
Proceedings of the 2015 Winter Simulation Conference

L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, eds.

COMPARING MESSAGE PASSING INTERFACE AND MAPREDUCE FOR LARGE-SCALE

PARALLEL RANKING AND SELECTION

Eric C. Ni

Operations Research and Information Engineering

Cornell University

Ithaca, NY 14853, USA

Dragos F. Ciocan

Technology and Operations Management

INSEAD

Fontainebleau 77305, FRANCE

Shane G. Henderson

Operations Research and Information Engineering

Cornell University

Ithaca, NY 14853, USA

Susan R. Hunter

School of Industrial Engineering

Purdue University

West Lafayette, IN 47907, USA

ABSTRACT

We compare two methods for implementing ranking and selection algorithms in large-scale parallel computing

environments. The Message Passing Interface (MPI) provides the programmer with complete control over

sending and receiving messages between cores, and is fragile with regard to core failures or messages going

awry. In contrast, MapReduce handles all communication and is quite robust, but is more rigid in terms

of how algorithms can be coded. As expected in a high-performance computing context, we find that MPI

is the more efficient of the two environments, although MapReduce is a reasonable choice. Accordingly,

MapReduce may be attractive in environments where cores can stall or fail, such as is possible in low-budget

cloud computing.

1 INTRODUCTION

The simulation optimization (SO) problem is a nonlinear optimization problem in which the objective

function can only be observed with error as output from a Monte Carlo simulation. That is, the SO problem

can be expressed as

Find: argmax
x∈D

E[f (x,ξ)],

where the function f is embedded in a Monte Carlo simulation, ξ represents a source of randomness, and

D ⊂R
d is some known feasible set. At each point x ∈D , we may only observe an estimate of the function

value, f̂ (x), as output from the simulation. When the feasible set D is finite, this SO problem is also called

a ranking and selection (R&S) problem, and each feasible point is referred to as a “system.” The system

having the maximum objective function value is called the “best” system. That is, if there are k competing

systems and each system has mean objective value µi := E[f (xi,ξ)] for all systems i = 1, . . . ,k such that

µ1 ≤ µ2 ≤ . . .≤ µk, system k is the best system (see, e.g., Bechhofer et al. 1995, Kim and Nelson 2006

for overviews of the R&S literature).

Since we only observe estimates of the systems’ objective values, algorithms that solve the R&S problem

often provide a probabilistic correct selection guarantee: with high probability, the solution returned upon

algorithm termination is the best system, as long as the best system is at least some amount δ > 0 away

from the next-best system. That is, the probability of correct selection (PCS) guarantee ensures that,

whenever µk −µk−1 ≥ δ , P{Selecting system k} ≥ 1−α , for some (small) user-selected value of α > 0.

However, owing to their conservativeness, these procedures are often best suited for a small number of

3858978-1-4673-9743-8/15/$31.00 ©2015 IEEE

Ni, Ciocan, Henderson, and Hunter

systems (Nelson et al. 2001). When the number of systems is large, the number of required simulation

replications to terminate with the desired probabilistic guarantee often becomes prohibitive, at least on a

serial processor — the platform for which most R&S algorithms are designed.

Therefore to solve large-scale R&S problems, we design an algorithm that simultaneously employs two

variations on this popular R&S approach. First, we specifically design our algorithm to be implemented

on a parallel computing platform, to harness the power of these recently ubiquitous computing resources

— a nontrival task, owing to the non-trivial statistical issues that arise in parallel platforms (Heidelberger

1988, Glynn and Heidelberger 1990, Glynn and Heidelberger 1991). Second, instead of providing a PCS

guarantee, we design our algorithm to provide a probability of good selection (PGS) guarantee (see, e.g.,

Nelson et al. 2001): with high probability, the solution returned upon algorithm termination is a system

within δ of the best. Such a guarantee may be more practical when the number of systems is large, since

systems near the best may be close together — for example, when a quadratic function is discretized with

a fine mesh, many systems are close to the best system in objective function value. (For earlier work on

implementing R&S algorithms in parallel, see Luo et al. 2000, Yoo et al. 2009, Chen 2005, Luo et al.

