
Proceedings of the 2015 Winter Simulation Conference

L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, eds.

PARTITION BASED OPTIMIZATION FOR UPDATING SAMPLE ALLOCATION STRATEGY

USING LOOKAHEAD

David D. Linz

Hao Huang

Zelda B. Zabinsky

Department of Industrial and Systems Engineering

University of Washington

Seattle, WA 98195-2650 USA

ABSTRACT

Simulation models typically describe complicated systems with no closed-form analytic expression. To

optimize these complex models, general “black-box” optimization techniques must be used. To confront

computational limitations, Optimal Computational Budget Allocation (OCBA) algorithms have been de-

veloped in order to arrive at the best solution relative to a finite amount of resources primarily for a

finite design space. In this paper we extend the OCBA methodology for partition based random search

on a continuous domain using a lookahead approximation on the probability of correct selection. The

algorithm uses the approximation to determine the order of dimensional-search and a stopping criterion

for each dimension. The numerical experiments indicate that the lookahead OCBA algorithm improves the

allocation of computational budget on asymmetrical functions while preserving asymptotic performance

of the general algorithm.

1 INTRODUCTION

As applications for simulation grow, there is an increased demand for efficient generalized algorithms that

can be used to efficiently optimize black-box objective functions. Partition based search methods, such as

branch and bound methods, nested partitions, and adaptive random search (Chen et al. 2014) (Chew et al.

2009) (Shi and Ólafsson 1998) (Tang 1994) have been used to optimize objective functions evaluated by

black-box simulations.

Optimal Computing Budget Allocation (OCBA) algorithms have been applied to simulation optimization

with a finite budget constraint. They optimize budget allocation based on maximizing the probability of

correctly selecting the optimal design. An extensive discussion of OCBA methods can be found in Chen

(2011). OCBA algorithms have commonly been applied to a finite set of designs. However, more recent

developments have focused specifically on optimizing samples taken within a set of discrete domain

categories. Starting with Chen et al. (1997), OCBA strategies were outlined for ranking and selection

algorithms based on statistical estimates of a lower bound on the probability of correct selection. In Chen

et al. (1997) the lower-bound depended on a Bayesian approximation and relied on the independence of

the response between designs. An extension of this approach was created for optimal intelligent air traffic

management in Chen and He (2005). A similar result was extended to ordinal optimization across different

designs in Chen et al. (2000), which develops an allocation of samples to a discrete number of designs

that is optimal asymptotically. Brantley et al. (2014) extend the OCBA approach from discrete designs

to groups of designs by use of regression. More recently, Chen et al. (2014) extended the application of

OCBA to partition based selection for black box functions on a continuous domain.

When optimizing the allocation of computational budget to a multidimensional space, Chen et al.’s

algorithm sequentially optimizes the space one dimension at a time, with identical budget in an arbitrary

3577978-1-4673-9743-8/15/$31.00 ©2015 IEEE

Linz, Huang, and Zabinsky

order. While this makes the problem tractable computationally, there is no guidance for selecting which

dimension should be optimized first. Moreover, despite possible asymmetries in dimensional behavior, each

dimension is given an equal computational budget. These assumptions could lead to a less efficient allocation

of computational budget than an algorithm that could intelligently determine the order of dimensions to

be evaluated and allocate the budget dedicated to each dimension individually.

This paper proposes a look-ahead algorithm that seeks to address these two issues. The algorithm

employs a lookahead approximation on the probability of correct selection to determine the next dimension

to be optimized as well as a stopping criterion for samples in that dimension.

This paper provides an overview of the OCBA approach to partition based search and details the

derivation of the lookahead algorithm in Section 2. Here we detail a general strategy for multi-dimensional

partition based search in Section 2.1. After, we the develop the formulation for the lookahead metric

in Section 2.2 as well as its statistical approximation in Section 2.3. We describe how the lookahead

is integrated into an OCBA algorithm in Section 2.4 and discuss the algorithm’s performance relative to

alternatives in 3. Result and future directions are discussed in Section 4.

2 LOOKAHEAD ALGORITHM FOR PARTITION BASED OPTIMIZATION

Consider a black-box optimization problem

minx∈Θ f (x) (1)

where Θ ⊂R
D and f is a function such that f : Θ →R. We suppose Θ is a hyper-rectangle such that each

dimension is divided into M equal intervals so that the space is partitioned into MD boxes θ
(D)
γ indexed by

a D length array of tuples γ = ((d1,md1
),(d2,md2

), ...,(dD,mdD
)) where d1, ...,dD is a permutation of the

dimensions {1, ...,D}, and the values md1
, ...,mdD

range from 1 to M and indicate a specific interval on a

dimension. This defines a partition on Θ such that
⋃M

m1=1 · · ·
⋃M

mD=1 θγ = Θ. We consider different levels

of aggregation of the MD boxes, starting with the smallest box of order D, θ
(D)
γ , and aggregating up to the

largest box of order 0, θ (0) = Θ. Define a box of order k as

θ
(k)
(d1,md1

),...,(dk,mdk
) =

M
⋃

md=1

θ
(k+1)
(d1,md1

),...,(dk,mdk
)(d,md)

where d is one value in the set of remaining dimensionsD
(k)
r = {1, ...,D}/{d1,d2, ...,dk} and k= 0,1, ...,D−1.

