincides with the spike in arrival
rate in Figure 1. At this point the queue would be experiencing very high levels of congestion, the number
of servers equates to a utilisation of 112.3% which means all servers are always busy. This also seems
to have a knock on effect into the next interval, where the contribution of A; is much higher than the
contribution of A5 even though they have a similar arrival rate. This may be explained by both the backlog
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Table 3: The effect of different staffing schemes on the parameter contribution, Var[E(Y (F}))|F] for input
distributions i = 1,2,...,p.

Var[E(Y (F))|F]

Case M ‘ A ‘ 3 ‘ A4 ‘ As ‘ Ag ‘ Ay ‘ Ag y Magnitude E(WTime)

Base M-V | 1.27 | 947 | 1.31 | 2.31 | 0.53 | 0.51 | 0.60 | 0.66 | 2.41 x 1076 0.0674
TSA | 1.04 | 937 | 1.12 | 2.10 | 0.34 | 0.32 | 0.41 | 045 | 2.45 x1076 0.0674

| M-V | 2,11 | 2.24 | 2.22 | 2.34 | 2.41 | 165.53 | 8.03 | 2.17 | 17.55 x1073 5.17
TSA | 0.51 | 0.54 | 0.57 | 0.64 | 0.55 | 162.16 | 6.26 | 0.56 | 15.57 x1073 5.17

) M-V | 329 | 3.27 | 3.31 | 3.36 | 3.28 | 86.64 | 3.12 | 3.15 | 11.32 x10~7 0.026
TSA | 2.19 | 1.99 | 1.91 | 2.11 | 2.09 | 8545 | 1.87 | 2.09 | 10.88 x1077 0.026

of customers and the arrival rate being above average in the 7" interval. Although the queue is trying to
empty, congestion is still high leading to higher uncertainty. By the final interval the system has recovered
from the high congestion levels and the contribution of Ag is relatively small.

We see a similar but less pronounced effect in Case 2 where again the contribution of Ag is larger
than the others. This illustrates the importance of understanding the dynamics of IU as the results show
how sensitive the overall estimate of performance is to the correct value of arrival rate during the short
6" interval. In the base case we do not see these patterns, the arrival distribution contributions appear
to be similar in all but the second interval. When considering E(WTime) the second interval is the most
influential; due to the low number of servers this higher contribution was therefore expected.

5 CONCLUSION

This paper presents two methods for quantifying input uncertainty in simulation models with NSPP input
processes. The key is the use of count observations to model the arrival processes, meaning each interval of
the piecewise-constant rate function can be treated as a distinct, stationary input distribution. From this it is
simple to calculate the total contribution to IU of each process and therefore the overall IU. Exploiting the
fact that the arrivals are Poisson also allowed us to greatly streamline the method based on a mean-variance
effects model.

An evaluation of the performance of the methods was presented using the tractable M(t)/M /o model;
both methods were seen to perform well. An illustration of a realistic call center scenario was also used
to show how input uncertainty quantification in arrival processes may be applied in practice, including the
use of change-point analysis to allow the arrival data to guide the choice of time-interval sizes. An open
question remains as to the IU that arises from the location of these change points and whether this should
be taken into account within the analysis.
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