2013, Ni et al. 2013, Ni et al. 2014.)

In this paper, we outline our parallel R&S procedure and demonstrate its performance using two

popular parallel computing approaches: Message Passing Interface (MPI) and MapReduce. MPI is a

message passing system by which cores on a parallel computer can communicate with each other; MPI is

a highly flexible and customizable way of implementing a parallel R&S algorithm. MapReduce is more of

a “one-size-fits-all” approach, which we implement by creating “map” procedures that obtain simulation

replications and summary statistics for the systems, while the “reduce” procedures perform screening.

While our MPI implementation can be highly asynchronous, the MapReduce implementation requires a

certain amount of synchronization across cores. (We provide more detail about MPI and MapReduce

in §2.) Because MPI is customizable, a priori, we expect that our MPI implementation will outperform

our MapReduce implementation. Thus the interesting research question is not which parallel framework is

faster, but rather whether MapReduce can offer most of the speed of MPI, along with its inherent advantages

in terms of programming simplicity and its portability across different computing infrastructures.

To obtain a fair comparison of these frameworks, we implement both versions of our procedure on a

reliable high-performance computing (HPC) platform. Broadly, our results indicate that

• as expected, Apache Hadoop (the particular implementation of MapReduce we employ) exhibits

significantly slower wall-clock times than MPI across all of our trials, with MPI always being at

least a factor of 6 times more efficient than Hadoop, perhaps owing to the fixed overhead incurred

by Hadoop;

• the gap between MPI and Hadoop reduces as the system-to-core ratio or the simulation effort per

batch-to-core ratio increases;

• in line with the wall-clock results, Hadoop exhibits less core efficiency than MPI, with the gap

closing as the system-to-core ratio or the simulation effort per batch-to-core ratio increases;

• either implementation of our procedure is robust to random completion times, likely because we

obtain simulation replications in batches, leading to a summing effect that reduces the variance of

simulation run times relative to their mean;

• the Hadoop implementation requires a series of phases, each of which consists of one map and

one reduce phase, and this may necessitate substantial data transfer at the start of each phase as

simulation runs are initialized with the data necessary to complete simulation replications.

In the remainder of this paper we will mostly use the terms Hadoop and MapReduce as synonyms,

although they are not the same thing. Indeed, Apache Hadoop is one implementation of the MapReduce

framework.

The remainder of the paper is organized as follows. In §2, we outline the selection procedure and our

implementations of MPI and Hadoop. In §3, we provide our computational results, with a discussion in

3859

Ni, Ciocan, Henderson, and Hunter

§4. For all implementation details and computational results, including a proof that our procedure provides

a PGS guarantee, we refer the reader to Ni et al. (2015).

2 THE SELECTION PROCEDURE AND IMPLEMENTATIONS

In order to be able to contrast an MPI implementation with a MapReduce implementation, we first need to

understand the overall structure of our parallel procedure that guarantees a probability of good selection

(henceforth referred to as good-selection procedure, or GSP). We will subsequently describe how that

procedure can be implemented within MPI and MapReduce frameworks.

2.1 A Parallel Procedure with Good Selection Guarantee

Our good-selection procedure proceeds in several stages.

• Stage 0: In this optional stage we simulate each system a fixed and limited number of times in order

to estimate (wall clock) running times for a single replication for each system. This information can

subsequently be used to approximately load balance the workload on cores, as described below.

• Stage 1: We next obtain a sample of size n0 from every system. (This is a standard step in many

ranking and selection algorithms.) The sample is used to obtain sample means and variances for all

systems. The estimated run times for systems obtained in Stage 0 may be used to determine how to

do this so that all cores are approximately equally loaded.