For reference, θ
(k)
(d1,md1

),...,(dk−1,mdk−1
)(dk,·) indicates the set of boxes {θ

(k)
(d1,md1

),...,(dk−1,mdk−1
)(dk,m) ∀m = 1, ...,M}.

An example of a set of aggregated boxes is shown in Figure 1 over a three dimensional (D = 3) space

with M = 3. Starting with the total space θ (0) = Θ, Figure 1 illustrates a partition on the second dimension

with the first order boxes θ
(1)
(2,1), θ

(1)
(2,2), θ

(1)
(2,3). Considering the shaded surface θ

(1)
(2,3), the partition of second

order boxes consists of θ
(2)
(2,3),(3,1), θ

(2)
(2,3),(3,2) θ

(2)
(2,3),(3,3). Finally, the gray strip, θ

(2)
(2,3),(3,3), is divided into

three third order boxes θ
(3)
(2,3),(3,3),(1,1), θ

(3)
(2,3),(3,3)(1,2), θ

(3)
(2,3),(3,3),(1,3) where the black box is θ

(3)
(2,3),(3,3),(1,3).

From this pattern we can see that each k order box can be divided into M equal k+ 1 order boxes, for

k+1 ≤ D.

Let θ
(D)
γ∗ be the smallest box that contains the optimum x∗ where x∗ = argminx∈Θ f (x) and γ∗ =

((d1,m
∗
d1
),(d2,m

∗
d2
), ...,(dD,m

∗
dD
)). Let θ

(D)

γb be the box statistically estimated to contain the optimum based

on observed data and γb = ((d1,m
b
d1
),(d2,m

b
d2
), ...,(dD,m

b
dD
)). For use in the algorithm, we denote the first

k elements of γb as γ(b,k) = ((d1,m
b
d1
),(d2,m

b
d2
), ...,(dk,m

b
dk
)).

Define the Probability of Correct Selection (PCS) as P(mb
d1
= m∗

d1
, ...,mb

dD
= m∗

D) for any permutation

d1, ...,dD of {1, ...,D}. The Optimal Computational Budget Allocation (OCBA) problem can be defined as

3578

Linz, Huang, and Zabinsky

Figure 1: An example of boxes of different order in a three dimensional domain, with M=3.

follows. Let N
(D)
(d1,md1

),...,(dD,mdD
) be the number of samples in box θ

(D)
(d1,md1

),...,(dD,mdD
). Our goal is to select

the allocation of samples to maximize the probability of correct selection relative to some budget T . The

optimization problem therefore becomes:

max
N
(D)
(d1,md1

),...,(dD,mdD
)

PCS|N(D)
(d1,md1

),...,(dD,mdD
)

subject to
M

∑
md1

=1

· · ·
M

∑
mdD

=1

N
(D)
(d1,md1

),...,(dD,mdD
) = T , for any permutation d1, ...,dD of {1, ...,D}

(2)

where PCS|N(D)
(d1,md1

),...,(dD,mdD
) = P(mb

d1
= m∗

d1
, ...,mb

dD
= m∗

dD
|N(D)

(d1,md1
),...,(dD,mdD

)). However, the problem

can be intractable if MD is large, since it requires optimizing over MD variables, N
(D)
(d1,md1

),...,(dD,mdD
). Our

approach is to simplify the problem by optimizing the probability of selecting the correct interval on each

dimension sequentially.

The proposed sequential optimization has a two-stage form. First, the algorithm computes an approx-

imation of the probability of correct selection conditioned on which dimension is optimized first in the

sequence. After selecting the dimension with the highest approximate PCS, the algorithm starts sampling

points. The second stage is to decide whether to continue sampling along the current dimension, or to

proceed to the next dimension. The decision is based on calculating the approximate probability of correct

selection conditioned on the budget allocation on the current dimension. Either more points are sampled

on the current dimension, or the algorithm stops sampling on the current dimension, determines the best

interval on the current dimension, and proceeds to selecting the next dimension. The details of the full

sequential optimization algorithm are described in Section 2.4.

