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ABSTRACT

The properties of random graphs provide insight into the behavior of real-world complex networks. One
such property is the Typical Distance, which characterizes the time required to traverse the network. For
example, the Typical Distance measures how fast a virus spreads through a population. The probability that
the Typical Distance is large is difficult to estimate via crude Monte Carlo. We propose a new sequential
importance sampling estimator that can find the probability of a large Typical Distance in preferential
attachment models, with a computational complexity that is quadratic in the number of nodes. Numerical
experiments indicate that the estimator is significantly more efficient than crude Monte Carlo.

1 INTRODUCTION

The distance between two nodes in a complex network is of great interest for communication and social
networks. For a communication network such as the Internet, this distance represents the delay between
sending and receiving messages (Mao, Saul, and Smith 2006). In an epidemiological network this distance
affects the time required for a disease to spread throughout the network (Kuperman and Abramson 2001).
Evaluating the distance between nodes of a complex network is difficult because real-world complex
networks are large, change frequently and usually cannot be measured accurately (Paxson 1997).

To overcome these difficulties, complex networks can be modelled with random graphs. For example
the World Wide Web can be simulated with a preferential attachment random graph model (Barabási and
Albert 1999), (Dorogovtsev, Mendes, and Samukhin 2000), and social networks can be simulated by the
exponential random graph model (Robins et al. 2007). The study of random graphs as models for complex
networks gained traction around the year 2000. This increase in activity motivated the investigation of
random graph properties, such as connectivity (Mihail, Papadimitriou, and Saberi 2003), degree sequences
(Bollobás et al. 2001) and cliques (Alon, Krivelevich, and Sudakov 1998). The property of focus for this
paper is Typical Distance, which is defined as the average distance between any two nodes of a graph, given
that a path between them exists. There exist results regarding the expected Typical Distance for popular
random graph models (e.g, (Bollobás and Riordan 2004, Kuperman and Abramson 2001)), however no
research has been conducted into the tail probability of the Typical Distance. Exact computation of this tail
probability is intractable for large graphs. Furthermore, the probability that the Typical Distance exceeds
some large threshold is often too small to estimate using crude Monte Carlo.

To find the probability of large Typical Distance within preferential attachment random graphs, we
develop a new sequential importance sampling estimator. We also exploit a property of Typical Distance
which allows the estimator to complete in O(n2) time, where n is the number of vertices in the random
graph. Empirical tests show that the estimator is substantially more efficient than crude Monte Carlo.

978-1-5090-4486-3/16/$31.00 ©2016 IEEE 338



Grant and Kroese

The layout of the paper is as follows. Section 2 contains the formal graph theory definitions used
throughout the paper. The section also states and proves a lemma that is essential for reducing the time
complexity of the estimator constructed in Section 3. The focus of the paper is on the sequential importance
sampling estimator developed in Section 3. This section provides the full algorithm for implementing the
estimator. Numerical results are displayed and discussed in Section 4, before Section 5 concludes the paper.

2 GRAPH PRELIMINARIES

Let G be a graph with vertex set VG = {1,2, . . . ,n} and edge multiset EG = {{v1,u1},{v2,u2}, . . .}, where
the vi,ui ∈ VG may be equal. The degree of a vertex v is the number of edges incident with v and is written
as degG (v).

The distance between two vertices v and u in graph G , denoted dG (v,u), is the length of the shortest path
from v to u. If there is no path from u to v, then by convention dG (v,u)=∞. The set CG (v)= {u | dG (v,u)<∞}
is called the component of vertex v. Vertices u and v are said to be connected if CG (v) = CG (u). As only
undirected graphs will be considered in this paper, u ∈ CG (v) implies that CG (v) = CG (u).

The Typical Distance from v is defined as

DG (v) = E[dG (v,U) | CG (v) = CG (U)], (1)

where U is a vertex chosen uniformly from V . We define the Typical Distance of G as

D(G ) = E[dG (V,U) | CG (V ) = CG (U)], (2)

where V and U are vertices chosen independently and uniformly from V . Hence the Typical Distance of
a graph is the expected distance between a pair of connected vertices.