• Stage 2: We then perform an asynchronous sampling-and-screening step. Typically in screening, all

systems are compared with all others, but that requires on the order of k2 work, which is prohibitive

when the number of systems k is large. Accordingly, we do not screen all systems against one another,

but rather divide the k systems into subgroups, and screen within subgroups. We limit the screening

across subgroups to simply sharing the apparent “best” within each subgroup with the others, to attempt

to rapidly “knock out” systems.

For user-selectable maximum number of batches r̄ and average batch size β (see Ni et al. 2015 for

suggested values), Stage 2 proceeds by gathering up to a maximum of r̄ batches of observations from

each system. The batch sizes are chosen to ensure both statistical and computational efficiency, and

have average size β .

Our screening stage has two key properties:

1. First and foremost, the probability that the truly best system (or at least one of the best systems

if there are ties) is retained throughout the screening stage is at least 1−α1, where α1 is on the

order of 0.025 (for a 0.95 probability of good selection PGS). This property holds regardless of

the value of µk −µk−1 and δ .

2. The screening does not necessarily continue until only one system remains. Rather, we proceed

up to a maximum number of batches r̄ that is specified by the user, and so there will be a random

number of systems remaining at the conclusion of the screening stage.

The screening stage is designed to quickly eliminate clearly inferior systems, and to not expend too

much effort in distinguishing high-quality systems that are therefore close in objective function value.

• Stage 3: At the outset of this stage a random number of systems remain. We now perform a Rinott

(1978) final stage on these remaining systems with confidence level 1−α2, where α2 is on the order of

0.025 (for a 0.95 PGS). In more detail, we halt screening, determine a residual simulation runlength for

each remaining system, and obtain that many replications for each remaining system. We then compute

the surviving system with the largest sample mean over the replications obtained throughout Stages 1

through 3, and select that system as the best. In this stage we rely on the indifference zone parameter δ
in selecting the residual runlength, rather than on the likely small true difference in mean performance

3860

Ni, Ciocan, Henderson, and Hunter

of each surviving system, so that the computational effort in this stage is primarily determined by the

number of surviving systems and δ .

The Rinott procedure provides a “multiple comparison with the best” guarantee that we can then

leverage (Nelson and Matejcik 1995, Ni et al. 2015) to ensure that with probability at least 1−α2 we

select a system with objective value that is within δ of the best of the systems that reached Stage 3.

The overall procedure has a PGS of 1−α1 −α2, since the procedure can only fail if the truly best

system is eliminated in Stage 2 or a system that is not within δ of the best surviving system is selected in

Stage 3. A union bound on these two “bad” events yields the PGS guarantee.

2.2 An MPI Implementation

We employ a master-worker framework whereby a single core is designated as the master, and controls the

entire procedure. Our implementation assumes reliable cores, and would not work well in an environment

where cores can stall or fail, in which case the parallel program may crash and no interim results can be

obtained. This lack of resilience arises from MPI itself and not from our implementation within MPI.

In our MPI implementation, simulation and screening tasks are broken down and allocated to workers

in an asynchronous fashion as they complete their tasks and signal the master that they are available. Our

algorithm design limits the amount of synchronization in an attempt to obtain an overall procedure that

scales well as the number of cores and/or systems gets large. The only synchronization arises at the end

of each of the 4 stages (Stages 0 through 3), so is limited.

The master has direct control over the simulation effort of workers, and accordingly can employ

predictions of system-specific wall-clock running times of replications from Stage 0 in order to attempt to

balance loads across cores.

Screening is performed within subgroups by workers, so at any given time a worker may be screening

within its subgroup or obtaining simulation replications.

2.3 A MapReduce Implementation

The philosophy of MapReduce-based algorithms is very different from that of algorithms based on MPI.

With MPI, all communication must be carefully designed and explicitly coded. With MapReduce, all

communication is handled by the MapReduce implementation (we employ Apache Hadoop, which is a

standard implementation of MapReduce). The focus of algorithm design instead turns to designing the

“mapper” and “reducer” steps without regard to the “system” level issues of how to control the cores.