2.1 Sequential Optimization Approach

One solution to reducing the size of problem (2) is to sequentially optimize the probabilities of correct

interval selection on each dimension. In sequence, each probability can be conditioned on selecting previous

dimensions’ interval correctly,

P(mb
d1
= m∗

d1
), P(mb

d2
= m∗

d2
|mb

d1
= m∗

d1
), ... ,P(mb

dD
= m∗

dD
|mb

d1
= m∗

d1
, ...,mb

dD−1
= m∗

dD−1
). (3)

Here each conditional probability P(mb
dk
= m∗

dk
|mb

d1
= m∗

d1
, ...,mb

dk−1
= m∗

dk−1
) can be estimated given the

allocation of samples to be taken on the M kth order boxes θ
(k)

(d1,m
b
d1
),...,(dk−1,m

b
dk−1

)(dk,·)
. In addition an established

3579

Linz, Huang, and Zabinsky

OCBA method can determine the sampling allocation on the kth order boxes to optimize P(mb
dk
= m∗

dk
|mb

d1
=

m∗
d1
, ...,mb

dk−1
= m∗

dk−1
). Thus, our algorithm follows Chen et al. (2014) to determine the sample allocations

N
(1)
(d1,·),N

(2)

(d1,m
b
d1
),(d2,·)

, ... ,N
(D)

(d1,m
b
d1
),,...,(dD−1,m

b
dD−1

)(dD,·)
that optimize the values of P(m∗

d1
=mb

d1
|N(1)

(d1,·)), P(mb
d2
=

m∗
d2
|mb

d1
= m∗

d1
,N

(2)

(d1,m
b
d1
),(d2,·)

) ,..., P(mb
dD

= m∗
dD
|mb

d1
= m∗

d1
, ...,mb

dD−1
= m∗

dD−1
,N

(D)

(d1,m
b
d1
),...,(dD−1,m

b
dD−1

)(dD,·)
)

sequentially. The result is a series of D optimization problems across M variables corresponding to each

dimension where the kth iteration determines the optimal mb
dk

which is used to condition the next k+1st

order problem.

The total budget T implies a constraint on the number of samples allocated to all D problems. For

our sequential approach we define Tdk
to be the number of samples taken from the kth order boxes

such that ∑
D
k=1 Tdk

= T . For the kth problem, Tdk
constrains the number of samples taken from the kth

order boxes such that ∑
M
m=1 N

(k)

(d1,m
b
d1
),...,(dD−1,m

b
dk−1

)(dk,m)
= Tdk

. Therefore the kth order problem determining

N
(k)

(d1,m
b
d1
),...,(dD−1,m

b
dk−1

)(dk,·)
follows

max
N
(k)

(d1,m
b
d1

),...,(dk−1,m
b
dk−1

)(dk ,·)
P(mb

dk
= m∗

dk
|mb

d1
= m∗

d1
, ...,mb

dk−1
= m∗

dk−1
,N

(k)

(d1,m
b
d1
),...,(dk−1,m

b
dk−1

)(dk,·)
)

subject to
M

∑
m=1

N
(k)

(d1,m
b
d1
),...,(dk−1,m

b
dk−1

)(dk,m)
= Tdk

.

(4)

Before the kth order problem in (4) can be optimized, values for Td1
, ...,TdD

as well as the order of

dimension d1, ...,dD need to be determined. Ideally an algorithm would choose values of Td1
, ...,TdD

and

dk to optimize the probability of selecting the correct intervals in each remaining dimension. We define

the Remaining Probability of Correct Selection (RPCS) for the kth order problem as

RPCS(k)

= P
(

mb
dk
= m∗

dk
, ...,mb

dD
= m∗

dD
|dk, ...,dD,Tdk

,,TdD
,N

(k)

γ(b,k−1)(dk,·)
, ...,N

(D)

γ(b,D−1)(dD,·)

)

.
(5)

However, at a given kth order problem in the sequential optimization process, the value of RPCS(k)

depends on values of dk+1, ...,dD, Tdk
,,TdD

and N
(k+1)

(d1,m
b
d1
),...,(dk+1,·)

,..., N
(D)

(d1,m
b
d1
),...,(dD,·)

that cannot be

determined with the current information.

The key idea for our approach is to approximate RPCS(k) with a function that only depends on

dk,Tdk
, ...,TdD

and variables determined up to k−1. This function is called

APCS(k,dk,Tdk
, ...,TdD

). (6)

We develop APCS by defining aggregations of k+1 order boxes and associated sample allocations over

remaining dimensions based on current observations and OCBA methodology. The approximation is looking

ahead to future probabilities of correctly selecting the intervals on each remaining dimension. This is an

important approximation since it reduces the complexity of computing the RPCS from roughly MD to

roughly M×D.

We propose a general strategy that sequentially optimizes each dimension with lookahead based on

APCS to determine values of dk, Tdk
, and N

(k)

(d1,m
b
d1
),...,(dk−1,m

b
dk−1

)(dk,·)
for sampling on the kth iteration. The

kth iteration consists of three steps. For a given iteration k in the sequential optimization algorithm, the

k−1 previous iterations will have determined d1, ... ,dk−1 , mb
d1
, ..., mb

dk−1
, Td1

, ...,Tdk−1
. The kth iteration

3580

Linz, Huang, and Zabinsky

of the sequential method for choosing sample allocations is

•Determine dk, and Tdk
, ...,TdD

that maximizes APCS(k,dk,Tdk
, ...,TdD

) such that
D

∑
l=1

Tdl
= T

• Determine sample allocations that maximize (4)

• Determine mb
dk

based on observed samples.

