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ABSTRACT 

This tutorial discusses in depth the operational validation of simulation models after a brief overview of 
verification and validation of simulation models. The discussion of operational validation first covers the 
different approaches used for observable and non-observable systems. Next, various types of graphical 
displays of model output behavior are presented; this is followed by how these displays can be used in 
determining model validity by the model developers, subject matter experts, and others when no system 
data are available; and how these displays can be used as reference distributions for operational validation 
when system data are available. Lastly, the use of the “interval hypothesis test” is covered for operational 
validation when sufficient system data are available.  Various examples are presented. 

1 INTRODUCTION 

This tutorial discusses the operational validation of simulation models. First, we give a brief overview of 
verification and validation of simulation models. Then, operational validity is discussed in depth. 
 To determine whether a model and its results are “correct” for a specific use or purpose, model 
verification and validation are performed. Model verification is defined as “ensuring that the computer 
program of the computerized model and its implementation are correct,” and model validation is defined 
as the “substantiation that a computerized model within its domain of applicability possesses a satisfactory 
range of accuracy consistent with the intended application of the model.” A model should be developed for 
a specific purpose and its validity should be determined with respect to that purpose. A developed model 
should usually be a parsimonious model, meaning that the model is as simple as possible yet meets its 
purpose. The accuracy of a model (sometimes referred to as model fidelity) should only be what is needed 
to satisfy the model’s intended purpose or use and should usually be specified by the model’s acceptable 
range of accuracy. A model should be valid over its domain of applicability, and this is usually determined 
by ensuring that the model is valid for numerous sets of experimental conditions that define the domain of 
a model’s intended applicability. (A set of experimental conditions contains a set of values for the set of 
variables that define the domain of applicability.)  If the purpose of a model is to answer a variety of 
questions, the validity of the model needs to be determined with respect to each question. (For a detailed 
discussion on simulation model verification and validation, see, e.g., Sargent 2013). 
 We present in Figure 1 a graphical paradigm developed by Sargent (1981, 1982, 1983, 2001b, 2013) 
called the “Simplified View of the Model Development Process” that shows how verification and validation 
are related to the model development process. The problem entity is the system (real or proposed), idea, 
situation, policy, or phenomenon to be modeled; the conceptual model is the mathematical/logical/graphical 
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representation (mimic) of the problem entity developed for a particular study; and the computerized model 
is the conceptual model implemented on a computer. The conceptual model is developed through an 
analysis and modeling phase, the computerized model is developed through a computer programming and 
implementation phase, and inferences about the problem entity are obtained by conducting computer 
experiments on the computerized model in the experimentation phase.  
 

 
Figure 1: Simplified version of the model development process. 

We now relate model verification and validation to this simplified version of the model development 
process. (See Figure 1.) Conceptual model validation is defined as ensuring the theories and assumptions 
underlying the conceptual model are correct and the model representation of the problem entity is 
“reasonable” for the intended purpose of the model. Computerized model verification is defined as assuring 
that the computer programming and implementation of the conceptual model are correct. Operational 
validation is defined as determining whether the model’s output behavior has a satisfactory range of 
accuracy for the model’s intended purpose over the domain of the model’s intended applicability. Data 
validity is defined as ensuring that the data necessary for model building, model evaluation and testing, and 
conducting the model experiments to solve the problem are adequate and correct. 

There are three basic decision-making approaches for deciding whether a simulation model is valid. 
Each of these three approaches uses a different decision-maker. All of the approaches require the model 
development team to conduct verification and validation as part of the model development process, which 
as shown in Figure 1 consists of three major model development steps and three verification and validation 
steps. (See Sargent 2013 and 2015a for further discussion on the model development process.)  

One decision-making approach, and a frequently used one, is for the model development team itself to 
make the decision as to whether a simulation model is valid. The decision is based on the results of the 
various tests and evaluations conducted as part of the model development process.  

A second decision-making approach is to have the user(s) of a simulation model decide the validity of 
the model. In this approach, the users of the simulation model are heavily involved with the model 
development team when the team is conducting verification and validation of the model and the users 
determine if the model is satisfactory in each phase of verification and validation. This approach is generally 
used with a model development team whose size is not large.  

