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ABSTRACT

In this paper, we consider the problem of selecting an optimal subset from a finite set of simulated designs.

Using the optimal computing budget allocation (OCBA) framework, we formulate the problem as that of

maximizing the probability of correctly selecting the top m designs subject to a constraint on the total

number of samples available. For an approximation of the probability of correct selection, we derive an

asymptotically optimal subset selection procedure that is easy to implement. More importantly, we provide

some useful insights on characterizing an efficient subset selection rule and how it can be achieved by

adjusting the budgets allocated to the optimal and non-optimal subsets.

1 INTRODUCTION

The problem we consider is selecting the top m (m > 1) designs from a finite set of k design alternatives,

where the performance of each design is estimated with noise (uncertainty). The primary context is

simulation, where the goal is to determine the best allocation of simulation replications among the various

designs in order to maximize the probability of correct selection (PCS). This problem setting falls in

the well-established branch of statistics known as ranking and selection (R&S) or multiple comparison

procedures. For a comprehensive review of this field, see Branke et al. (2007), Kim and Nelson (2007).

Most existing R&S research has focused on selecting the best design. The indifference-zone (IZ)

approach aims to provide a guaranteed lower bound for PCS, assuming that the mean performance of the

best design is at least δ ∗ better than each alternative, where δ ∗ is the minimum difference worth detecting

(Dudewicz and Dalal 1975, Rinott 1978, Kim and Nelson 2001, Nelson et al. 2001). The optimal computing

budget allocation (OCBA) method allocates the samples sequentially in order to maximize PCS under a

simulation budget constraint (Chen et al. 2000, Chen et al. 2008, Chen and Lee 2011). The expected

value of information (EVI) procedure allocates samples to maximize the EVI obtained from sampling in

two stages or sequentially using predictive distributions of further samples (Chick and Inoue 2001b, Chick

and Inoue 2001a).

The problem of selecting the top m designs is motivated by recent developments in global simulation

optimization algorithms, which require the selection of an elite subset of good candidate solutions in each

iteration of the algorithm (Chambers 1995, Rubinstein and Kroese 2004, Hu et al. 2007, Hu et al. 2008).

The information from the elite set is used to guide the search in subsequent iterations for the global optimum.

Since the performance of these algorithms depends heavily on the quality of the selected solutions, how to

efficiently select an optimal subset then becomes a critical problem for implementation of these algorithms.

The optimal subset selection problem has been considered in Koenig and Law (1985). A two-stage

procedure was established to provide a PCS guarantee. However, the number of additional simulation

replications for the second stage is computed based on a least favorable configuration and causes the
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computational cost to be much higher than actually needed. A sequential subset selection procedure was

developed in Chen et al. (2008), which maximizes PCS using the OCBA method. The optimal subset

selection problem with the expected opportunity cost (EOC), a common quality measure other than PCS,

was considered in Gao and Chen (2015).

In this paper, we characterize a new and efficient simulation budget allocation rule, called OCBAss, for

solving the optimal subset selection problem from a finite set of simulated designs. OCBAss is developed

using the PCS measure and the OCBA framework, and when m = 1, i.e., selecting the single best design,

OCBAss degrades to the well-known OCBA allocation rule in Chen et al. (2000). It can be demonstrated in

numerical testing that OCBAss has better performance than the existing allocation methods in the literature.

More importantly, we provide some useful insights for the subset selection problem. They reveal properties

of an efficient allocation and how it can be achieved by adjusting the proportions of the total simulation

budget allocated to the designs in the optimal and non-optimal subsets.

The rest of the paper is organized as follows. In Section 2, we formulate the simulation budget allocation

problem for selecting the top m designs. In Section 3, we develop a new and efficient budget allocation

strategy and provide some insights on it. The performance of the proposed method is illustrated with

numerical examples in Section 4. Section 5 concludes the paper.