What remains is to develop an expression for APCS(k,dk,Tdk
, ...,TdD

), that can be easily computed

given dk,Tdk
, ...,TdD

.

2.2 Developing an Approximate Lower Bound on RPCS

The primary difficulty with computing RPCS(k) is that it depends on unspecified values of N
(k)

γ(b,k−1)(dk,·)
,

. . . , N
(D)

γ(b,D−1)(dD,·)
. Our approximation to RPCS is developed by looking ahead to the k+1 order boxes that

are aggregated in different orientations. For example suppose the first iteration has determined d1 = 2 and

mb
d1
= 3, selecting the shaded surface θ

(1)
(2,3) in Figure 1. The second iteration could choose d2 = 1 or d2 = 3

so that the set of remaining dimensions would be D
(k)
r = {3} or D

(k)
r = {1} respectively. The lookahead

strategy develops future sampling allocations for these different possibilities. In the approximation we

assume points are optimally allocated to the k+1 order boxes with OCBA methodology from Chen et al.

(2014). Assuming an interval mb
dk

, we then consider D−k sets of k+1 order boxes by considering different

possibilities for dk+1. We therefore write this approximation to RPCS as

P

(

mb
dk
= m∗

dk
, ...,mb

dD
= m∗

dD
|dk,Tdk

,Tdk+1
,N

(k)

γ(b,k−1)(dk,·)
,N

(k+1)

γ(b,k−1)(dk,m
b
dk
)(dk+1,·)

∀dk+1 ∈ D
(k)
r

)

. (7)

To further simplify, we apply Bonferroni’s inequality to achieve a lower bound on (7)

≥ 1− ∑
dk+1∈D(k−1)

r

(

1−P(mb
d = m∗

d |

dk,Tdk
,Tdk+1

,N
(k)

γ(b,k−1)(dk,·)
,N

(k+1)

γ(b,k−1)(dk,m
b
dk
)(dk+1,·)

∀dk+1 ∈ D
(k)
r)

)

.

(8)

A further lower bound is created by estimating P(mb
d = m∗

d) using observed samples in the k+1 order

boxes where dk+1 = d. Separating the k order term in (8), we get another lower bound for (8)

≥ 1−
(

1−P(mb
dk
= m∗

dk
|dk,Tdk

,N
(k)

γ(b,k−1)(dk,·)
)
)

− ∑
dk+1∈D(k)

r

(

1−
(

P(mb
dk+1

= m∗
dk+1

|dk,Tdk+1
,N

(k+1)

γ(b,k−1)(dk,m
b
dk
)(dk+1,·)

)

))

.
(9)

We next estimate the conditional probabilities in (9) using the OCBA methodology to determine

N
(k)

γ(b,k−1)(dk,·)
and N

(k+1)

γ(b,k−1)(dk,m
b
dk
)(dk+1,·)

∀dk+1 ∈ D
(k)
r .

3581

Linz, Huang, and Zabinsky

2.3 Statistically Estimating Approximate Lower Bound on RPCS

Given observed samples taken up to the kth iteration, we next statistically estimate each term P(mb
dk
=

m∗
dk
|dk,Tdk

,N
(k)

γ(b,k−1)(dk,·)
) in (9) and the objective function in (4).

Chen et al. (2014) applied extreme value theory to estimate the minimum in a box based on observed

samples. The observed sample minimum on a box can be modeled by a three-parameter Weibull distribution,

Weibull(α
(k)

γ(b,k−1)(dk,m)
,β

(k)

γ(b,k−1)(dk,m)
,γ

(k)

γ(b,k−1)(dk,m)
). The lower threshold parameter, α

(k)

γ(b,k−1)(dk,m)
estimates the

minimum function value in its corresponding box.

Let α̂
(k)

γ(b,k−1)(dk,m)
be the Maximum Likelihood Estimate for α

(k)

γ(b,k−1)(dk,m)
. If the shape parameter

β
(k)

γ(b,k−1)(dk,m)
> 2, then (ŝ

(k)

γ(b,k−1)(dk,m)
)2 is the variance of α̂

(k)

γ(b,k−1)(dk,m)
, otherwise (ŝ

(k)

γ(b,k−1)(dk,m)
)2 is not able

to be estimated.

Given Tdk
,α̂

(k)

γ(b,k−1)(dk,m)
and (ŝ

(k)

γ(b,k−1)(dk,m)
)2, the asymptotically optimal values for N

(k)

γ(b,k−1)(dk,m)
can be

determined by solving the following equations (see Chen et al. (2014))

N
(k)

γ(b,k−1)(dk,i)

N
(k)

γ(b,k−1)(dk, j)

=













ŝ
(k)

γ(b,k−1)(dk ,i)

δ
(k)

γ(b,k−1)(dk ,i)

ŝ
(k)

γ(b,k−1)(dk , j)

δ
(k)

γ(b,k−1)(dk , j)













2

i, j 6= mb
d , where δ

(k)

γ(b,k−1)(dk,i)
= α̂

(k)

γ(b,k−1)(dk,i)
− α̂

(k)

γ(b,k−1)(dk,m
b
dk
)

(10)

N
(k)

γ(b,k−1)(dk,m
b
dk
)
= ŝ

(k)

γ(b,k−1)(dk,m
b
dk
)
·

√

√

√

√

√

M

∑
i=1,i6=mb

d

(N
(k)

γ(b,k−1)(dk,i)
)2

(ŝ
(k)

γ(b,k−1)(dk,i)
)2

such that
M

∑
m=1

N
(k)

γ(b,k−1)(dk,m)
= Tdk

.

