
Proceedings of the 2015 Winter Simulation Conference

L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, eds.

DISCRETE-EVENT SIMULATION USING R

Barry Lawson

Department of Mathematics and Computer Science

University of Richmond

Richmond, VA 23173, USA

Lawrence M. Leemis

Department of Mathematics

The College of William & Mary

Williamsburg, VA 23187, USA

ABSTRACT

R is a free software package with extensive statistical capability, customizable graphics, and both imperative

and vectorized programming capabilities. For use in an introductory simulation course, the capabilities of

R for analyzing simulation statistics, and for generating corresponding graphics, aid in developing student

intuition. R also provides flexibility in determining whether simulation and analysis should be done using

simulation code that students implement from scratch, using skeleton code which students modify, or using

completed code given as a black box. These aspects of R make it a unique platform for programming

and analyzing discrete-event simulations. In this paper, we present an R function named ssq which we

wrote to simulate a single-server queue, and we provide several illustrations showing its use as an exemplar

for using R in an introductory simulation course. All of the code to analyze the output from ssq uses

functions from the base distribution of R.

1 INTRODUCTION

The choice of computing platform for a first course in discrete-event simulation is a difficult one, which

typically includes making trade-offs between ease-of-use, cost, and ability to customize. If the first course

emphasizes modeling, then commercial packages that are available for purchase by simulation software

vendors should be considered. However, if the first course emphasizes programming in a high-level language

as well as the probabilistic and statistical aspects of simulation, then the R language should be considered.

The reasons that make R a good choice for a computing platform for a first course in discrete-event

simulation include the following.

• R is a programming language that includes conditional execution, looping, and functions — analogous

to C or any other imperative programming language.

• Random number generation and random variate generation functions are built into R.

• R has its roots in the statistical analysis of data, appropriate for input modeling and output analysis.

• R has high-level graphics capability that is easy to use and to customize.

The major downsides to using R in a first course are that it does not handle animation well, that more lines

of programming are required relative to the commercial simulation languages, and, because R is interpreted,

execution time can be slow compared to imperative languages. We believe that the upsides associated with

R outweigh the downsides, and we will illustrate some of the capabilities of R for simulation and analysis

in this paper.

Because the simulation of a single-server queueing model illustrates many of the important concepts to

be covered in discrete-event simulation, we use that model here to illustrate the use of R in an introductory

simulation course. We have written a simulation program in R named ssq which conducts a discrete-event

simulation of a single-server queue. (The program is available from the authors.) We have used R for

3502978-1-4673-9743-8/15/$31.00 ©2015 IEEE

Lawson and Leemis

several other types of simulation models, including multiple-server queues, inventory, and machine shop

models, but for brevity present only ssq.

2 THE SSQ PROGRAM IN R

In the context of this paper, we have developed an R program named ssq that acts as a black box

implementation of a single-server queueing model to be used for simulation analysis. Within an introductory

simulation course, the instructor may choose to have students either (a) implement their own such program

from scratch, (b) modify a skeleton version provided by the instructor, or (c) use a completed version

provided by the instructor. Then, simulation analysis will follow many of the examples presented later in

this paper.

Our implementation of the program ssq allows execution with default parameter values, which results

in the simulation of an M/M/1 queue using the following assumptions.

• The system begins at time 0 with no customers in the system and an idle server.

• The times between arrivals are mutually independent and identically distributed exponential random

variates with arrival rate λ = 1.

• The service times are mutually independent and identically distributed exponential random variates

with service rate µ = 10/9. The traffic intensity is λ/µ = 0.9.

• The server does not take any breaks.

• A customer departs the system once the service is complete.

Our ssq program has 16 optional arguments described in Table 1. Those arguments whose description

ends with a question mark are of the logical type in R.

Table 1: Optional arguments for ssq.

Argument Default Description

setSeed TRUE set a random number seed?

seed NULL random number seed

arrivalFunction defaultArrival random interarrival time generator

serviceFunction defaultService random service time generator

maxTime 10000.0 maximum simulation time

maxArrivals Inf maximum number of arrivals to the system

maxDepartures Inf maximum number of departures from the system

saveAllData FALSE save all seven categories of data below?

saveArrivals FALSE save the individual interarrival times?

saveServices FALSE save the individual service times?

saveWaits FALSE save the individual wait times?

saveSojourns FALSE save the individual sojourn times?

saveNumberInQueue FALSE save the number in the queue?

saveNumberInSystem FALSE save the number in the system?

saveServerStatus FALSE save the server status?

showOutput TRUE display simulation progress and output?