2 PROBLEM FORMULATION

In this research, the best design is defined as the design with the smallest mean performance (the largest

mean performance could be handled similarly). We introduce the following notation:

T : total number of simulation replications (budget);

k: total number of designs;

Li,l: output of the l-th simulation replication for design i;

Ji: mean of Li,l , i.e., Ji = E[Li,l];
σ2

i : variance of Li,l , i.e., σ 2
i =Var[Li,l];

Ni: number of simulation replications for design i;

αi: proportion of the total simulation budget to design i, i.e., αi = Ni/T ;

J̄i: sample mean of design i, i.e., J̄i =
1
Ni

∑
Ni

l=1 Li,l;

So: set of the true top m designs (optimal subset);

Sn: set of the designs that are not in So (non-optimal subset);

δi, j = Ji− Jj;

σ 2
i, j = σ2

i /Ni +σ2
j /Nj.

In this study, we assume no ties in means among the k designs for selection. The simulation output

samples are assumed to be normally distributed and independent from replication to replication, as well as

independent across different designs.

A correct selection occurs when the optimal subset is So selected, and the probability of making a

correct selection is:

PCS = P

(

⋂

i∈So

⋂

j∈Sn

(J̄i < J̄ j)

)

. (1)

The goal is to find a simulation budget allocation that maximizes the PCS given in (1). However, in general,

the maximization of PCS is analytically intractable due to the lack of convenient expression for PCS. To

address this difficulty, we develop an approximation of PCS using a lower bound.

Using the Bonferroni inequality,

PCS≥ 1− ∑
i∈So

∑
j∈Sn

P(J̄ j < J̄i)≡ APCS. (2)
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We refer to this lower bound of PCS as the approximated probability of correct selection (APCS). Then,

in this study, we consider the following selection problem instead:

max APCS

s.t.
k

∑
i=1

Ni = T. (3)

This formulation falls in the OCBA framework. It implicitly assumes that the computational cost of

each replication is constant across designs; however, it can be generalized to other settings by changing

the budget constraint to ∑
k
i=1 ciNi = T where ci reflects the (relative) cost of a replication for design i, and

T reflects a more general computing budget rather than simply the total number of simulation replications.

3 EFFICIENT SIMULATION BUDGET ALLOCATION

In this section, we derive the asymptotic (as the budget T → ∞) optimality conditions for problem (3) and

provide some useful insights for them. A sequential selection procedure is then designed for implementation.

3.1 Asymptotic Optimality Conditions

To solve (3), we first prove the following lemma.

Lemma 1 Consider u j,v j,w j,z j ∈ R with u j,w j > 0 and v j,z j < 0, j = 1,2, ...,m. If for x ∈ R,

m

∑
j=1

u j exp(v jx) =
m

∑
j=1

w j exp(z jx) (4)

as x→+∞, then, max j∈{1,...,m} v j = max j∈{1,...,m} z j.

Proof. Let jv = arg max j∈{1,...,m}v j and jz = arg max j∈{1,...,m}z j. Note that as x→+∞,

u j exp(v jx)

u jv exp(v jvx)
=o(1) for j 6= jv,

w j exp(z jx)

w jz exp(z jzx)
=o(1) for j 6= jz,

where for functions G(x) and H(x), G(x) = o(H(x)) means that H(x) is higher-order infinitesimal than

G(x) as x→+∞. From (4),

u jv exp(v jvx)(1+o(1)) = w jz exp(z jzx)(1+o(1)). (5)

Take natural log on both sides of (5),

log(u jv)+ v jvx+ log(1+o(1)) = log(w jz)+ z jzx+ log(1+o(1)). (6)

Divide both sides of (6) by x. As x→+∞, v jv = z jz .

According to Gao and Shi (2015b), P(J̄ j < J̄i) is asymptotically convex for designs i ∈ So and j ∈ Sn.