Another decision-making approach, usually called “independent verification and validation” (IV&V), 
uses a third party to decide whether the simulation model is valid. The third party (the IV&V team) is 
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independent of both the simulation development team(s) and the model sponsor/user(s). The IV&V 
approach is generally used with the development of large-scale simulation models, whose development 
usually involves several teams. The IV&V team needs to have a thorough understanding of the intended 
purpose(s) of the simulation model in order to conduct IV&V. 

The remainder of this paper discusses operational validation of simulation models in depth.   

2  OPERATIONAL VALIDATION 

Operational validation is determining whether the simulation model’s output behavior has the accuracy 
required for the model’s intended purpose over the domain of the model’s intended applicability. This is 
where much of the validation testing and evaluation take place. Since the computerized (simulation) model 
as shown in Figure 1 is used in operational validation, any deficiencies found may be caused by what 
resulted from any of the earlier steps that are involved in developing the simulation model, including 
developing the system’s theories or having invalid data.  

The amount of accuracy required of a simulation model is usually specified by the range within which 
the difference between a model’s output variable and the corresponding system output variable must be 
contained.  This range is commonly known as the model’s acceptable range of accuracy.  If the variables 
of interest are random variables, then properties and functions of the random variables (such as means) are 
often what are of primary interest and are the quantities that are used in determining model validity. A 
model’s acceptable range of accuracy should usually be specified prior to starting the development of the 
model or very early in the model development process. The accuracy of a model should be tested under 
numerous sets of experimental conditions that define the domain of a model’s intended applicability. A 
model is considered valid for a set of experimental conditions if the model’s accuracy is within its 
acceptable range of accuracy. A model may be valid for one set of experimental conditions and invalid for 
another. 
 Numerous validation techniques are applicable to operational validity (see, e.g., Sargent 2013). Which 
techniques and whether to use them objectively or subjectively must be decided by the model development 
team and the other interested parties. The major attribute affecting operational validity is whether the 
problem entity (or system) is observable, where observable means it is possible to collect data on the 
operational behavior of the problem entity. Table 1 gives a classification of the validation techniques used 
in operational validity based on the decision approach and system observability. “Comparison” means 
comparing the simulation model output behavior to either the system output behavior or another model 
output behavior using graphical displays and/or statistical tests and procedures. “Explore model behavior” 
means to examine the output behavior of the simulation model using appropriate validation techniques, 
including parameter variability-sensitivity analysis (Sargent 2013). Various sets of experimental conditions 
from the domain of the model’s intended applicability should be used for both comparison and exploring 
model behavior. 

To obtain a high degree of confidence in a simulation model and its results, comparisons of the model’s 
and system’s output behaviors for several different sets of experimental conditions are usually required. 
Thus if a system is not observable, which is often the case, it is usually not possible to obtain a high degree 
of confidence in the model. In this situation, the model output behavior(s) should be explored as thoroughly 
as possible and comparisons should be made to other valid models whenever possible. 

2.1 Explore Model Behavior 

The simulation model output behavior can be explored either qualitatively or quantitatively. In qualitative 
analysis the directions of the output behaviors are examined and also possibly whether the magnitudes are 
“reasonable.” In quantitative analysis both the directions and the precise magnitudes of the output behaviors 
are examined.  Experts (e.g., subject matter experts) on the system often know the directions and frequently 
know the “general values” of the magnitudes of the output behaviors. Many of the validation techniques 
can be used for model exploration; and specifically, parameter variability-sensitivity analysis should 
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routinely be used. Graphs of the output data discussed in Subsection 2.2 below can be used to display the 
simulation model output behavior. Furthermore, a variety of statistical approaches can be used in 
performing model exploration including metamodeling and design of experiments. (See, e.g., Kleijnen 1999 
and 2015 for discussions on the use of these statistical approaches.) Additionally, numerous sets of 
experimental frames should be used in performing model exploration. The results of exploring model 
behavior can be used when no system data are available to aid in making a subjective decision regarding 
operational validation of a simulation model by the model development team, subject matter experts, users, 
and others. 

Table 1: Operational Validation Classification. 

