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ABSTRACT 

The discipline of probability management, introduced in 2006, formalized the concept of data structures 
for storing arrays of simulated realizations. These are called Stochastic Information Packets or SIPs. 
Today the open SIPmath™ standard of 501(c)(3) non-profit ProbabilityManagement.org supports SIP 
libraries in XML, CSV and XLSX file formats. This article describes how such data may foster the 
creation of networks of simulations that bring stochastic modeling to general management. Skeptics may 
argue that most managers do not know how to generate the appropriate random variates. It was similarly 
argued that light bulbs could not be used by the general public as they would not know how to generate 
the appropriate electricity. In this context, probability management is devoted to the design of a power 
grid for probability that provides access to trusted sources of random variates. The SIP is a good 
candidate for the transmission standard. 
 

1 INTRODUCTION 

Sixty years ago, at the dawn of the computer age, simulation was considered a method of last resort. 
Today, which in the grand scale can be at most a few tenths of a second after sunrise; simulations are 
often the method of first resort (Lucas, Kelton, Sanchez, Sanchez & Anderson). Still, most simulations are 
run as standalone applications, in which uncertainty is modeled by internally generated random variates. 
The results are then presented as tables of summary statistics and graphs of output distributions 
whereupon it is game over. In principle, arrays of realizations can serve as both inputs and outputs of 
simulations, thereby enabling networks of stochastic models. 
 Coherent arrays of Monte Carlo realizations have been used since at least 1991 in stochastic 
optimization calculations (Dembo 1991). The discipline of probability management extends simulation 
through the standardized use of such arrays, which are referred to as Stochastic Information Packets 
(SIPs) (Savage, Scholtes, Zweidler 2006; Savage, Kirmse 2014). SIPs can serve as both inputs and 
outputs of simulations. A set of SIPs that maintain statistical dependence is said to be coherent, and is 
known as a Stochastic Library Unit with Relationships Preserved (SLURP). In Monte Carlo applications 
such as those created with the widely used @RISK, Crystal Ball and Risk Solver Platform packages, SIP 
data may be used anywhere a random variate is currently generated. Indeed, these common packages can 
easily import and export SIP libraries. In discrete event simulations, SIPs are currently used for 
communicating simulated results to other applications, but further uses are also anticipated. 
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2 SIP ADVANTAGES 

SIPs are: 
Actionable - the output SIP from one application can become the input SIP for a downstream simulation. 
Additive - if coherence is maintained, the output SIPs of simulations of multiple entities may be added 

trial by trial to create a SIP of a consolidated entity. 
Auditable - input and output distributions are treated as data with provenance supporting an audit trail. 
Agnostic - SIPs comprise a simple data structure, which may be supported across many platforms. 
 

2.1 SIPs are Actionable 

Unlike the standard summary statistics and graphs of distributions that are output by most simulations, 
SIPs may be used as input trials to downstream simulations. In particular, Microsoft Excel has now 
become powerful enough to actively run thousands of trials with each keystroke using the native Data 
Table function (Savage 2012). Thus the output distributions of a wide variety of simulation applications 
may be used to drive stochastic dashboards in the hands of decision makers. Two examples are given 
below. 

         

2.1.1 Forecasting 

Most forecasts are communicated as single “average” numbers. This leads to several sorts of systematic 
errors collectively referred to as the Flaw of Averages (Savage 2009, 2012). For example, suppose we 
forecast the average number of surviving pathogens in chlorinated water to be 5 per gallon, but the actual 
number is drawn from a long tailed distribution (which it usually is). If the healthcare costs per person per 
year for 5 pathogens per gallon is $10, then it is tempting to believe that this is the cost to plan for. But 
healthcare costs are generally convex in the number of pathogens. For example, there might be no cost 
associated with zero pathogens, but $100 in cost associated with 10 pathogens. Therefore, the average 
cost may be much higher than $10. This is a manifestation of what mathematicians call Jensen’s 
Inequality. If the distribution of surviving pathogens is communicated as a SIP, it may be used in 
calculations at the local level to estimate the distribution of healthcare costs, which is necessary for 
effective mitigation strategies.  

2.1.2 Decision Dashboards for Discrete Event Simulations 

The schematic in Figure 2.1 below describes the discrete event simulation of the design study of a mobile 
communication system of a defense contractor. Because there are a number of engineering options, a 
design of experiment was run to estimate the reliability of the system for each combination of options in 
the design space. All told, this took many hours of computer time.  
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Figure 2.1 The schematic of a discrete event simulation 

 © 2014 Lockheed Martin Corporation. Used with permission. 
 
 A separate SIP library was saved for each point in the design space. These were then loaded into an 
Excel model with slide bar controls for scrolling through engineering options. The decision makers were 
able to explore the stochastic implications of any combination of the design considerations in seconds on 
their own computers, even though the SIP libraries took hours to generate in a specialized simulation 
package.  
 