The following lemma will be useful in Section 3.

Lemma 1 Consider graphs G and H , where H is formed by adding an edge {z,w} between two
disconnected components CG (z) and CG (w). Then if CG (z) and CG (w) have m and n vertices respectively,

DH (v) =
mDG (v)+n(DG (w)+dG (v,z)+1)

(m+n)
, v ∈ CG (z). (3)

Proof. Let U be a uniformly chosen vertex from H . Then,

DH (v) = E[dH (v,U) | CH (v) = CH (U)]

=
1

m+n ∑
u∈VH

dH (v,u)

=
1

m+n

(
∑

u∈CG (z)
dG (u,v)+ ∑

u∈CG (w)
{dG (v,z)+1+dG (w,u)}

)

=
1

m+n

(
mDG (v)+n(dG (u,z)+1)+ ∑

u∈CG (w)
dG (w,u)

)

=
mDG (v)+n(dG (u,z)+DG (w)+1)

m+n
.

2.1 Graph Processes

The random graph models of interest in this paper are constructed via graph processes. A graph process
is a discrete-time process (Gt , t = 0,1, . . .) where each Gt is a random multigraph. An example of a graph
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model which is constructed via graph processes is the preferential attachment (PA) model (Dorogovtsev,
Mendes, and Samukhin 2000, van der Hofstad 2014).

The preferential attachment model will be the focus of this paper. In its simplest form, the model
depends on two parameters: the number of vertices, n, and an attachment weighting parameter α ≥ −1.
We write PAn(α) for the corresponding model. The special case PAn(0) is the Barabási–Albert random
graph model (Barabási and Albert 1999). Figure 1 shows typical realizations of PA50 for different values
of α .

Figure 1: Examples of Preferential Attachment random graphs. The left, center and right graphs are

PA50(−0.75), PA50(0) and PA50(3), respectively.

The model is constructed via a graph process (Gt , t = 0,1, . . .) using the following procedure. The
process starts with G0 empty. To advance the process from any Gt , a vertex labelled t+1 is added, followed
by an edge {t +1,Vt+1}, where Vt+1 is a vertex chosen randomly from the current vertex set {1, . . . , t +1}
according to the probability

P(Vt+1 = v | Gt = Gt) =
degGt

(v)+α +δv,(t+1)

t(2+α)+1+α
v = 1, . . . , t +1, (4)

where δi, j is the Kronecker delta. This new graph with additional edge and vertex is Gt+1. Once t = n, we
deliver Gn as a PAn(α) random graph.

From the definition above, knowledge of Vt+1 and Gt implies complete knowledge of Gt+1. Likewise,
if Gt+1 is known, Vt+1 can be identified as the vertex that is adjacent to vertex t +1. Clearly this implies
that there exists a one-to-one correspondence between Gt and Vt = (V1, . . . ,Vt).

To efficiently simulate a preferential attachment graph, we can use Algorithm 1. The algorithm is
generalized from the one presented in (Newman 2003) to allow for α �= 0. To do this, we note that the
density can be rewritten as

P(Vt+1 = v | Gt = Gt) =

{
1+α

t(2+α)+1+α +
degGt (v)−1

t(2+α)+1+α If v < t +1

1+α
t(2+α)+1+α If v = t +1,

(5)

thus the generation of Vt+1 can be separated into two cases. The first has Vt+1 proportional to degGt
(v)−1

and the second has Vt+1 chosen uniformly from vertices v ≤ t+1. Which case to use is decided by Bernoulli
trial with weight θ = t/(t(2+α)+1+α) and success indicating the first case. By storing Vs for all s ≤ t
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in an array which is updated after each edge is added, randomly selecting one of the entries of the array
uniformly can be used to efficiently select a vertex proportional to degGt

(v)−1.