 

 
 
 

 
 
 
 

2.2 Comparisons of Output Behaviors 

There are three basic approaches used in comparing the simulation model output behavior to either the 
system output behavior or another (validated) model output behavior: (1) the use of graphs to make a 
subjective decision, (2) the use of confidence intervals to make an objective decision, and (3) the use of 
hypothesis tests to make an objective decision. It is preferable to use one of the statistical comparison 
approaches (2) or (3) because they allow for objective decisions. However, it is often not possible in practice 
to use either of these approaches because (a) the statistical assumptions required cannot be satisfied or only 
with great difficulty (required assumptions are usually data independence and normality), (b) there is an 
insufficient quantity of system data available, which causes the statistical results to be “meaningless” (e.g., 
the length of a confidence interval developed in the comparison of the system and simulation model means 
is too long for any practical usefulness), and/or (c) the behavior of the problem entity is changing, e.g., is 
highly nonstationary. As a result, the use of graphs is the most-commonly used approach for operational 
validation, but extreme care must be used for this approach. Each of these three approaches is discussed 
below using system output data. (Note: these same approaches can also be used with output data from a 
validated model instead of system output data when appropriate.)  

2.2.1 Comparisons Using Graphical Displays 

The output behavior data of the simulation model and the system can be graphed for various sets of 
experimental conditions to aid in determining if the model’s output behavior has sufficient accuracy for the 
model’s intended purpose. Three types of graphs are used: histograms, box (and whisker) plots, and 
behavior graphs using scatter plots (see, e.g., Hines, et al. 2003 for a discussion of graphs in general). These 
three types of displays (or graphs) allow data to be statistically dependent (i.e., correlated) and non-normal, 
which often occurs in behavior data of systems and simulation models. The use of graphical displays of (a) 
data for operational validation is discussed in Sargent (1996), and (b) simulation data for statistical 
references is developed in depth in Sargent (2001a). 
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Let us first illustrate histograms and box plots through an example.  Consider the system in Figure 2 
and a model of it in Figure 3 where transit times from nodes 1 to 9 are the outputs of interest. The label on 
each arc (edge) of the graphs is the associated transient time and probability of being selected for transit. 
The mean transit time through the system and model are respectively 7.760 and 6.890. Figures 4 and 5 show 
the system and model histograms each containing 5000 observations obtained by simulation, and Figure 6 
depicts the box plots of each using the same sets of 5000 observations.  A large number of observations 
were used here to illustrate that one can detect differences when differences occur through the use of 
histograms and box plots. We can observe from the histograms that there is slightly more variability in the 
system than in the model and furthermore the mode of the system is about seven and is about six for the 
model. From the box plots one can also see that the system is more variable than the model and that both 
have about the same median values. 

 

          
 

Figure 2: System. 
                               

                                               
Figure 4: System histogram. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3: Model. 
 

 
Figure 5: Model histogram. 
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 Let us obtain 500 sample means of size 20 from the model (which has an overall sample mean of 6.901) 
and put these 500 observations into a histogram as shown in Figure 7 as a statistical reference for sample 
means of size 20. Similarly, let us obtain a sample of size 20 from the system, which has a sample mean of 
7.80; and put this system sample mean on the histogram in Figure 7 with an “X”. One can see from the 
Figure 7 that the system sample mean is in the tail of the histogram and thus the system and model means 
are most likely not equal but are reasonably close to each other. 
 

                       
                                                                     

       Figure 6: Box plots of the system and model.        
 

Figure 7: Model mean histogram of size 500. 

Let us look at another example: a single-server queueing system with an infinite allowable queue with 
exponential inter-arrival times and two different service time distributions.  One service time distribution 
will be an exponential and the other one will be a uniform with both having the same mean. One can readily 
see from the histograms in Figure 8 and the box plots in Figure 9 that the system times are different between 
these two systems with different service time distributions. 

 

 
Figure 8: Histograms of single-server queueing system. 

        

Sample Mean
Fr

eq
ue

nc
y

0
5

10
15

20
25

30

5.80 6.10 6.40 6.70 7.00 7.30 7.60 7.90 8.20

X

168



Sargent, Goldsman, and Yaacoub 
 

 
Figure 9: Box plots of single-server queueing system. 