Note that the setSeed argument should be explicitly set to FALSE in cases when the user wishes to set

the initial random number seed external to the ssq call, e.g., for replication.

There are three ways to end the simulation:

• when the system clock reaches maxTime, the simulation terminates immediately;

• when the number of departures reaches maxDepartures, the simulation terminates immediately;

3503

Lawson and Leemis

• when the number of arrivals reaches maxArrivals, the input to the simulation ends and remaining

customers are processed (as longmaxTime andmaxDepartures are not reached in the meantime);

whichever of the three occurs first.

We designed our program to facilitate entry-level use of ssq. All parameters to the program have

default values, and a few basic statistics are given as output (see below). The user may explicitly request

other data for performance measures, as will be illustrated subsequently. With the exception of the basic

statistics given as output, all other statistical analysis must be performed as post-processing using native

R functions. We chose this design approach so that introductory students could gain first-hand experience

in the analysis of output, rather than have that analysis built into the black box of the simulation.

As an example, the R session shown below left calls ssq, indicating on output that, for the default

maxTime value of 10000 time units, 9914 customers arrived and 9913 customers departed from the system,

with an average sojourn time of 8.82 units. The random number seed was defaulted to use the system clock,

hence this exact simulation will (likely) not be reproduced on the next call to ssq. (The dots displayed

just after the call to ssq indicate the progress of the simulation during execution. This progress and output

display can be suppressed—see Table 1. We will omit progress dots in all future examples.) A second

call to ssq with all arguments defaulted is given in the R session shown below middle. As suggested, the

previous output is not reproduced: there were 10097 arrivals and 10093 departures, which means that four

customers were in the system when the simulation terminated.

One way to obtain reproducible simulation results is to select a random number stream, manifested

by the choice of a specified initial seed. This is good practice in general because using the system clock

results in a seed selected at random such that the simulation results can not be reproduced. A third call

to ssq specifying a seed argument is given below right. This particular simulation ended with 10034

arrivals and 10004 departures, which means that thirty customers were in the system when the simulation

terminated. If this same call to ssq were made again, the exact same results would occur. For the rest of

the paper, we will specify an initial seed for the random number generator so that the reader can reproduce

our results.

> ssq()

....................

customerArrivals

[1] 9914

customerDepartures

[1] 9913

$avgWait

[1] 7.9241

$avgSojourn

[1] 8.8236

$utilization

[1] 0.89105

$avgNumInSys

[1] 8.747

$avgNumInQueue

[1] 7.8559

> ssq()

....................

customerArrivals

[1] 10097

customerDepartures

[1] 10093

$avgWait

[1] 7.2437

$avgSojourn

[1] 8.1387

$utilization

[1] 0.90275

$avgNumInSys

[1] 8.2147

$avgNumInQueue

[1] 7.3119

> ssq(seed=8675309)

........................

customerArrivals

[1] 10034

customerDepartures

[1] 10004

$avgWait

[1] 9.0524

$avgSojourn

[1] 9.9666

$utilization

[1] 0.91627

$avgNumInSys

[1] 10.017

$avgNumInQueue

[1] 9.1004

3504

Lawson and Leemis

3 ALTERING INPUT MODEL DISTRIBUTIONS

It is important for students to experiment with various arrival and service models, comparing the resulting

impact on the system. Accordingly, we designed our ssq program to allow the user to easily specify their

own arrival or service model with as little as one additional line of R code.
The default input models for our ssq program result in an M/M/1 queue: interarrival times are

exponential with a mean of 1 while service times are exponential with a mean of 0.9. These distributions
are defaulted within the implementation of ssq using the two R functions below:

defaultArrival <- function() return(rexp(1, 1.0))

defaultService <- function() return(rexp(1, 1.0 / 0.9))

The rexp function in R is used to generate a random exponential variate. The first argument to rexp

corresponds to the number of random variates required and the second parameter corresponds to the rate.
Consider an alternative situation with Weibull time between arrivals and gamma service times, i.e., a

G/G/1 queue. This can be easily accomplished by writing two new one-line functions in R, passed to ssq
as shown below. (For brevity, only the first few lines of output from ssq are shown.)