Algorithm 1: PAn(α)

Input: Number of vertices n, attachment weight α
Output: PAn(α) graph Gn

Initialize G0 as a graph with n vertices and no edges

Construct G1 by adding edge {1,1} to G0

A ← [1]
t ← 1

for t < n do
U ← Uniform real number between 0 and 1

θ ← t/(t(2+α)+1+α)
if U < θ then

X ← Uniform integer from {0,1, . . . ,size(A)−1}
V ← A[X ]

else
V ← Uniform integer from {1,2, . . . , t +1}

end
Add edge {t +1,V} to Gt to form Gt+1

A[t]←V
t ← t +1

end
return Gn

3 TYPICAL DISTANCE ESTIMATION VIA SEQUENTIAL IMPORTANCE SAMPLING

The aim is to evaluate �= P(D(G)> γ) for γ large, where G is a PAn(α) random graph. In this section
we develop a Sequential Importance Sampling (SIS) estimator that provides an accurate estimation in
reasonable time. For more information regarding sequential importance sampling, we refer the reader to
(Kroese, Taimre, and Botev 2011).

Recall that the vector of random vertices Vt = (V1, . . . ,Vn) uniquely determines Gt . Hence there exists
a function h such that Gt = h(Vt). Furthermore denote ft+1(vt+1 | vt) = P(Vt+1 = vt+1 | Gt = h(vt)) for
t = 1,2, . . . ,n. For convenience, set S(Vn) = D(h(Vn)).

With �= P(S(Vn)> γ), we have
�= E f I{S(Vn)> γ}. (6)

Here the subscript f indicates that the expectation is taken with respect to

f (vn) = f1(v1) f2(v2 | v1) · · · fn(vn | vn−1). (7)

SIS involves sampling from an importance sampling density g(vn) = g1(v1)g2(v2 | v1) · · ·gn(vn | vn−1)
where g satisfies

g(vn) = 0 =⇒ I{S(Vn)> γ} f (vn) = 0. (8)

By taking the expectation with respect to g, we can represent � as

�= Eg

[
I{S(Vn)> γ}

n

∏
t=1

f (Vt+1 | Vt)

g(Vt+1 | Vt)

]
. (9)
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Assume it is easy to simulate from g1(v1) to find V1, and then simulate from g2(v2 | v1) to find V2 and
so on, until we have Vn from g(vn). As the nominal pdf f has conditionals ft(vt | vt−1) that are easy to
evaluate, we arrive at the following unbiased SIS estimator:

�̂=
1

N

N

∑
i=1

I{S(V(i)
n )> γ}

n

∏
t=1

ft+1(V
(i)

t+1 | V(i)
t )

gt+1(V
(i)

t+1 | V(i)
t )

, (10)

where V (1)
1 , . . . ,V (N)

1 are independent samples from g1 and V (1)
t , . . . ,V (N)

t are independent samples from the

respective conditional densities gt( · | V(1)
t−1), . . . , gt( · | V(N)

t−1).
The remaining problem is to select g1,g2, . . . ,gn such that the variance of the estimator is minimized.

We propose the following family of importance sampling densities:

gt+1(vt+1 | vt) ∝
(
degGt

(vt+1)+α +δvt+1,t+1

)×max{1,DGt (vt+1)
p}, (11)

where p ≥ 0 is a parameter of the density and Gt = h(vt). Essentially this density means that for each new
edge added to the graph, it is more likely that the edge will be incident with a vertex that has high distance
from other vertices. Equation 3 shows that this will produce graphs with higher typical distance, therefore
sampling from g means the event D(G)> γ is more likely to occur. For p = 0 the estimator is identical to
crude Monte Carlo (CMC), which will be useful in analysing the performance of the estimator.