Since the lower threshold of the minimum is normally distributed around the MLE estimate α̂
(k)

γ(b,k−1)(dk,m)

we have

α
(k)

γ(b,k−1)(dk,m)
∼ Normal



α̂
(k)

γ(b,k−1)(dk,m)
,
(ŝ

(k)

γ(b,k−1)(dk,m)
)2

N
(k)

γ(b,k−1)(dk,m)



 .

The normal distribution on α
(k)

γ(b,k−1)(dk,m)
can be used to estimate the conditional probabilities in (4) and

in (9) since
⋂M

m=1,m6=mb
dk

α
(k)

γ(b,k−1)(dk,m)
> α

(k)

γ(b,k−1)(dk,m
b
dk
)

is equivalent to the event mb
dk
= m∗

dk
.

Chen et al. (2014) provides a good lower bound for the objective function in (4) that can be approximated

with the estimated parameters, and applying Bonferroni’s inequality yields

P(
M
⋂

m=1,m6=mb
dk

α
(k)

γ(b,k−1)(dk,m)
> α

(k)

γ(b,k−1)(dk,m
b
dk
)
|mb

d1
= m∗

d1
, ...,mb

dk−1
= m∗

dk−1
,N

(k)

γ(b,k−1)(dk,·)
) (11)

≥ 1−
M

∑
m=1

P(α
(k)

γ(b,k−1)(dk,m)
< α

(k)

γ(b,k−1)(dk,m
b
dk
)
|mb

d1
= m∗

d1
, ...,mb

dk−1
= m∗

dk−1
,N

(k)

γ(b,k−1)(dk,·)
).

Therefore determining the estimates α̂
(k)

γ(b,k−1)(dk,m)
, (ŝ

(k)

γ(b,k−1)(dk,m)
)2 based on observed samples and N

(k)

γ(b,k−1)(dk,·)
from (10) a lower bound for each term in (9) can be written as

3582

Linz, Huang, and Zabinsky

P(mb
dk
= m∗

dk
|dk,Tdk

,N
(k)

γ(b,k−1)(dk,·)
)≥ 1−

M

∑
m=1

P(α
(k)

γ(b,k−1),(d,m)
< α

(k)

γ(b,k−1),(d,mb
d)
|dk,Tdk

,N
(k)

γ(b,k−1)(dk,·)
). (12)

The inequality (12) can now be substituted in the expression (9) to develop our APCS function since the

new term only depends on dk,Td ∈ D
(k)
r . The following provides our zero-level APCS function,

APCS0(dk,Tdk
, ...,TdD

) = 1−
M

∑
m=1

P(α
(k)

γ(b,k−1),(dk,m)
< α

(k)

γ(b,k−1),(dk,m
b
dk
)
|Tdk

)

− ∑
d∈D(k)

r

M

∑
m=1

P(α
(k+1)

γ(b,k−1),(dk,m
b
dk
)(d,m)

< α
(k+1)

γ(b,k−1),(dk,m
b
dk
)(d,mb

d)
|Td).

(13)

Alternatively, we have developed a slightly different APCS function derived from conditioning (7) on

the correct selection mb
dk

, yielding

P

(

mb
dk
= m∗

dk
|dk,Tdk

,Tdk+1
,N

(k)

γ(b,k−1)(dk,·)
,N

(k+1)

γ(b,k−1)(dk,m
b
dk
)(dk+1,·)

∀dk+1 ∈ D
(k)
r

)

·P
(

mb
dk+1

= m∗
dk+1

, ...,mb
dD

= m∗
dD
|mb

dk
= m∗

dk
,dk,Tdk

,Tdk+1
,N

(k)

γ(b,k−1)(dk,·)
,N

(k+1)

γ(b,k−1)(dk,m
b
dk
)(dk+1,·)

∀dk+1 ∈ D
(k)
r

)

.

(14)

Following the same steps from Sections 2.2 and 2.3 we write an alternative expression for APCS called

one-level APCS

APCS1(dk,Tdk
, ...,TdD

) = (1−
M

∑
m=1

P(α
(k)

γ(b,k−1),(dk,m)
< α

(k)

γ(b,k−1),(dk,m
b
dk
)
|Tdk

)

· (∑
d∈D(k)

r

M

∑
m=1

P(α
(k+1)

γ(b,k−1),(dk,m
b
dk
)(d,m)

< α
(k+1)

γ(b,k−1),(dk,m
b
dk
)(d,mb

d)
|Td)).