> myArr <- function() return(rweibull(1, shape=2, scale=1))

> mySvc <- function() return(rgamma(1, shape=2, scale=1))

> ssq(seed=8675309, arrivalFunction=myArr, serviceFunction=mySvc)

customerArrivals

[1] 11267

customerDepartures

[1] 5053

A very different arrival and service pattern emerge from the use of the Weibull and gamma distributions.

The results show that there are 11267 – 5053 = 6214 customers in the system when the simulation terminates

at the default maximum time of 10000. Intuitively, this suggests to the student that this combination of

arrival and service models results in a more congested queue compared to the earlier models.

4 ANALYZING ARRIVAL PROCESSES

Returning to the M/M/1 queue, we now show how R can be used to analyze the system’s arrival process
using observations generated by the simulation. Our implementation allows the user to save the individual
interarrival times of customers arriving to the system. For example, the commands below use ssq to create
a list named output with eight components, which can be displayed using the str (structure) function:

> output = ssq(seed=8423089, saveArrivals=TRUE, showOutput=FALSE)

> str(output)

List of 8

$ customerArrivals : num 10260

$ customerDepartures: num 10252

$ avgWait : num 8.38

$ avgSojourn : num 9.28

$ utilization : num 0.923

$ avgNumInSys : num 9.52

$ avgNumInQueue : num 8.59

$ interarrivalTimes : num [1:10260] 0.175 1.143 1.303 2.723 0.703 ...

There were 10260 customer arrivals corresponding to 10260 interarrival times, which are 0.175, 1.143, etc.

3505

Lawson and Leemis

The sample mean and sample standard deviation of the interarrival times can be calculated using the
additional R commands

> mean(output$interarrivalTimes)

[1] 0.9745776

> sd(output$interarrivalTimes)

[1] 0.9681507

The sample interarrival time mean is just slightly below its population value of 1.0, indicating that this

particular simulation run is slightly more congested than average. The sample standard deviation is also

near its population value of 1.0.
The graphical capabilities of R can also be used to analyze the interarrival times. For example, as

shown below, a histogram of the interarrival times can be generated using the hist function in R, depicted
in Figure 1(a). (The xlim argument in the call to hist controls the limits on the horizontal axis.)

> hist(output$interarrivalTimes, xlim=c(0,6))

To show that the interarrival times closely mimic the population distribution, the population probability
density function can be superimposed onto the histogram using the following R code. (Note that the
prob=TRUE argument in the call to hist forces the area under the histogram to be 1.0 so that it can be
easily compared with the population probability density function. The add=TRUE argument in the call
to curve tells R to draw the function on top of the existing histogram.) Not surprisingly, the histogram
provides a close approximation to the population distribution, as shown in Figure 1(b).

> hist(output$interarrivalTimes, xlim=c(0,6), ylim=c(0,1), prob=TRUE)

> curve(exp(-x), from=0, to=6, add=TRUE)

Histogram of output$interarrivalTimes

output$interarrivalTimes

F
re

q
u
e
n
c
y

0 1 2 3 4 5 6

0
1
0
0

2
0
0

3
0
0

4
0
0

(a)

Histogram of output$interarrivalTimes

output$interarrivalTimes

D
e
n
s
it
y

0 1 2 3 4 5 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b)

Figure 1: (a) Histogram of interarrival times. (b) Histogram with population pdf superimposed.

Such a visual display, facilitated by R’s easy use of graphics, is particularly compelling to those new to

simulation, and leads to better intuition about the effects of different distributions. In addition, for courses

including a focus on implementation and simulation “world views”, providing the ability to save individual

customer statistics allows for meaningful discussion of trade-offs between process-oriented (easy to collect

individual statistics) versus event-oriented (additional data structures required) approaches.

3506

Lawson and Leemis

5 ANALYZING SERVICE PROCESSES

We now show how R can be used to analyze the service process of a system using observations generated
by the simulation. Similar to that for the arrival process, our implementation allows the user to save
the individual service times of customers. Below we use ssq (with immediate output omitted), limiting
the number of arrivals, and hence the number of service times, to 50. Another example of R’s statistical
capabilities is given by the fivenum function, which displays Tukey’s five-number summary of the service
times: minimum, estimated 25th percentile, sample median, estimated 75th percentile, and maximum.