3.1 Efficient Typical Distance Evaluation

The importance sampling density defined in (11) requires an expensive Typical Distance calculation to find
DGt (v) for every vertex v at each time t. A naive implementation of the estimator would find the Typical
Distance using a breadth first search (BFS) from each vertex. Here BFS requires O(n) time and there are
at most n vertices, so evaluating the Typical Distance takes O(n2) time. The Typical Distance would need
to be found before evaluating gt+1(vt+1 | vt) at each stage, hence it must be computed n times. Thus a
naive implementation would take O(n3) time to execute.

Compare this against CMC, which only requires a single Typical Distance calculation after all edges
are added. So CMC requires O(n2) time, which shows that a naive approach to implementing the SIS
estimator is inadequate. We introduce an update scheme which allows the SIS estimator to avoid redundant
calculations and achieve O(n2) time.

The update scheme works as follows. A vector c tracks the component of each vertex and a vector b
maintains the value of DGt (v) for all vertices v. The two vectors are initialized to cv = v and bv = 0. If
cv = cu then vertex v and u are in the same component. Say an edge {u,w} is added to Gt , with u ≤ w.
It is clear that CGt (w) contains only w for the preferential attachment model defined in Section 2. Hence,
by Lemma 1, the value of bw is updated to

bw ← |CGt (u)|(1+bu)

|CGt (u)|+1

and for all v such that cv = cu, we set

bv ← |CGt (u)|
|CGt (u)|+1

bv +
1

|CGt (u)|+1
(1+dGt (v,u)).

Note that we use c to determine CGt (v) and |CGt (v)| in the above equations. Furthermore, dGt (v,u) can
be evaluated for all necessary v in a single breadth first search. After updating the b vector, c is updated
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by setting c∗ ← min{cu,cw} and then cv ← c∗ for all v such that cv = cu or cv = cw. The full algorithm
incorporating this update scheme is shown in Algorithm 2.

Algorithm 2: SIS estimator for P(D(G)> γ)

Input: Number of vertices n, parameter α , parameter p, threshold γ
Output: Estimate of P(D(G)> γ) for G in PAn(α)
W ← 0

for i = 1 to N do
Construct G0 as a graph with n vertices

w = 1

b ← 0
for j = 1 to n do

c j = j
end
for t = 0 to n−1 do

Vt ← vertex chosen randomly with density gt+1(v | Vt)

w ← w× ft+1(Vt+1 | Vt)
gt+1(Vt+1 | Vt)

Construct Gt+1 by adding edge {t +1,V} to Gt to make Gt+1

UpdateVector(c,b,Gt+1,V, t +1)

end
if (∑n

j=1 b j)/n > γ then
W ←W +w

end
end
return W/N

Algorithm 3: UpdateVector

Input: Component vector c, Typical Distance vector b, graph G , vertex u, vertex w (assume u < w)

Output: Updated vectors c and b.

m ← number of elements of c with cv = cu

bw ← m
m+1

(1+bu)

Δ ← result from BFS starting at u (so Δv = dt(u,v))
for v in { j |c j = cu} do

bv ← m
m+1

bv +
1

m+1
(1+Δv)

end
cw = cu

The asymptotic time complexity of the SIS estimator with this update scheme in on par with CMC.

Proposition 1 Algorithm 2 has asymptotic time complexity O(n2), where n is the number of vertices in
the random graph.

Proof. There are n iterations for a PAn(α) random graph. At each iteration the vertex Vt must be
selected and vectors b and c must be updated. The subroutine for choosing Vt in Algorithm 2 loops over
vertices 1, . . . , t. As t ≤ n, this subroutine is O(n). Within the same iteration we perform single BFS which
takes O(n) time. Counting the size of the components from c and then updating every element of b and c
requires two separate loops over both vectors, and hence requires O(n) time. As all other operations are
not dependent on n, the full algorithm requires O(n(n+n+n)) = O(n2) time to run.
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4 NUMERICAL RESULTS

Tables 1 through 4 demonstrate the performance of the estimator. Here N is the number of graphs generated
per estimate. To combine the relative error and time results, we record the empirical efficiency of each
estimator (Handscomb and Hammersley 1964), defined as