We employ a series of mapper and reducer phases in our MapReduce implementation. In broad terms,

simulation replications are obtained in batches within mapping phases, and screening is performed in reducer

phases. Each mapper phase must complete before the ensuing reducer phase can begin, and the following

MapReduce phase can only begin once the previous reducer phase completes. This introduces (undesirable)

synchronization steps within Stage 2 that reduce the efficiency of the overall procedure relative to MPI.

In slightly more detail, in Stage 2 each mapper is associated with a single system. The mapper takes as

input the summary statistics for the system to date, performs an additional batch of simulation replications,

and outputs the updated summary statistics. These statistics are then fed to reducers that perform the

screening. Those systems that survive the screening are then output to the next phase of simulation and

screening. In Stage 3 there is one more map and reduce phase in which the Rinott samples are obtained

and the estimated best system identified. Additional mapper and reducer phases are used in the course

of the algorithm to perform additional minor steps, but the ones explicitly discussed above are the most

important.

3 COMPUTATIONAL RESULTS

In this section, we present our computational results for the MPI and MapReduce implementations.

3861

Ni, Ciocan, Henderson, and Hunter

3.1 Computing Environment

To establish a common platform for comparison between MPI and MapReduce, we constrain our experi-

ments to a fixed computational infrastructure, specifically the Extreme Science and Engineering Discovery

Environment (XSEDE) Stampede high performance computing cluster. Stampede consists of approxi-

mately 6400 server nodes with two 8 core Intel Xeon E5 processors and 32GB of memory, networked

together using FDR InfiniBand technology. There is no shared memory between distinct nodes. Stampede

offers mvapich2, which is an optimized version of the MPI standard. There is relatively less support for

MapReduce – we managed to deploy our Hadoop 1.2.1 code using myhadoop, an experimental software

package that provides the interface between Hadoop and the environment’s batch scheduler. Both versions

of the algorithm can be found in the repository (Ni 2015).

While our experiments are restricted to the Stampede cluster, the code can be ported to other distributed

systems, including commercially available “cloud computing” services such as Amazon’s EC2. However, for

EC2-like environments, our MPI implementation needs to be augmented with fault tolerance functionality,

which should enable the procedure to continue in the event that one of the tasks distributed across the

cluster fails to complete. One relatively common example of how to implement this is periodically backing

up the state of the computation; thus, upon a failure the procedure reverts to this state rather than starting

from scratch. While working on the Stampede environment, we have never seen a node failure or any other

reliability issues, so we wrote our code under the assumption that all tasks complete successfully. This

assumption may be violated on other clusters, either because a core may physically fail, or because our task

running on that core may get pre-empted by a higher priority task that requires 100% of the core’s time.

MPI leaves the user the responsibility to write their own procedures handling these issues. On the other

hand, Hadoop is native to failure-prone computing environments and comes with in-built fault tolerance

(if a core does not respond within a certain period of time, its current task will automatically be replicated

and executed on another core), making an “out-of-the-box” port from one computing platform to another

much easier.

Although it is “easier to use” because it handles all communication and core control, MapReduce has

several disadvantages over MPI.

1. Computation and communication are synchronized with MapReduce: before moving from a map

phase to a reduce phase, all mappers must finish, even if the bulk of the cores are idling for large

periods of time waiting for the slowest one to finish.

2. Hadoop maintains no state between two different MapReduce rounds, which leads to unnecessary

reading and writing to disk at every round, as problem state is transferred from one round to another

via a distributed file system; additionally, the same holds for problem data that may not change

over Hadoop’s execution. This disadvantage is specific to the MapReduce implementation (such

as Hadoop in our case), rather than being an inherent drawback of the MapReduce concept.

3. MapReduce incurs fault tolerance overhead that is unneeded on Stampede and we are not aware of

options to turn it off.

All these disadvantages are trade-offs associated with using a “one size fits all” framework in the case of

MapReduce, versus one such as MPI that allows the implementation’s designer high levels of flexibility

in specifying how tasks and communication are scheduled across the compute nodes. As noted in the

introduction, the question we seek to answer with our experiments is whether an easy to use framework

like MapReduce can be competitive in terms of speed with a tailored MPI implementation.