> output = ssq(seed=3, maxArrivals=50, saveServices=TRUE, showOutput=FALSE)

> fivenum(output$serviceTimes)

[1] 0.133141 0.484717 0.712196 1.170141 2.461797

Then a plot of the empirical cumulative distribution function, generated using the plot.ecdf function,
can be used to visualize those statistics in the context of the overall distribution of service times. For
example, the 25th and 75th percentile estimates from Tukey’s five-number summary can be superimposed
using heavy dotted blue line segments on the ecdf plot. The resulting plot in Figure 2(a) clearly indicates
that the majority of the 50 service times are roughly one time unit or less.

> plot.ecdf(output$serviceTimes, xlim=c(0,5), verticals=TRUE, pch="")

> xvals.25 = c(-0.5,0.485,0.485,0.485); yvals.25 = c(0.25,0.25,0.25,-0.5)

> xvals.75 = c(-0.5,1.170,1.170,1.170); yvals.75 = c(0.75,0.75,0.75,-0.5)

> lines(x=xvals.25, y=yvals.25, col="blue", lwd=4, lty="dotted")

> lines(x=xvals.75, y=yvals.75, col="blue", lwd=4, lty="dotted")

As before, the curve function can also be used to superimpose the population cumulative distribution
function. The resulting plot, given in Figure 2(b), shows that there are fewer observations in both tails of
the distribution than expected, resulting in 50 service times that are compressed relative to the population
values. These service times, which are expressing less variability than usual, will have an impact on the
wait times and sojourn times for customers.

> plot.ecdf(output$serviceTimes, xlim=c(0,5), verticals=TRUE, pch="")

> curve(1 - exp(-10 * x / 9), from=0, to=5, add=TRUE)

Again, R’s easy-to-use graphics capabilities allow the novice user to intuit aspects of the underlying models

in the simulation.

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ecdf(x)

x

F
n
(x

)

(a)

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ecdf(x)

x

F
n
(x

)

(b)

Figure 2: Empirical cdf with superimposed: (a) 25th and 75th percentile estimates; (b) population pdf.

3507

Lawson and Leemis

6 ANALYZING OBSERVATION-PERSISTENT STATISTICS

A very important concept to discuss in an introductory simulation course is the generation and analysis of

observation-persistent statistics versus time-persistent statistics. In this section, we show the power of R

for observation-persistent statistics; we discuss time-persistent statistics in the next section.
In a queueing model, the sojourn time (sum of wait time and service time) of each customer is an

interesting quantity to observe in the aggregate. As an example, we show below the use of ssq to save the
sojourn times for the first 8000 customers into the list output, followed by Tukey’s five-number summary
of those 8000 sojourn times.

> output = ssq(seed=8675309, maxArrivals=8000, saveSojourns=T, showOutput=F)

> fivenum(output$sojournTimes)

[1] 0.001658612 3.131279795 7.121564269 13.382116960 49.428772754

The minimum time in the system is 0.0017, the median time in the system is 7.1216, and the maximum

time in the system is 49.4288.

It is often the case in a queueing application that the interest is in customers with long sojourn times,

because a long wait can result in customer dissatisfaction. The 95th percentile, for example, can be estimated

with either of the two following R commands.

> sort(output$sojournTimes)[0.95 * 8000]

[1] 24.7899

> quantile(output$sojournTimes, 0.95)

95%

24.7902

The estimate for the 95th percentile of the distribution of the sojourn times is 24.79, whether obtained by

extracting the 95th percentile value from the sorted sojourn times or by using the (slightly more precise)

quantile function provided by R. Such a dual approach provides an important consistency check, and

helps the student with intuition about those values returned by functions like quantile.

A discussion of autocorrelation, a very important concept when considering simulation statistics, is

facilitated by R’s powerful statistical and graphical capabilities. As an example, a plot of the customer

number (on the horizontal axis) versus the sojourn time (on the vertical axis) is easily accomplished using

the R command

> plot(output$sojournTimes, pch=".")

(The pch, or plotting character, argument places a small dot for each sojourn time.) As shown in Figure 3(a),

it is clear that the queue rises and falls in a cyclic fashion, corresponding to a high degree of autocorrelation

between the sojourn times.