 
Figure 2.2 A stochastic dashboard in Excel for browsing simulation output 

© 2014 Lockheed Martin Corporation. Used with permission. 
 
 It should be pointed out that similar exploration dashboards may also be created using surrogate 
models generated from a large simulation. In theory, the SIP data standard might eventually be expanded 
to include surrogate models in addition to arrays of simulation realizations.  

2.2 SIPs are Additive 

Coherent SIPs may be operated on element by element with any algebraic operator through the common 
process of vectorization. That is, if x and y are random variables from a joint distribution where SIP(x) 
and SIP(y) are arrays of realizations that preserve the statistical dependence, then SIP(x+y) = 
SIP(x)+SIP(y), where addition is performed element by element over the arrays. For that matter, SIP(x*y ) 
= SIP(x)*SIP(y), and SIP(x*cos(y)) = SIP(x)*cos(SIP(y)), where the operations are taken element by 
element. This is just the idea behind Monte Carlo simulation in the first place except that the variables x 
and y are generated in advance, and stored in arrays, as are the output trials. 

4128



Savage and Thibault 

2.2.1 Stochastic Roll-up 

Additivity allows for the stochastic roll-up of simulation results across the enterprise into a consolidated 
risk model.  
 For example, a petroleum firm was able to consolidate the simulations of numerous exploration 
ventures into a stochastic model of the risk and return of its portfolio as a whole (Savage, Scholtes, 
Zweidler 2006). In order to keep the SIPs coherent, it was necessary to separate global uncertainties such 
as oil price, interest rates, etc. from local uncertainties such as the volume of hydrocarbons within each 
venture. The simulations of all ventures were then run with the same global variable SIPs. So, if the price 
of oil is $60 per barrel on trial 437, then, by using common global input SIPs, the simulations for each of 
the ventures also have a price of $60 per barrel on trial 437. The resulting output SIPs of each venture will 
therefore be coherent (they comprise a SLURP), and may be added together in various combinations to 
model different portfolios. The final model for decision makers was again in Excel, allowing ventures to 
be switched in and out of the portfolio instantly while 1,000 trials were run for each change. The small 
demo version of this model shown below is available for download from the Models page at 
ProbabilityManagement.org. 
 
 

 
Figure 2.3 A dashboard for aggregating the simulation results of exploration projects 

 
 As another example of stochastic roll-up, consider the uncertainty in storm surge level in a certain 
coastal region. Each municipality in the region could independently assess the homes and businesses that 
would be impacted at various flood levels, in effect creating a lookup table of dollar damage by level. A 
common storm surge SIP could then be distributed to all local municipalities, much as the oil price SIP 
was delivered to each of the exploration simulations in the above example. The resulting output SIPs of 
damage at each municipality would thus be coherent, and could be rolled up to a SIP of total damage 
across the region. A demonstration SIPmath flood model is available at ProbabilityManagement.org. 

2.3 SIPs are Auditable 

Ironically, simulation is often viewed as suspect because of the very randomness from which it derives its 
power. Although one can seed the random number generator in most simulation systems to get repeatable 
results, it is difficult to get identical results from the same simulation across software platforms. From a 
computational perspective, calculations with SIPs (SIPmath) are strictly deterministic and should give the 
same answers on all platforms. 

Ventures are 
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checkboxes 

Distributions of 
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here 

Position of chosen 
portfolio in 

“Risk/Return” space 
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2.4 SIPs are Agnostic 

The current data formats supported by the SIPmath 2.0 standard include XML, CSV, and XLSX. The 
standard specification document (Thibault 2014) is available for download from 
ProbabilityManagement.org. 

3 THE STANDARD 

The ability to easily move SIPs and relevant metadata from one system or application to another is a 
necessary part of the discipline of probability management. This includes the aggregation of results from 
separate simulations as well as accessing remote stochastic data sets - with their provenance - from trusted 
sources. A standard interchange format for SIPs, SLURPs, and their metadata facilitates these exchanges.  

The standard was formed with the following principles in mind: 
 
1  In general, SIP libraries will be produced by a few sources but they will be used many times by 

many consumers.   Following the admonition of Nathaniel Hawthorne that “Easy reading is damn hard 
writing,” the focus of the standard is on readability rather than ease of creating the data files. 

2  Options are kept to a minimum. Producer applications can choose one format option but 
consumer applications need to recognize them all. Again the focus is on keeping the reader simple to use. 

3  Recognizing that the discipline of probability management is still evolving, the standard is 
relatively informal. The development is driven primarily by consensus and working code rather than 
extensive effort on design. 