There are some variants of MapReduce that attempt to address some of the limitations above, e.g.,

Elgohary (2012), but we do not exploit them because they are not available for the platform we employ.

3862

Ni, Ciocan, Henderson, and Hunter

Table 1: A comparison of two implementations of GSP using parameters δ = 0.1, n0 = 50, α1 = α2 = 2.5%,

r̄ = 1000/β . “Total time” is summed over all cores.

Configuration β Version Wall-clock Number of Total time Utilization

time replications Simulation Screening

(sec) (×106) (×103 sec) (sec) %

3,249 systems 100 HADOOP 458 0.46 0.34 0.14 1.2

on 64 cores MPI 3.01 0.50 0.18 0.01 94

200 HADOOP 277 0.63 0.41 0.10 2.3

MPI 4.11 0.69 0.25 0.01 95

57,624 systems 100 HADOOP 545 8.83 5.14 1.94 15

on 64 cores MPI 52.7 9.07 3.29 0.89 98

200 HADOOP 406 12.4 6.97 1.70 27

MPI 75.0 12.9 4.69 0.83 98

1,016,127 100 HADOOP 1250 275 158 120 12

systems MPI 123 315 114 29.9 91

on 1,024 cores 200 HADOOP 812 338 194 88.5 23

MPI 141 383 140 28.9 97

3.2 Experiments

We test our implementations on an ensemble of throughput maximization problems from SimOpt.org

(Henderson and Pasupathy 2014); the specific task is to maximize the throughput in a 3 station line with

an infinite number of jobs in front of station 1, finite buffers (b2,b3) ∈ Z2
+ in front of stations 2 and

3 respectively and exponentially distributed service times ri ∈ Z+ for stations i = 1,2,3, subject to the

constraints

b2 +b3 = B,

r1 + r2 + r3 = R.

We obtain 3 instances with (i) 3,249, (ii) 57,624 and (iii) 1,016,127 systems by setting (B,R) = (i) (20,

20), (ii) (50, 50) and (iii) (128,128). Each replication consists of a warm-up time of 2000 job releases,

followed by estimating the steady-state throughput using the following 50 job releases. A consequence of

this design is that our replication times will exhibit little variability.

Before proceeding to the computational comparisons, we should highlight two important differences

between our MPI code and our Hadoop code.

1. The MPI code is in C++, while the Hadoop code is in Java, because these are the languages that

are native to these environments.

2. We perform less screening in the MPI implementation than in Hadoop. More specifically, in our

experiments we found that in the MPI implementation, communication at the master was becoming

a bottleneck due to the passing of statistics on best systems between cores for screening. Hence,

in the MPI implementation only, we screen on any core only between the systems on that core

and the 20 best systems from other cores, as opposed to the best system from every other core in

Hadoop. The difference in the amount of screening is not negligible, but it is modest relative to

the effort in running simulation experiments as we see below.

In Table 1, we compare the performance of our MPI and Hadoop MapReduce implementations along

two dimensions: wall-clock time and core utilization, defined as

Utilization =
total time spent on simulation

wall-clock time × number of cores
.

3863

Ni, Ciocan, Henderson, and Hunter

0 100 200 300 400 500 600 700 800 900

Time (seconds)

0

200

400

600

800

1000

1200

N
u
m

b
e
r
o
f
A
ct

iv
e
 J
o
b
s

Mapper Reducer

Figure 1: A profile of the MapReduce implementation solving 1,016,127 systems on 1,024 cores with

average batch size β = 200. The first three MapReduce steps implement Stage 1, the next ten MapReduce

steps constitute Stage 2, and the final two MapReduce steps complete Stage 3.

Utilization is a measure of the efficiency of our implementations, as it measures the fraction of CPU time

spent running the simulation, rather than communicating data between cluster nodes or handling MPI or

Hadoop overhead. This measure ignores the time needed for screening, but that is relatively negligible as

we shall see in the results below.