APCS is then an asymptotically concave function and (3) is an asymptotically convex function. Therefore,

to solve (3), we can find the Karush-Kuhn-Tucker (KKT) conditions (Boyd and Vandenberghe 2004) of it.
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Theorem 2 Denote Ii, j =
δ 2

i, j

σ2
i /αi+σ2

j /α j
for i ∈ So and j ∈ Sn, ji = arg min j∈Sn

Ii, j for i ∈ So and i j =

arg mini∈So
Ii, j for j ∈ Sn. Problem (3) is asymptotically optimized if

∑
i∈So

N2
i

σ2
i

= ∑
j∈Sn

N2
j

σ2
j

, (7)

Ii, ji = Ii′, ji′ , i, i′ ∈ So and i 6= i′, (8)

Ii j, j = Ii j′ , j
′ , j, j′ ∈ Sn and j 6= j′. (9)

Proof. Let F be the Lagrangian relaxation of (3) with Lagrange multiplier λ > 0, i.e., F = APCS−
λ (∑k

i=1 Ni−T ). The KKT conditions of (3) are:

∂F

∂Ni

=− ∑
j∈Sn

1

2
√

2π
exp

{

−
δ 2

i, j

2σ2
i, j

}

δi, jσ
2
i

σ3
i, jN

2
i

−λ = 0, i ∈ So; (10)

∂F

∂Nj

=− ∑
i∈So

1

2
√

2π
exp

{

−
δ 2

i, j

2σ2
i, j

}

δi, jσ
2
j

σ3
i, jN

2
j

−λ = 0, j ∈ Sn. (11)

Apply (10) for all i ∈ So and (11) for all j ∈ Sn:

−∑
i∈So

∑
j∈Sn

1

2
√

2π
exp

{

−
δ 2

i, j

2σ2
i, j

}

δi, j

σ3
i, j

= ∑
i∈So

λ
N2

i

σ2
i

= ∑
j∈Sn

λ
N2

j

σ2
j

.

That is,

∑
i∈So

N2
i

σ2
i

= ∑
j∈Sn

N2
j

σ2
j

. (12)

To investigate the relationship between the budgets allocated to the designs in So, pick i, i′ ∈ So with

i 6= i′. From (10),

∑
j∈Sn

1

2
√

2π
exp

{

−1

2
Ii, jT

}

δ j,iσ
2
i

σ3
i, jN

2
i

= ∑
j∈Sn

1

2
√

2π
exp

{

−1

2
Ii′, jT

}

δ j,i′σ
2
i′

σ3
i′, jN

2
i′
. (13)

Apply Lemma 1 to (13). Asymptotically as the budget T → ∞,

Ii, ji = Ii′, ji′ , i, i′ ∈ So and i 6= i′. (14)

We can similarly obtain the relationship between the budgets allocated to the designs j, j′ ∈ Sn with

j 6= j′. Asymptotically from (11),

Ii j, j = Ii j′ , j
′ , j, j′ ∈ Sn and j 6= j′. (15)

3.2 Analysis of the Optimality Conditions

We provide some insights of the optimality conditions (7), (8) and (9) derived.

For (7), it indicates the number of simulation budget that should be spent on the optimal subset So

and the non-optimal subset Sn. It serves to provide a general balance for the simulation efforts devoted to

the two subsets so that neither of the subsets is over-sampled. In determining this general balance, just
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the variance information of the designs in the two subsets is employed. Such information represents the

hardness of the designs in a subset for being distinguished from the other subset. The larger the variances

are, the harder it is to distinguish a subset, and the more simulation budget this subset receives. The other

dimension of the hardness for distinguishing the two subsets involves the difference in means between the

designs in these two subsets. However, such hardness is mutual for the two subsets and can be thought of

as “canceled” when determining the budgets devoted to them.

In particular, for the special case of |So|= 1 and |Sn|= k−1, (7) degrades to the well-known OCBA

allocation rule for the best single design selection (Chen and Lee 2011):

N2
t

σ2
t

=
k

∑
j=1, j 6=t

N2
j

σ2
j

,

where design t is the true best design among the k competing alternatives.

To interpret (8) and (9), we first consider Ii, j defined in Theorem 2. It has been shown in Gao and Shi

(2015a) that a good approximation and upper bound for P(J̄ j < J̄i) for i ∈ So and j ∈ Sn is given by

P(J̄ j < J̄i)≈ exp

{

−1

2
Ii, jT

}

.