Next, let us look at a hospital model by Lowery (1996) that was validated by using histograms and box 
plots. Figures 10 and 11 give two of the graphical displays that were used. We note in Figure 10 that the 
system observation for 24 weeks lay within the histogram of the model observations of 24 weeks. In Figure 
11 we note that the model has a slightly larger variation than the system and slightly lower median. 
 

 
Figure 10: Histogram of hospital data.  Figure 11: Box plots of hospital data.

 
Let us next look at the use of behavior graphs for validation of simulation models. Recall that behavior 

graphs use scatter plots.  A variety of graphs should be used with different types of (1) measures such as 
the mean, variance, maximum, distribution, and times series of a variable, and (2) relationships such as 
those between (a) two measures of a single variable and (b) measures of two variables. It is important that 
the measures and relationships selected for validating a simulation model be determined with respect to the 
model’s intended purpose.  We will look at the work of Anderson and Sargent (1974) that used behavior 
graphs in validating a model of a computer system. Figure 12 gives a queueing network of the computer 
system.  Figures 13–15 give three of the behavior graphs that were used. Figure 14 illustrates the use of two 
measures of the same variable.  The other two figures use different variables for the relationships.  Studying 
these graphical displays, one notes that there is a difference between the simulation model and computer 
system whose cause was determined to be that the actual job scheduling rule used in the computer system 
was different than what was described for the computer system and was used in the simulation model. 

2.2.2 Confidence Intervals 

Confidence intervals (c.i.’s) and simultaneous confidence intervals (s.c.i.’s) can be obtained for the 
differences  between  means,  variances,  and  distributions  of  different  output  variables  of a simulation  
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Figure 12: Queue network of computer system.  
 
      

  
 
     Figure 14: Computer reaction time.                                                       

 
 
 Figure 13: Behavior of foreground queue. 
 

   
    Figure 15: Response time versus disk access.

model and a system for each set of experimental conditions.  These c.i.’s and s.c.i.’s can be used as the 
model range of accuracy for model validation, where the model range of accuracy is the confidence interval 
or region (for the s.c.i.’s) around the estimated difference between some function (e.g., the mean) of the 
model and system output variable being evaluated. Balci and Sargent (1984) give details on the use of c.i.’s 
and s.c.i.’s for operational validity, including a general methodology. 

To construct the model range of accuracy, a procedure containing a statistical technique and a method 
of data collection must be developed for each set of experimental conditions and for each variable of interest 
for both the simulation model and the system. The statistical techniques used can be divided into two 
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groups: (1) univariate statistical techniques and (2) multivariate statistical techniques. The univariate 
techniques can be used to develop c.i.’s and with the use of Bonferroni’s inequality (Law 2014) s.c.i.’s. The 
multivariate techniques can be used to develop a s.c.i. Both parametric and nonparametric statistical 
techniques can be used. The method of data collection must satisfy the underlying assumptions of the 
statistical technique that is being used. One approach to developing a model range of accuracy is to use the 
standard statistical techniques and data collection methods common in simulation output analysis (Banks 
et al. 2010, Law 2014) for both the simulation model and the system, e.g., using the methods of replication 
or (nonoverlapping) batch means. We note that these c.i.’s and s.c.i.’s will be around a specific value for 
the difference between the simulation model and the system.  

2.2.3 Interval Hypothesis Test 

In conducting operational validation, one is interested in determining if the accuracy of a model is within 
its acceptable range of accuracy specified by L and U; where L and U are the lower and upper values of the 
range of the model’s acceptable range of accuracy, respectively.  Thus one desires a hypothesis test that 
determines whether a value is within a range. Classical hypothesis tests determinations are typically about 
a specific point. Sargent (2015b) recently developed an interval statistical procedure for model validation 
that includes an interval hypothesis test that is based on the use of the operating characteristic curve.  This 
interval statistical procedure is discussed by Sargent, Goldsman, and Yaacoub (2015) using examples 
involving the validation of a simple queueing simulation model to illustrate various usages of this interval 
validation procedure. 