3.2.1 Wall-clock Times

As expected, MPI exhibits faster wall-clock times than Hadoop across all of our trials. The gap in wall

clock times narrows as the batch size and/or the system-to-core ratio are increased. This is consistent with

our intuition that MapReduce’s synchronization incurs rather large fixed overhead costs at each iteration,

while the MPI procedure eliminates these costs as much as possible. Hence, increasing the per round

computational cost of the simulations spreads out MapReduce’s overhead, diluting the advantage of MPI.

Indeed, as we increased the system-to-core ratio and the batch size, the gap between Hadoop and MPI

narrowed down to roughly a factor of 6, a twenty-fold improvement over the gap for the smallest problems.

We conjecture that as the problem and batch sizes are further increased, the gap in wall-clock times could

be further reduced.

3.2.2 Utilization Rates

The MPI implementation also consistently achieves higher efficiency (up to 91− 98%) compared to the

Hadoop one, but as with wall-clock times, the gap closes the larger the system-to-core ratio and the batch

size.

Figure 1 empirically highlights some of our previous intuition regarding the inefficiencies that are

inherent to a MapReduce implementation.

1. Often the bulk of the cores are idle in both the map and reduce stages waiting for the slower cores

to finish. With MPI, the master could use idle cores more efficiently by allocating them new tasks

asynchronously.

3864

Ni, Ciocan, Henderson, and Hunter

Table 2: A comparison of two implementations of GSP using a random number of warm-up job releases

distributed like min{exp(X),20,000} , where X ∼ N(µ,σ 2). We use parameters δ = 0.1, n0 = 50, α1 =
α2 = 2.5%, r̄ = 1000/β .

Configuration β Version µ σ2 Wall-clock Utilization

time (sec) %

1,016,127 systems 200 HADOOP 7.35 0.5 151 25

on 1,024 cores MPI 851 97

1,016,127 systems 200 HADOOP 6.60 2.0 853 22

on 1,024 cores MPI 146 97

2. Hadoop spends additional overhead between the map and reduce phases performing an intermediary

step called a “shuffle”, which sorts and distributes the output of the mappers to the reducers.

Consequently, the shuffle and reducer steps form significant gaps between the map steps and a large

amount of computing time is wasted. While some of this coordination is unavoidable, Hadoop does

not offer flexibility to streamline it to our setting.

3.2.3 Uneven Simulation Times

Intuitively, the fact that our simulation times are not highly variable relative to their means is why MapReduce

is competitive with MPI, since this presumably reduces the impact of synchronization delays. On the other

hand, for settings where the simulation times exhibit enough variation that one simulation takes much

longer than the others, one would expect that the synchronization-free design of our MPI procedure would

become a decisive advantage.

We attempted to verify this conjecture with a different suite of experiments, where we artificially

injected variance into our run times by randomizing the number of job releases in the warm-up stage

(previously, this was deterministically set to 2000). We chose a truncated log-normal distribution from

which to sample, as its heavy tails should capture the scenario where a single simulation’s very large run

time slows down the entire system. The truncation of the log-normal was necessary due to the fact that

Hadoop has an in-built time-out value: after a mapper calculation has exceeded this large time value, it is

declared a time-out by the Hadoop master. Parameters of the truncated lognormal distribution are given in

Table 2.

Contrary to our intuition, we were not able to observe a stronger divergence between MPI and MapReduce

than our base case, as both wall-clock times and utilizations remained largely the same (see Table 2). A

potential explanation is that batching averages out the variations across individual replications, and indeed

we have observed that increasing the variance of the sampling distribution has little effect in terms of

slowing down MapReduce. This suggests that, in fact, our procedure is quite robust to uneven simulation

run times and that rather extreme variations would be required for MapReduce to suffer a sharp performance

decrease.

4 DISCUSSION

The computational results confirm our expectation that MPI would outperform MapReduce in a high-

performance parallel computing environment. As evidenced by its high core utilization, the MPI im-

plementation efficiently uses parallel cores to generate simulation replications and incurs relatively little

overhead. The core utilization figures are much lower for the MapReduce implementation.