(15)

Either APCS0 or APCS1 can provide an approximate lower bound for RPCS and can subsequently be

used in the lookahead procedure.

2.4 Partition Based Lookahead Algorithm

The specification for APCS can be further incorporated into the sequential optimization strategy outlined

in Section 2.1 providing a look-ahead algorithm. Because Chen et al. (2014) derived the optimal sample

size (10) based on an asymptotic analysis, a one time determination of the total budget Tdk
based on a

single estimation could lead to a sub-optimal allocation of Nγ(b,k−1)(dk,·).
Hence, instead of performing the optimization of a dimension via one large sample, the algorithm

instead proceeds iteratively by allocating a small pre-defined number of samples, ∆, from the budget T and

determining the allocation of samples by solving (10) with Tdk
replaced by ∆. This process of sampling

continues relative to dimension dk based on a stopping condition derived from the APCS function.

Let Tr(k, i) = T −∑
k−1
l=1 Tdl

− i∗∆ be the remaining budget after i×∆ samples have been taken along

dimension dk. Let Dr(k) = ‖D(k)
r ‖ = D− k be the number of remaining dimensions after k. Before the

algorithm iteratively allocates ∆ samples to the kth problem, we determine whether it is preferable to

continue allocating an additional portion of the budget to dimension dk or to save the remaining budget

for the remaining dimensions. Here we propose comparing APCS under two different scenarios.

3583

Linz, Huang, and Zabinsky

The “leave” scenario allocates no additional budget to the current dimension dk and allocates the

remaining budget equally to remaining dimensions. The “stay” scenario APCSstay allocates equal portions

of the remaining budget among the current dimension dk and remaining dimensions

APCSleave = APCS

(

dk,Tdk
= 0,Tdk+1

=
Tr(k, i)

Dr(k)
, ...,TdD

=
Tr(k, i)

Dr(k)

)

APCSstay = APCS

(

dk,Tdk
=

Tr(k, i)

Dr(k−1)
,Tdk+1

=
Tr(k, i)

Dr(k−1)
, ...,TdD

=
Tr(k, i)

Dr(k−1)

)

.

If APCSleave ≤ APCSstay we allocate another ∆ samples along dimension dk. If APCSleave > APCSstay

we stop the kth iteration and proceed to the k+1st iteration.

Moving on the k+1st iteration we decide the dimension for dk+1 by comparing APCS for all remaining

dimensions, that is

APCS

(

dk+1 = d,Tdk+1
=

Tr(k+1, i)

Dr(k)
,Tdk+2

=
Tr(k+1, i)

Dr(k)
, ...,TdD

=
Tr(k+1, i)

Dr(k)

)

.

for ∀D ∈ D
k
r . The value d that maximizes the APCS is set to dk+1

Thus the complete algorithm for sequentially allocating samples to optimize the probability of correct

interval selection can be written as the following.

PARTITION BASED LOOKAHEAD ALGORITHM

INPUT : Domain Θ, function f , partition size M, budget T , initial sample size N0 and increment size ∆.

1. INITIALIZE:

Uniformly sample N0 independent points throughout the domain Θ. Set k = 1, Tr = T , γ(b,0) = /0.

2. DIMENSION DETERMINATION:

Compute

α̂
(k)

γ(b,k−1)(d′
k,·)

, ŝ
(k)

γ(b,k−1)(d′
k,·)

for each d′
k ∈ D

(k−1)
r

and

α̂
(k+1)

γ(b,k−1)(d′
k,m

b

d′
k

)(d,·), ŝ
(k+1)

γ(b,k−1)(d′
k,m

b

d′
k

)(d,·) for each d′
k ∈ D

(k−1)
r and d ∈ D

(k−1)
r \d′

k

by MLE on points sampled from the corresponding boxes.

Based on (10) determine

N
(k)

γ(b,k−1)(d′
k,·)

such that Td′
k
= Tr

Dr(k−1) for each d′
k ∈ D

(k−1)
r

and

N
(k+1)

γ(b,k−1)(d′
k,m

b

d′
k

)(d,·) such that Td = Tr

Dr(k−1) for all d ∈ D
(k−1)
r \d′

k.

Calculate APCS(dk = d′
k,Tdk

= Tr

Dr(k−1) ,Tdk+1
= Tr

Dr(k−1) , ...,TdD
= Tr

Dr(k−1))∀d′
k ∈ (D)

(k−1)
r .

Set dk to d′
k that maximizes the above APCS.

3. SAMPLE ∆ POINTS:

Determine N
(k)

γ(b,k−1)(dk,·)
from (10) with the variable Tdk

set to ∆. SAMPLE the new points based on

N
(k)

γ(b,k−1)(d′
k,·)

.