Table 2 gives different ways this interval hypothesis test can be used for validation of models. In using 
Table 2, one determines the row to be used based on the type of MODEL being validated and the type of 
REFERENCE the type of MODEL is being compared (tested) against to find the STATISTICAL 
PROCEDURE to be used. Appendices A and B contain the statistical procedures for using this new interval 
hypothesis test for validation of models for the one-sample and two-sample tests, respectively.   

Table 2: Interval Hypothesis Tests for the Interval Statistical Procedure. 

MODEL (Entity 
being validated) 

REFERENCE (Model being 
compared against) 

STATISTICAL PROCEDURE 

Simulation Model Analytical Model -Perform one-sample test 
  -Calculate value of Analytical Model 
  -Collect data sample from MODEL  
    or REFERENCE, as appropriate 

Analytical Model Simulation Model or System 

Simulation Model Simulation Model or System -Perform two-sample test 
  -Collect one data sample from MODEL   
  -Collect second data sample from 
    REFERENCE 

 
Two types of errors are possible in ascertaining model validity via hypothesis testing.  Type I error is 

that of rejecting the validity of a valid model, and Type II error is that of accepting the validity of an invalid 
model.  The probability of a Type I error, α, is called the model builder’s risk, and the probability of Type 
II error, β, is called the model user’s risk (Balci and Sargent 1981). In model validation, the model user’s 
risk is especially important and must be kept small to reduce the probability that an invalid model is 
accepted as being valid.  Thus both Type I and Type II errors must be carefully considered when using 
hypothesis testing for model validation. 

This new interval hypothesis test allows consideration of both Type I and Type II errors through the 
use of the operating characteristic (OC) curve.  The OC curve is defined as the probability of accepting the 
null hypothesis when event E prevails, denoted PA(E).  The probability of Type I error, α(E), is 1 ‒ PA(E) 
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when E has a value where the null hypothesis is true; and the probability of Type II error, β(E), is PA(E) 
when E has a value where the alternative hypothesis is true.  Note that the probabilities of Type I error, 
α(E), and Type II error, β(E), are both functions of the event E.  Moreover, it is common practice to specify 
α, which is called the significance level of the test, as the maximum allowable value of the probability of 
Type I error. (For a detailed discussion on hypothesis testing, Type I and Type II errors, and OC curves, 
see, e.g., Hines et al. 2003 or Johnson et al. 2010.)  Furthermore, the model builder’s and the model user’s 
risk curves can be obtained from the OC curve. 

We are going to limit our discussion to the testing of the means. (The interval hypothesis test can be 
used for testing other statistical properties provided that the appropriate OC curve can be calculated.) Let 
µM and µR

 be the means of the simulation model and reference (in our case, the system), respectively, and 
let D = µM ‒ µR. Test statistics for testing means commonly use the t-distribution when the variances are 
unknown.  We assume that the variances of the model and reference outputs are unknown and equal, and 
thus will use the t-distribution for our hypothesis testing. This procedure requires the data from both the 
simulation model and the reference to be approximately Normal Independent and Identically Distributed 
(NIID).  This can be accomplished in model validation for both the simulation model data and the reference 
(system) data by using the standard methods that are carried out in simulation output analysis to obtain 
approximately NIID data; namely, for terminating simulations, one could use the method of replications 
and for nonterminating (steady-state) simulations, either the method of replications or the method of batch 
means (see, e.g., Law 2014).  Let nM indicate the number of model NIID data values (observations) and nR 
the number of reference (e.g., system) NIID data values.  The t-distribution with the appropriate test statistic 
will be used for testing the means of our NIID data.  As mentioned above, both Type I and Type II errors 
are important in model validation and they are considered through the use of OC curves.  The significance 
level of the test, α, for our situation is the maximum of αL = α(D = L) and αU = α(D = U). Also, letting βL 
= β(D = L) and βU = β(D = U), we note that αL + βL = 1 and αU + βU = 1.   