One factor that may further deteriorate the performance of the MapReduce implementation is that

simulations may take a significant amount of time to initialize. For example, vehicle routing simulations

often preload a large amount of static data representing the “map” of the simulated area, which can be

used repeatedly for multiple systems and replications. With MPI, such static data can be stored in memory

3865

Ni, Ciocan, Henderson, and Hunter

and so the simulation runs only need to be initialized once. However, because Apache Hadoop does not

allow cores to keep any data in memory between MapReduce iterations, the static data has to be reloaded

repeatedly.

Despite showing relatively poor performance of the MapReduce implementation, the computational

study does point to some regimes where it may work better. As the number of systems increases from

3,249 to 57,624 while keeping the number of cores constant, the utilization of MapReduce significantly

increases, indicating that the procedure overhead does not increase much with respect to the number of

systems. Further, as we reduce the number of phases in Stage 2 by increasing the average batch size

parameter β (which is directly proportional to the number of simulation replications collected from each

system in every iteration) from 100 to 200, we notice an increase in utilization as the result of less frequent

screening and less shuffling overhead. Hence, for problems that feature a large solution space or require

long simulation runs, we would expect the MapReduce overhead to be less pronounced and the overall

utilization to improve. Furthermore, the observed overhead from full synchronization and data shuffling is

largely due to the restrictions of the Apache Hadoop implementation rather than the MapReduce framework,

and the performance of MapReduce-based procedures has much upward potential as more sophisticated

MapReduce implementations are developed.

“Cloud computing” services like Amazon EC2 are a more accessible and affordable alternative to

high-performance clusters such as Stampede. These services often offer a variety of computing resources

with different processing speed and reliability. On less robust hardware, the MapReduce implementation

is a more compatible choice, for Apache Hadoop offers built-in protection against core failures by having

the master core periodically detect the status of worker cores and re-launch failed map or reduce tasks. The

Hadoop distributed file system (HDFS), which is used by Apache Hadoop to keep MapReduce input and

output, also maintains replicates of data blocks to ensure that no data is lost as a result of a single hardware

failure. The increased overhead of those fault tolerance mechanisms is often offset by the decrease in

cost of using cheaper resources. The current MPI implementation, on the other hand, does not monitor

core failures and distributes data across parallel cores without backup, so a core failure that causes loss of

simulation results may break the procedure. Therefore, to use MPI on a cloud environment where hardware

failure is a norm, we need to either introduce additional protection or design a new procedure which is

robust against random loss of simulation statistics.

ACKNOWLEDGMENTS

This work was partially supported by NSF grant CMMI-1200315, and used the Extreme Science and

Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant

number ACI-1053575.

REFERENCES

Bechhofer, R. E., T. J. Santner, and D. Goldsman. 1995. Design and Analysis of Experiments for Statistical

Selection, Screening and Multiple Comparisons. New York: John Wiley and Sons.

Chen, E. J. 2005. “Using Parallel and Distributed Computing to Increase the Capability of Selection

Procedures”. In Proceedings of the 2005 Winter Simulation Conference, 723–731.

Elgohary, A. 2012. “Stateful MapReduce”.

Glynn, P. W., and P. Heidelberger. 1990. “Bias properties of budget constrained simulations”. Operations

Research 38:801–814.

Glynn, P. W., and P. Heidelberger. 1991. “Analysis of Parallel Replicated Simulations Under a Completion

Time Constraint”. ACM Transactions on Modeling and Computer Simulation 1 (1): 3–23.

Heidelberger, P. 1988. “Discrete event simulations and parallel processing: statistical properties”. Siam J.

Stat. Comput. 9 (6): 1114–1132.

S. G. Henderson and R. Pasupathy 2014. “Simulation Optimization Library”.

3866

Ni, Ciocan, Henderson, and Hunter

Kim, S.-H., and B. L. Nelson. 2006. “Selecting the best system”. In Simulation, edited by S. G. Henderson

and B. L. Nelson, Handbooks in Operations Research and Management Science, Volume 13, 501–534.