Further demonstrating the power of R in this context, the first 40 lags of the sample autocorrelation

function (that is, the correlogram) can be plotted simply by using the additional R command

> acf(output$sojournTimes, lag.max=40)

As shown in Figure 3(b), the correlogram shows a strong statistically significant positive autocorrelation

that extends well beyond the first 40 lags. The dashed lines on either side of the horizontal axis are 95%

confidence bounds which are helpful in determining statistical significance.

3508

Lawson and Leemis

0 2000 4000 6000 8000

0
1
0

2
0

3
0

4
0

5
0

Index

o
u
tp

u
t$

s
o
jo

u
rn

T
im

e
s

(a)

0 10 20 30 40

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

Series output$sojournTimes

(b)

Figure 3: (a) Individual sojourn times plotted in order. (b) Autocorrelation function of the sojourn times.

Another plot of interest associated with the sojourn times is the spectral density function, that is, the

periodogram. The additional R command to compute and plot the spectral density function is simply

> spectrum(output$sojournTimes)

The resulting spectral density function shown in Figure 4 indicates that there is more contribution to the

variability of the sojourn times from lower frequencies than from higher frequencies, consistent with the

data values shown in Figure 3(a). In other words, if the plotted sojourn times exhibited high frequency

oscillation (e.g., one observation low, the next one high, the next one low, etc.), the spectral density function

would have more weight on the high frequency end. However, sojourn times have long cycles that are

associated with the queue backing up for a series of customers, then emptying out, then filling up for

another series of customers. This corresponds to low frequency variations, as identified by Figure 4.

0.0 0.1 0.2 0.3 0.4 0.5

1
e
−

0
4

1
e
+

0
0

1
e
+

0
4

frequency

s
p
e
c
tr

u
m

Series: x

Raw Periodogram

bandwidth = 3.61e−05

Figure 4: Spectral density function of the sojourn times.

3509

Lawson and Leemis

Furthermore, after discarding the first 2000 sojourn times to account for a warmup period, a point
estimate of the mean sojourn time along with a 95% confidence interval (using the classical confidence
interval procedure) can be calculated with the additional R commands

> truncated.times = output$sojournTimes[2001:8000] # discard first 2000 times

> mean(truncated.times)

[1] 9.86094

> t.test(truncated.times)$conf.int

[1] 9.64135 10.08052

The 95% confidence interval 9.64 < µ < 10.08 is returned, where µ is the mean population sojourn time.
However, using individual observations and the sample autocorrelation function given in Figure 3b make
the normality and independence assumptions associated with this confidence interval suspect. A batch
means procedure (Law 2015) involving n batch means can be implemented using a simple R function like
that shown below.

batch.means = function(values, n) {

z = matrix(values, n) # divide values into n batches

t.test(apply(z, 1, mean))$conf.int # t-test on means of batches

}

Once again discarding the first 2000 sojourn times to allow the system to warm up, and dividing the
remaining 6000 sojourn times into 12 batches of 500 observations each, the additional R command

> batch.means(truncated.times, 12)

[1] 9.82541 9.89646

calculates the 95% confidence interval 9.83 < µ < 9.90, which is significantly narrower than the 95%

confidence interval given by classical methods.

Another experiment can be conducted using the sojourn times, although this experiment involves the

first three sojourn times rather than the first 8000 sojourn times. Kaczynski et al. (2012) give the 3× 3

variance–covariance matrix of the first three sojourn times for an M/M/1 queue with arrival rate λ and

service rate µ as

Σ =





















1

µ2

λ (2µ +λ)

(λ +µ)2µ2

λ 2(λ 2 +4λ µ +5µ2)

(λ +µ)4µ2

•

2λ 2 +4λ µ +µ2

(λ +µ)2µ2

λ (2λ 2 +8λ 2µ +11λ µ2 +2µ3)

(λ +µ)4µ2

• •

3λ 6 +18λ 5µ +45λ 4µ2 +54λ 3µ3 +30λ 2µ4 +8λ µ5 +µ6

(λ +µ)6µ2





















where the •’s correspond to symmetric values about the diagonal. Using the default parameters λ = 1 and

µ = 10/9 reduces this matrix to

Σ =















81

100

21141

36100

6173901

13032100
21141

36100

25191

18050

7230951

6516050
6173901

13032100

7230951

6516050

9202705083

4704588100















≈





0.8100 0.5856 0.4737

0.5856 1.3956 1.1097

0.4737 1.1097 1.9561



 .