Efficiency(�̂) =
s2

ĉ Tĉ

s2
�̂

T�̂

, (12)

where �̂ is the estimator of interest, ĉ is the crude Monte Carlo estimator for the same quantity, s is the
standard error of the estimator and T is the average time required per estimate. It is clear from Table 1
that the estimator outperforms CMC for appropriate parameter selection. Setting the parameter p too high
causes the estimator to increase in variance, as seen in Table 1. For the problem described in Table 1 the
optimal value for p appears to be between 1.2 and 2.0. Finding the optimal value can be done through a
pilot run with fewer samples. Empirical tests show that the estimator is stable, so increasing the number
of runs by a factor of K reduces the relative error by a factor of

√
K. Prior to running the trials for Table 2,

3 and 4, pilot runs showed that p = 1 was a reasonable choice for all three cases.

Table 1: Results for n = 50,α = 0,N = 107,γ = 6.0.

p 0 0.4 0.8 1.2 1.6 2.0 CMC

Mean 1.80e-6 1.28e-6 1.34e-6 1.31e-6 1.30e-6 1.45e-6 1.40e-6

Relative Error 0.236 0.085 0.065 0.048 0.037 0.111 0.267

Time (seconds) 14325 13159 13201 13778 13531 14507 13735

Efficiency 0.75 12.25 19.33 35.08 60.15 5.19 1.00

Table 2: Results for n = 25, α = 0, N = 107. For SIS, p = 1.

γ Method Estimate
Relative

Error

Time

(seconds)
Efficiency

4.50
CMC 5.02e-5 0.045 4202 1.00

SIS 4.98e-5 0.010 3812 22.28

4.75
CMC 6.60e-6 0.123 3135 1.00

SIS 6.88e-6 0.022 3326 28.108

5.00
CMC 5.00e-7 0.447 3110 1.00

SIS 9.00e-7 0.052 3685 19.20

Table 3: Results for n = 25, α =−0.75, N = 107. For SIS, p = 1.

γ Method Estimate
Relative

Error

Time

(seconds)
Efficiency

3.75
CMC 4.77e-5 0.046 4493 1.00

SIS 4.18e-5 0.013 3922 18.43

4.00
CMC 4.40e-6 0.150 4117 1.00

SIS 4.43e-6 0.031 3596 26.44

4.25
CMC 6.00e-7 0.408 3140 1.00

SIS 4.07e-7 0.079 3972 45.23

344



Grant and Kroese

Table 4: Results for n = 25, α = 3, N = 107. For SIS, p = 1.

γ Method Estimate
Relative

Error

Time

(seconds)
Efficiency

5.00
CMC 5.15e-5 0.044 3172 1.0

SIS 5.06e-5 0.009 3406 19.49

5.25
CMC 9.50e-6 0.102 2559 1.0

SIS 7.96e-6 0.022 3118 26.11

5.50
CMC 1.30e-6 0.277 2527 1.0

SIS 1.19e-6 0.052 3157 26.82

Finally, we see in Figure 2 that the use of an update scheme is essential for ensuring the SIS estimator
is viable for large n.
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Figure 2: Time required for each algorithm to complete. Here α = 0, N = 10000. Naive SIS is the

implementation of the SIS algorithm described at the start of Section 3.1.

5 CONCLUSION

Here we have provided an efficient estimator for the probability that the Typical Distance between two
nodes is high in a preferential attachment random graph. By using SIS with a simple update mechanism
we get an O(n2) estimator which is substantially more efficient than CMC. For CMC to achieve the same
relative error as SIS on graphs of fifty vertices, it would require at least fifty times as many samples.

Future work includes finding an estimator to handle preferential attachment models which permit
multiple edges to be added at each time step. In addition, combining the SIS estimator with splitting to
create a sequential importance resampling estimator would further enhance the estimator, assuming that
the extra calculations do not slow the algorithm down considerably.
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