Computer software using R code (R Development Core Team 2008) has been developed to use the 
interval statistical procedures given in Appendices A and B for testing of means. This software is briefly 
discussed in Sargent, Goldsman, and Yaacoub (2015), and various snippets of R code are at the website 
http://www2.isye.gatech.edu/~sman/validation/.   
 Let us use this interval hypothesis test to determine if the simulation model given in Figure 3 is a valid 
model of the system given in Figure 2, which is the reference for this model, with respect to the mean transit 
time. Let µM and µR

 be the mean transit time of the simulation model and reference (system), respectively. 
We want to determine if D is within (L, U). The interval hypothesis test will be used to test the hypothesis:  
H0: L ≤ D ≤ U vs. H1: D < L or D > U. Using Table 2, we find that we should apply the two-sample test 
and thus the Interval Statistical Procedure given in Appendix B.  Since the model and system are 
terminating, we will use the method of replications to obtain our NIID observations. (The sample mean 
should be approximately normal due to the fact that each observation is a sum of random values (the arcs’ 
transit times); and then we sum the observations to obtain the sample mean.) Let the model acceptable range 
of accuracy be (L = ‒0.75, U = 0.75), and let the set of experimental conditions be the values given in 
Figures 2 and 3. We have now specified the model validation formulation of Step 0 of the Statistical 
Procedure in Appendix B. 

Proceeding to Step 1 of this Procedure, we have for the statistical hypothesis H0: ‒0.75 ≤ D ≤ 0.75 vs. 
H1: D < ‒0.75 or D > 0.75, and we will use the two-sample t-test for unknown and equal variances. 
 We next carry out Step 2 of the Procedure. We select the Initial Sample Sizes to be nR = 10 and nM = 
15. We collect the NIID observations of these sample sizes for the reference (system) and model.  Analyzing 
the collected data we obtain 𝑀𝑀� = 7.067 for the sample mean of the model, 𝑅𝑅� = 7.300 for the sample mean 
of the reference, 𝑆𝑆𝑀𝑀2 = 2.638 for the sample variance of the model, 𝑆𝑆𝑅𝑅2 = 2.233 for the sample variance of 
the reference, and 𝑆𝑆𝑃𝑃2 = 2.480 for the pooled variance estimate. 

Moving to Step 3 of the Procedure, we evaluate the risk curves using different β values in order to select 
β values for L and for U to use in the hypothesis test.  In this example, the same β values will be used at L 

172



Sargent, Goldsman, and Yaacoub 
 

and U.  Our software for this interval statistical procedure is used to obtain the risk curves shown in Figures 
16 and 17 for β values of 0.4 and 0.5.  The pooled variance estimate obtained in Step 2 is used in calculating 
these risk curves.  The horizontal (x) axis in Figure 16 is (D ‒ L) and in Figure 17 is (D ‒ U). (Note, e.g., 
that the value of D is ‒0.75 at the x-axis location of 0 in Figure 16.)  The model builder’s risk curves are 
the curves on the right side of zero in Figure 16 (Lower Case Curves) and to the left of zero in Figure 17 
(Upper Case Curves).  The model user’s risk curves are the curves on the left side of zero in Figure 16 and 
on the right side of zero in Figure 17.  The risk curves in Figures 16 and 17 are identical except for being 
“reversed,” the reason being that the same values were used for βL and βU. (Our examples, unless stated 
otherwise, will henceforth use identical values for βL and βU, and we will present only the Lower Case 
Curves because the Upper Case Curves are just reversed images of the former.) The risk curves are 
examined to evaluate the trade-offs between the model builder’s risk and the model user’s risk for different 
β values at L and U.  Based on our evaluation of the risk curves, we select βL = βU = 0.40 as our values to 
use in the hypothesis test for determining validity.  (Note that this gives αL = αU = 0.60 since αL + βL = 1 
and αU + βU = 1.)    

                                   
       Figure 16: 𝛽𝛽 risk curves at L.                                              Figure 17: 𝛽𝛽 risk curves at U.                                                                          
               
In Step 4 of the Procedure we explore increased sample sizes to determine their effects on the risk 

curves.  The pooled variance estimate must be calculated for each new set of increased sample sizes using 
the variance estimates from Step 2 and the increased sample sizes. One can observe from the risk curves in 
Figures 16 and 17 that the sample sizes need to be increased significantly if the hypothesis test is going to 
have “meaningful results” regarding the model acceptable range of accuracy given by (‒0.75, 0.75).  Our 
software was used to produce Figure 18, which shows the Initial Sample Size risk curve along with the risk 
curves for sample sizes of nR = 20 and nM = 25 and 40, where 𝑆𝑆𝑃𝑃2 = 2.459 and 2.506, respectively.  (These 
sets of risk curves are for βL = βU = 0.40 as these β values were selected in Step 3.)  After evaluating 
different feasible sample sizes, it was decided to use nR = 20 and nM = 25 as the sample sizes for the 
hypothesis test. 