4. CHECK STOPPING CONDITION:

Compute

3584

Linz, Huang, and Zabinsky

α̂
(k)

γ(b,k−1)(dk,·)
, ŝ

(k)

γ(b,k−1)(dk,·)
and

α̂
(k+1)

γ(b,k−1)(dk,m
b
dk
)(d,·), ŝ

(k+1)

γ(b,k−1)(dk,m
b
dk
)(d,·) for each d ∈ D

(k)
r

by MLE on points sampled from the corresponding boxes.

Based on (10) determine

N
(k)

γ(b,k−1)(dk,·)
such that Tdk

= Tr

Dr(k−1)

and

N
(k+1)

γ(b,k−1)(dk,m
b
dk
)(d,·) such that Td = Tr

Dr(k−1) .

Compute APCSstay = APCS(dk,Tdk
= Tr

Dr(k−1) ,Tdk+1
= Tr

Dr(k−1) , ...,TdD
= Tr

Dr(k−1)) for each d ∈ D
(k)
r .

Again, based on (10) determine

N
(k)

γ(b,k−1)(dk,·)
such that Tdk

= 0

and

N
(k+1)

γ(b,k−1)(dk,m
b
dk
)(d,·) such that Td = Tr

Dr(k)
for each d ∈ D

(k)
r .

Compute APCSleave = APCS(dk = d,Tdk
= 0,Tdk+1

= Tr

Dr(k)
, ...,TdD

= Tr

Dr(k)
). If APCSleave > APCSstay

go to STEP 5 (DETERMINE INTERVAL) otherwise return to STEP 3 (SAMPLE ∆ POINTS) with

Tr = Tr −∆.

5. DETERMINE INTERVAL :

Set mb
dk

to the argminm=1,...,M α̂
(k)

γ(b,k−1)(dk,m)
. Add (dk,m

b
dk
) to the vector γ(b,k−1) and set k = k+1.

If there are no remaining dimensions to optimize or Tr = 0 then we TERMINATE the algorithm,

otherwise return to STEP 2 (DIMENSION DETERMINATION).

3 NUMERICAL RESULTS

In the following section we apply the lookahead algorithm described in Section 2 to a variety of numerical

problems. We use the following test functions to evaluate the performance of the algorithm and compare

with equally allocating budgets through dimensions from Chen et al. (2014).

• H1(x) is a function with two symmetric dimensions where x1,x2 ∈ [1,7] with optimal solution

x∗ = (2,2).

H1(x) =
2

∑
i=1

(

− 16√
2π

e−(xi−5)2/2 − 20√
2π

e−200(xi−2)2

)

• H2(x) is a dimensional asymmetric function combining three negative normal density functions

with different variances, where x1,x2,x3 ∈ [−3,3] with optimal solution x∗ = (0,0,0).

H2(x) =−
3

∑
i=1

1√
4iπ

e−
x2
i

4i

• H3(x) is a dimensional asymmetric function combining one dimension of H1 and a function g(x)
mixing a step function and a negative normal density function with different variances, where

3585

Linz, Huang, and Zabinsky

x1,x2,x3 ∈ [−3,3] with optimal solution x∗ = (−2,0,0).

H3(x) =− 16√
2π

e−(x1−9)2/2 − 20√
2π

e−200(x1−6)2 −
3

∑
i=2

g(xi),

where

g(xi) =

{ √
i√

2π
e−

ix2
i

2 , if x > 1 or x <−1

−2, otherwise.

For test function H1, N0 and ∆ are set to 200 and 50 respectively. Test functions H2 and H3 are conducted

with N0 = 1000 and ∆ = 200. All test functions are tested with M = 3. Therefore, the θ ∗ of H1 is θ
(2)
(1,1),(2,1).

For H2 and H3, the θ ∗ are θ
(3)
(1,2),(2,2),(3,2) and θ

(3)
(1,1),(2,2),(3,2) respectively.

Three algorithms are compared in this section, the algorithm by Chen et al. (2014), the proposed basic

zero-level lookahead algorithm (APCS0), and a modified lookahead algorithm one-level (APCS1).

In order to evaluate the performance of algorithms, for each total budget T , each method is run for 100

replications to obtain an observed ratio of correctly selecting all intervals. Explicitly, this value is defined

as number of correctly selected replications divided by 100.

Figure 2 (A) graphs the ratio of correctly selected replications versus total budget on test function H1

for the three algorithms. The results graphed in Figure 2 (A) show that there is no significant difference

between the three algorithms. The primary reason could be the dimensional symmetric nature of H1. For

a dimensional symmetric function, the order of dimension to be determined is trivial, which means the

lookahead does not provide any advantage. Furthermore, as dimensions are identical, the lookahead’s

stopping condition will not provide more advantage than equally allocating budgets through dimensions.

Second, we test the three algorithms with the dimensionally asymmetric function H2 in three dimensions.

We test H2 with fewer budgets than for H1 because of the simple structure of H2. The different variances

lead to different difficulty for each dimension. Therefore, the zero-level lookahead algorithm is promising

compared to Chen et al’s algorithm in Figure 2 (B). However, one-level lookahead performs worse than

the zero-level possibly because the stopping condition is too greedy.