Elsevier.

Luo, J., J. L. Hong, B. L. Nelson, and Y. Wu. 2013. “Fully Sequential Procedures for Large-Scale

Ranking-and-Selection Problems in Parallel Computing Environments”. Working Paper.

Luo, Y.-C., C.-H. Chen, E. Yucesan, and I. Lee. 2000. “Distributed Web-based simulation optimization”.

In Proceedings of the 2000 Winter Simulation Conference, Volume 2, 1785–1793.

Nelson, B. L., and F. J. Matejcik. 1995. “Using Common Random Numbers for Indifference-Zone Selection

and Multiple Comparisons in Simulation”. Management Science 41 (12): 1935–1945.

Nelson, B. L., J. Swann, D. Goldsman, and W. Song. 2001. “Simple procedures for selecting the best

simulated system when the number of alternatives is large”. Operations Research 49 (6): 950–963.

Eric C. Ni 2015. “mpiRnS: Parallel Ranking and Selection Using MPI”. https://bitbucket.org/ericni/mpirns.

Ni, E. C., D. F. Ciocan, S. G. Henderson, and S. R. Hunter. 2015. “Efficient Ranking and Selection in

Parallel Computing Environments”. Working Paper. http://arxiv.org/abs/1506.04986.

Ni, E. C., S. G. Henderson, and S. R. Hunter. 2014. “A comparison of two parallel ranking and selection

procedures”. In Proceedings of the 2014 Winter Simulation Conference.

Ni, E. C., S. R. Hunter, and S. G. Henderson. 2013. “Ranking and selection in a high performance computing

environment”. In Proceedings of the 2013 Winter Simulation Conference, 833–845.

Rinott, Y. 1978. “On two-stage selection procedures and related probability-inequalities”. Communications

in Statistics - Theory and Methods 7 (8): 799–811.

Yoo, T., H. Cho, and E. Yucesan. 2009, July 01. “Web Services-Based Parallel Replicated Discrete Event

Simulation for Large-Scale Simulation Optimization”. Simulation 85 (7): 461–475.

AUTHOR BIOGRAPHIES

ERIC C. NI is a Ph.D. student in the School of Operations Research and Information Engineering at

Cornell University. He received a B.Eng. in Industrial and Systems Engineering and a B.Soc.Sci. in

Economics from the National University of Singapore in 2010. His research interests include simulation

optimization, emergency services and queuing theory. His webpage is http://people.orie.cornell.edu/cn254/.

DRAGOS F. CIOCAN is an assistant professor of Technology and Operations Management at INSEAD.

His research interests are in stochastic optimization, large scale distributed optimization and non traditional

applications of revenue management. His email address is florin.ciocan@insead.edu, and his webpage is

http://www.insead.edu/facultyresearch/faculty/profiles/dciocan/.

SHANE G. HENDERSON is a professor in the School of Operations Research and Information Engineering

at Cornell University. His research interests include discrete-event simulation and simulation optimization,

and he has worked for some time with emergency services and bike sharing applications. He co-edited the Pro-

ceedings of the 2007 Winter Simulation Conference. His web page is http://people.orie.cornell.edu/∼shane.

SUSAN R. HUNTER is an assistant professor in the School of Industrial Engineering at Purdue University.

Her research interests include Monte Carlo methods and simulation optimization. Her email address is

susanhunter@purdue.edu, and her webpage is http://web.ics.purdue.edu/∼hunter63/.

3867

https://bitbucket.org/ericni/mpirns
http://arxiv.org/abs/1506.04986
http://people.orie.cornell.edu/cn254/
mailto:florin.ciocan@insead.edu
http://www.insead.edu/facultyresearch/faculty/profiles/dciocan/
http://people.orie.cornell.edu/~shane
mailto:susanhunter@purdue.edu
http://web.ics.purdue.edu/~hunter63/