Note that the event J̄ j < J̄i corresponds to a wrong selection. Then, P(J̄ j < J̄i) denotes the probability of

making a wrong selection when making a pair-wise comparison between designs i ∈ So and j ∈ Sn. As the

total budget T increases, this probability goes to 0, and its exponential converging rate is characterized by
1
2
Ii, j. The larger 1

2
Ii, j is, the higher the converging rate is, and the less likely we make a wrong selection

in the pair-wise comparison of designs i and j.

In (8), for an i ∈ So, ji is taken as arg min j∈Sn
Ii, j. That is, ji is the design in Sn that is most likely to

lead to a wrong selection when design i is pair-wisely compared with all the designs in Sn. The hardness

of comparing i and ji is used to represent the hardness of correctly observing i in the simulation budget

allocation. This is not surprising because if designs i and ji are correctly compared, designs i and j for

j ∈ Sn and j 6= ji are likely to be correctly compared, and correctly comparing designs i and j for all j ∈ Sn

means that design i is correctly observed. In the optimal budget allocation status, the simulation budget

is allocated to the designs in So such that the hardness of correctly observing these designs remains the

same. We can perform similar analysis to (9) and reach the conclusion that the optimal budget allocation

requires the hardness of correctly observing the designs in Sn remains the same too.

In summary, optimality condition (7) provides a general balance between the simulation budgets

devoted to the optimal and non-optimal subsets. Optimality conditions (8) and (9) attempt to enforce

appropriate proportions of the simulation budget for each design in the optimal subset and non-optimal

subset respectively.

Still, for the special case of |So|= 1 and |Sn|= k−1, let t be the true best design. (8) vanishes, and

(9) degrades to

δ 2
t, j

σ2
t

Nt
+

σ2
j

Nj

=
δ 2

t, j′

σ2
t

Nt
+

σ2
j′

Nj

j 6= j′.

If we further assumes Nt ≫ Nj for all j 6= t, then,

Nj

Nj′
=

(

σ j/δt, j

σ j′/δt, j′

)2

j 6= j′,

which is also identical to the OCBA result.
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3.3 Sequential Budget Allocation Procedure

Based on the discussion above, we propose a sequential budget allocation procedure to satisfy the optimality

conditions (7), (8) and (9). At each iteration, we provide an incremental budget ∆ and calculate Uo =∑i∈So

N2
i

σ2
i

and Un = ∑ j∈Sn

N2
j

σ2
j

. If Uo < Un, ∆ is allocated to the design i∗ ∈ So with i∗ = arg minIi∗, ji∗ ; otherwise, ∆

is allocated to the design j∗ ∈ Sn with j∗ = arg minIi j∗ , j∗ . This is because designs i∗ and j∗ correspond

to the largest violations of (8) and (9) respectively, and allocating additional replications to these designs

can alleviate or eliminate these violations. This process is iterated until the given budget T is consumed.

Since this procedure is developed within the OCBA framework, we call it OCBAss, the OCBA allocation

for subset selection.

OCBAss Allocation Procedure

1. For a set of k simulated designs, specify the size of the optimal set m, total simulation budget T ,

the initial simulation replication number n0 and the incremental budget ∆0. Iteration counter r← 0.

Perform n0 simulation replications to all designs. Nr
i = n0 for i = 1,2, ...,k.

2. For all designs i = 1,2, ...,k, calculate sample mean J̄i and sample variance s2
i .

3. If ∑
k
i=1 Nr

i = T , stop. Otherwise,

a. Calculate the estimates Ûo, Ûn, î∗ and ĵ∗ for Uo, Un, i∗ and j∗ using J̄i and s2
i , i = 1,2, ...,k.

b. Provide an incremental simulation budget ∆ = min{∆0,T −∑
k
i=1 Nr

i }. If Ûo < Ûn, allocate ∆

to design î∗, Nr+1

î∗
= Nr

î∗
+∆; otherwise, allocate ∆ to design ĵ∗, Nr+1

ĵ∗
= Nr

ĵ∗
+∆.

c. Update the sample mean and sample variance of the design receiving additional replications.

d. r← r+1.

4 NUMERICAL EXPERIMENTS

In this section, we test the proposed OCBAss procedure by comparing it with different simulation budget

allocation methods on several typical selection problems.