  

 
Figure 3.1 Data Architecture 
 
Figure 3.1 presents the SIP/SLURP data architecture. It has been kept simple so that it can be easily 

realized using the native data structures of most, if not all, software platforms. 
The SLURP is a container of SIPs with only two required attributes: a name or other unique 

identifier, and a flag indicating whether SIP relationships have been preserved (indicating coherence). 
Additional attributes may be included, and the standard includes a list of recommended attribute names. 

The SIP is a simple object with four required attributes and the standard includes a list of 
recommended attribute names. The required attributes are: a name or other unique identifier, a count of 
the number of trials in the SIP, the data encoding type, and the SIP standard version.  

The only data encoding currently specified is Comma-Separated Values (CSV). The csvr attribute is 
used to indicate how many digits to the right of the decimal place should be preserved.  

The standard allows for multi-dimensional SIPs, using the dims attribute to specify the dimensions. 
The standard includes three formats:  
1  SIP/XML implements a universal XML format that is completely platform independent. 
2  The Excel SIP Library, optimized for all-Excel applications. It supports Excel workbook-to-

workbook exchanges including URL access to remote sources across the Internet. It is more complex than 
the other two formats, but very efficient in an all-Excel application. 
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3  Excel SIP/CSV defines a simple spreadsheet model based on the Excel .csv file format. Like 
SIP/XML it is both machine- and human-readable and simple to implement. 

Being platform-independent, the SIP/XML file format is the most general-purpose and the easiest to 
read as-implemented.  

  
Figure 3.2     SLURP in XML 
 
Figure 3.2 presents the realization of a SLURP in XML with both required and optional attributes in 

key="value" form. The data elements will be SIPs.  
 
Figure 3.3 presents the realization of a SIP in XML. It has some attributes, and the data elements are 

sample values.  
 

  
Figure 3.3      SIP in XML 
 
Translation functions for SIP/XML have been developed in Excel/VBA, the R statistical language, 

JavaScript, and Matlab. Export routines exist for the following widely used packages: Crystal Ball and 
@Risk simulation packages, and the Autobox time series analysis software. 

4 ASPIRATIONS 

What can be hoped for from such a standard? Ideally it will improve the way we think about uncertainty, 
and pave the way for a network of stochastic appliances, much in the way the power grid led to a network 
of electric appliances. 

<SLURP name="2016_Prices" 

 coherent="true" 

 count="12" 

 about="2016 Month End Price Projection." 

 approved="John Smith, 2015-03-15" 

 copyright="Warbucks Financial Services" 

 > 

 <SIP …  

</SLURP> 

<SIP name="Price_2016_01" 

 count="1000" 

 effDate="2016-01-31" 

 type="CSV" csvr="0" 

 units="US$" 

 ver="2.2.0" 

 about="2016-01 Price Projection" 

 approved="John Smith, 2015-03-15" 

 copyright="Warbucks Financial Services" 

 > 

 12,14,51,95,35,42,42,58,91,65,43,…  

</SIP> 
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4.1 The Arithmetic of Uncertainty 

When Fibonacci introduced Arabic numerals to Italy in 1199, it changed the way Western culture thought 
about numbers. It allowed people to sum up weights and measures, calculate interest payments, convert 
currencies, and then communicate the results using nothing but 10 simple symbols. 
 The quantities that can be expressed with Arabic numerals, the real numbers, are an example of what 
mathematicians call a field: an algebraic construct that is closed under addition, subtraction, 
multiplication, and division (except by zero). To best make use of numbers it helps if these operations are 
easy to perform. The famous sequence that bears his name was not invented by Fibonacci. Instead it was a 
public relations initiative to prove the superior arithmetic of his favored system over the Roman numerals 
and counting sticks of the time. 
 Similarly SIPs of a given number of trials may be thought of as a field, as any arithmetic operation 
may be performed on them. Given that a SIP is a computational representation of a probability 
distribution, it means that we can also think of probability distributions as a field, whose elements may be 
manipulated with the same operations we use for numbers. The examples shown make use of Sparkline 
graphs to demonstrate the arithmetic of uncertainty with histograms as both arguments and results in 
native Excel. Again, this is an active simulation in which each keystroke runs 10,000 trials through an 
Excel Data Table before your finger leaves the <Enter> key. Download the Sparkland file to experiment 
with your own calculations involving distributions. 
  

 
Figure 4.1 A distribution calculator 

4.2 The Network Effect 

The smartphone was nothing new. Computers, cell phones and touch screens had been around 
individually for at least a decade before the introduction of the iPhone in 2007. But with a common 
communication protocol the smartphone rapidly became a node in a network of 100 million other 
smartphones, and that was new. Network effects, as they are known in economics, create increasing value 
as the number of nodes in the network increases.  
 Similarly, the discipline of probability management is nothing new. Monte Carlo simulation, array 
arithmetic, and data bases have existed for decades. But the common communication protocol of the 
SIPmath standard has the potential to turn any simulation into a node in a network of many other 
simulations, and that would be new. 
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