Third, the test function H3 is not only asymmetric in dimension but also has reduced variance along

one dimension. In this case, the lookahead algorithms perform well as shown in Figure 2 (C). For this

type of problem, the lookahead algorithm is able to identify the correct interval with low variance on the

“easy” dimension first and reduce the variance of the difficult dimensions subsequently.

4 DISCUSSION

This paper has developed a lookahead approach to intelligently determine the order and the dimensional

stopping condition for optimizing the computational budgets on a multi-dimensional black-box simulation

problem. The paper examines a strategy for sequentially optimizing each dimensional interval relative

to a budget. We derive a lower bound, APCS, for approximating the probability of correctly selecting

intervals in each remaining dimension. Based on APCS, we employ a lookahead algorithm to determine

the optimal order of dimensions and the optimal stopping time for maximizing the probability of correct

interval selection.

Based on initial tests, the addition of a lookahead to determine order of dimensional optimization

and stopping time provides some improvement on Chen et al.’s original algorithm. The numerical results

show that the lookahead algorithm generates a larger number of correct selections over 100 replications for

several asymmetric functions. However, for dimensionally symmetric functions, the lookahead algorithm

performs similarly to the original algorithm featured in Chen et al. (2014).

We speculate that the lookahead provides more benefit when the function is asymmetrical in dimension

and there are large differences in variability within dimensions. In these situations, correctly determining

the interval on some dimensions first could reduce the variance on subsequent iterations.

3586

Linz, Huang, and Zabinsky

Figure 2: Comparing the fraction of correctly selected replications across three algorithms.

3587

Linz, Huang, and Zabinsky

The performance of the algorithm needs to be tested on higher dimensional problems to determine

the extent of the benefit from the lookahead approach. Moreover, the algorithm should be tested against a

larger range of interval sizes M, it is very possible that the lookahead could provide better results under

these circumstances.

ACKNOWLEDGMENTS

This work has been funded in part by NSF grant CMMI-1235484.

References

Brantley, M. W., L. H. Lee, C. H. Chen, and J. Xu. 2014. “An Efficient Simulation Budget Allocation

Method Incorporating Regression for Partitioned Domains”. Automatica 50 (5): 1391–1400.

Chen, C. H. 2011. Stochastic Simulation Optimization: An Optimal Computing Budget Allocation.

Chen, C. H., and D. He. 2005. “Intelligent Simulation for Alternatives Comparison and Application to Air

Traffic Management”. Journal of Systems Science and Systems Engineering 14:37–51.

Chen, C. H., J. Lin, E. Yücesan, and S. E. Chick. 2000. “Simulation Budget Allocation for Further

Enhancing the Efficiency of Ordinal Optimization”. Discrete Event Dynamic Systems: Theory and

Applications 10:251–270.

Chen, H. C., L. Dai, C. H. Chen, and E. Yucesan. 1997. “New Development Of Optimal Computing Budget

Allocation For Discrete Event Simulation”. Winter Simulation Conference Proceedings,.

Chen, W., S. Gao, C. H. Chen, and L. Shi. 2014. “An Optimal Sample Allocation Strategy for Partition-based

Random Search”. IEEE Transactions on Automation Science and Engineering 11 (1): 177–186.

Chew, E. P., H. L. Loo, S. Teng, and H. K. Choon. 2009. “Differentiated Service Inventory Optimization

Using Nested Partitions and MOCBA”. Computers and Operations Research 36:1703–1710.

Shi, L., and S. Ólafsson. 1998. “Nested Partitions Method For Global Optimization”. Operations Re-

search (December 2013).

Tang, Z. B. 1994. “Adaptive Partitioned Random Search to Global Optimization”. IEEE Transactions on

Automatic Control 39 (11): 2235–2244.

AUTHOR BIOGRAPHIES

DAVID D. LINZ is a PhD student in the Department of Industrial and Systens Engineering at the University

of Washington. His research interests include stochastic optimization and simulation optimization with

applications to healthcare strategy. ddlinz@uw.edu.

HAO H. HUANG is a PhD candidate in the Department of Industrial and Systems Engineering at the Uni-

versity of Washington. His research interests include simulation optimization and healthcare applications.

His e-mail is haoh7493@uw.edu.

ZELDA B. ZABINSKY is a Professor in the Department of Industrial and Systems Engineering at the

University of Washington, with adjunct appointments in the departments of Electrical Engineering, Me-

chanical Engineering, and Civil and Environmental Engineering. She is an IIE Fellow. She has published

numerous papers in the areas of global optimization, algorithm complexity, and optimal design of com-

posite structures, and a book, Stochastic Adaptive Search in Global Optimization. She received an Erskine

Fellowship from the University of Canterbury, Christchurch, New Zealand to collaborate internationally

on global optimization methods. Professor Zabinsky’s research interests are in global optimization under

uncertainty for complex systems. Her email address is zelda@u.washington.edu.

3588

mailto://ddlinz@uw.edu
mailto://haoh7493@uw.edu
mailto://zelda@u.washington.edu