We use the following two budget allocation approaches for comparison.

• Equal Allocation: This is the simplest way to conduct simulation experiments and has been widely

applied. The total simulation budget is equally allocated to each design, so that all the designs are

simulated equally often. The performance of equal allocation serves as a benchmark for comparison.

• OCBA-m Allocation: OCBA-m is a sequential budget allocation procedure developed to select the

top m designs using the PCS criterion (Chen et al. 2008). In each iteration, it provides an incremental

budget and allocates it to the candidate designs according to

Ni

Nj

=

(

σi/δi

σ j/δ j

)2

, i, j ∈ {1,2, ...,k} and i 6= j,

where δi = Ji− c and c is a pre-specified parameter. Although OCBA-m is also developed within

the OCBA framework, it is different from the proposed OCBAss allocation rule.

In order to compare the performance of these allocation approaches, we test them empirically on three

typical selection examples.

• Example 1: Monotone means and constant variances.

It has 10 designs and |So|= 3. Design i has a distribution of N(i,102), i = 1,2, ...,10.

• Example 2: Monotone means and increasing variances.

It has 10 designs and |So|= 3. Design i has a distribution of N(i,20i), i = 1,2, ...,10.
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• Example 3: Monotone means and decreasing variances.

It has 10 designs and |So|= 3. Design i has a distribution of N(i,20(11− i)), i = 1,2, ...,10.

For OCBA-m and OCBAss, we perform 10 initial replications for each design and the incremental budget

is 10. The estimate of PCS is based on the average of 8000 independent replications of each procedure to

the problem. The comparison of the three approaches is reported in Figure 1.
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(b) Example 2
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(c) Example 3

Figure 1: Comparison results of the three methods.

From the results, it is observed that the proposed OCBAss works the best. It reaches higher PCS with

different budgets on all the tested examples, except that OCBAss performs slightly worse than OCBA-m on

example 1 when the simulation budget is small.

The performance of OCBA-m is second. There are two possible reasons for OCBA-m being less efficient

than OCBAss. The first is that, in the special case of m = 1, OCBAss degrades to the OCBA allocation

rule while OCBA-m does not, which suggests that OCBAss might offer better approximation to the optimal
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allocation strategy. The other possible reason lies in the parameter c introduced by OCBA-m. Theoretically

c can be any real numbers between maxi∈So
Ji and min j∈Sn

Jj to validate the OCBA-m allocation rule, but

how the value of c is determined has a great influence to the efficiency of OCBA-m. In Chen et al. (2008),

c is suggested to take the average of maxi∈So
Ji and min j∈Sn

Jj. However, intuitively, the optimal c value

should depend on the problem structure and should be different from case to case. These two reasons

might explain why OCBA-m is not so efficient as OCBAss.

The equal allocation performs the worst. This is not surprising because the equal allocation cannot

adapt to the structure of each design and involve the information of sample mean and sample variance to

guide the allocation as the other two procedures do.

5 Conclusions

In this study, an efficient simulation budget allocation procedure is presented for selecting the top m designs

from a finite set of design alternatives. The objective is to maximize the probability of correct selection

within a given computing budget. We develop an approximation for the correct selection probability, and

then derive an asymptotically optimal selecting procedure for this approximate measure. When m = 1,

the new procedure degrades to the OCBA allocation rule. Numerical testing indicates that the proposed

approach is more efficient than other methods in the literature. We also perform some analysis on the budget

allocation method derived. It provides some useful insights for determining an efficient subset selection

and how it can be achieved by adjusting the budgets allocated to the optimal and non-optimal subsets.

In this research, we have attacked the subset selection problem within the OCBA framework. A possible

alternative is the knowledge gradient (KG), which is another common approach for R&S problems (Frazier

et al. 2008). KG is typically based on Bayesian framework and dynamic programming formulation, and

its efficiency has been demonstrated via a variety of numerical examples (Frazier et al. 2008, Frazier et al.

2009). It indicates a promising line of future research along which the subset selection problem might be

efficiently solved.
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