In Step 5 of the Procedure, the first action required is to collect the additional samples that are called 
for from Step 4.  We obtain 10 more reference (system) NIID observations and 10 additional model NIID 
observations (replications). Next we analyze the total samples of 20 reference observations and 25 model 
observations. We obtain 𝑀𝑀�  = 7.120, 𝑅𝑅�  = 7.800, 𝑆𝑆𝑀𝑀2 = 2.777, 𝑆𝑆𝑅𝑅2  = 2.695, and 𝑆𝑆𝑃𝑃2 = 2.740. We use the 
software program with the newly calculated pooled variance estimate of 2.740 to produce the final risk 
curve shown in Figure 19, along with the acceptance region for the test statistic T, (‒1.262, 1.262), and the 
T critical value of ‒1.369.  Since the value of the T does not fall within the acceptance region, the null 
hypothesis is rejected, meaning that the simulation model does not have a mean time output that is 
acceptable.  (The acceptance region can be calculated for D, which is (‒0.627, 0.627); and the difference 
between the two sample means is 7.120 – 7.800 = ‒0.680, which, of course, falls outside the acceptance 
region.  This is consistent with the fact that the T value falls outside of its acceptance region.)  Thus, the 
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model has been determined to be invalid with the risks as depicted by the final risk curve plotted in Figure 
19.                                    

     
  Figure 18: Sample size risk curves at L.                            Figure 19: Final risk curve at L. 

                                                                                                                                                                                                                                                                                                                                                                                    
Let us now modify this example to illustrate the use of the interval statistical procedure when L is not 

equal to ‒U.  We will keep everything the same except let L = ‒1.00. If we use the same seeds for generating 
the observations and make the same decisions in all of the steps of the Procedure, then everything remains 
the same, except in Step 5 the acceptance range of T changes to (‒1.766, 1.262) and now T = ‒1.369. Since 
the value of T = ‒1.369 falls within the acceptance range for T, the null hypothesis now fails to be rejected 
and therefore the model has been determined to be valid with the risks as depicted by the risk curves plotted 
in Figure 19. (The acceptance region can be calculated for D, which is (‒0.877, 0.627), and the difference 
of the two sample means is ‒0.68, which, of course, falls within the acceptance region.)  Note that the 
accuracy required of the simulation model was not as stringent as previously required, which allowed the 
model to now be acceptable. We also note that D = µM ‒ µR = 6.890 ‒ 7.760 = ‒0.870, and thus the statistical 
results for both L = ‒0.75 and L = ‒1.00 agree with the theoretical results.       

The system (reference) sample of size 20 having a sample mean of 7.800 used in the interval statistical 
tests discussed above was the same system sample whose sample mean was used in Figure 7. Our subjective 
analysis using the graphical approach and Figure 7 led us to conclude that the model mean transit time was 
probably close to but not equal to the system mean transit time. Using the interval statistical procedure we 
were able to quantify the results and obtain an objective decision of whether the model satisfied the model’s 
acceptable range of accuracy. This example clearly shows the advantages of using the interval statistical 
procedure for model validation whenever it is possible.  

3 SUMMARY                                        

After a brief overview of verification and validation of simulation models, operational validity was 
discussed in depth. Validation approaches were discussed that use subjective and objective decision making 
for both observable and non-observable systems. Various types of graphical displays for exploring and 
comparing output behaviors were covered in detail and illustrated through examples. Statistical methods 
were discussed and a detailed example using a new interval hypothesis test was presented that illustrated 
why this approach should be used when possible. Detailed procedures for using this new interval statistical 
approach for model validation for both one-sample and two-sample interval hypothesis tests are given in 
two appendices. 
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A ONE-SAMPLE INTERVAL STATISTICAL PROCEDURE 

  

B TWO-SAMPLE INTERVAL STATISTICAL PROCEDURE 
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