3510

Lawson and Leemis

Our ssq function can be used to support this result by limiting the number of arrivals to three and then
saving those three customer sojourn times. The kaczynski function below provides a good example of
how students may write their own R code to support existing implementations and to assist in analysis.
This function accepts as an argument the number of simulation replications. The second command defines
times as a numReps × 3 matrix containing 0’s as elements; each row will be used to hold the first three
customer sojourn times in an M/M/1 queue. Within the loop, the first three sojourn times generated by
ssq are placed in row i of times. Finally, the function returns the times matrix of sojourn times.

kaczynski <- function(numReps) {

times = matrix(0, numReps, 3) # a numReps X 3 matrix, all 0’s

set.seed(8423089) # replication: set seed once

for (i in 1:nrep) {

out = ssq(setSeed=F, maxArrivals=3, saveSojourns=T, showOutput=F)

times[i,] = out$sojournTimes # ith row: first 3 sojourn times

}

return(times)

}

Using the function above with, say, 100 000 replications, the var function available in R can then be used

to compute the sample variance–covariance matrix of the sojourn times, which is displayed as output below.

This output, along with several more runs of the simulation using different initial seed values, agrees with

the analytic result of Kaczynski et al. (2012).

> times = kaczynski(100000)

> var(times)

[,1] [,2] [,3]

[1,] 0.8137554 0.5873098 0.4725895

[2,] 0.5873098 1.3894298 1.1035314

[3,] 0.4725895 1.1035314 1.9593896

Indeed, whether by using only native R functions or by writing additional code, the flexibility and power

of R to assist in simulation experimentation and analysis is evident.

7 ANALYZING TIME-PERSISTENT STATISTICS

Another very important concept that routinely appears in simulation is that of time-persistent statistics. In

an introductory course, the ability to visualize and analyze time-persistent data and their statistics is critical

for student understanding. Again, R’s power and ease of use are well suited in this context. Whereas in

the previous section we used R for observation-persistent statistics, in this section we show the power of

R for time-persistent statistics using the number in the queue over time as generated by our ssq program.
In the example below, we use ssq to run the simulation for the first 50 customers, saving the number

in queue over time in the list output.

> output = ssq(seed=8675309, maxArrivals=50, saveNumberInQueue=T, showOutput=F)

Contained in the resulting list output is a vector named output$numberInQueueT, with the 68 time

values when changes occurred to the number in the queue, displayed below. Correspondingly, the vector

output$numberInQueueN contains the associated number in queue. (Note that for some of the times

when the queue length is zero, customers arrived and departed, but the number in the queue did not change.)

3511

Lawson and Leemis

> out$numberInQueueT

[1] 0.0 3.9 4.4 4.6 4.6 5.0 5.1 5.2 5.6 15.2 15.8 25.1 25.6 25.6 25.9

[16] 26.3 27.2 27.4 28.1 28.1 28.3 29.5 30.3 31.1 31.1 31.1 31.3 31.4 32.9 33.0

[31] 33.7 34.1 35.8 35.9 36.0 37.6 38.8 39.5 39.7 39.7 39.8 39.9 40.2 40.2 40.9

[46] 41.2 42.0 42.3 42.3 42.4 42.8 44.0 44.6 45.7 45.8 46.2 47.1 48.9 49.4 49.5

[61] 50.3 52.1 52.3 52.4 53.0 53.1 54.9 55.3

> output$numberInQueueN

[1] 0 1 2 1 2 3 2 1 0 1 0 1 2 3 4 3 4 3 4 5 4 3 4 5 4 5 4 3 4 5 6 5 6 7 6 5 4

[38] 3 2 3 4 3 2 3 2 3 2 1 0 1 2 3 2 3 2 3 4 5 6 7 6 5 4 3 2 1 0 0

A visualization of the number in queue over time is generated using the R plot function as

> plot(output$numberInQueueT, output$numberInQueueN, type="s",

xlab="time", ylab="number in queue", las=1, bty="l")

All of the R graphics parameters can be used in the usual R convention. The type="s" argument indicates

that a “step” plot should be plotted. In this particular plot, custom labels are placed on the horizontal and

vertical axes using the xlab and ylab arguments. The tick mark labels on the vertical axis are rotated

90◦ with the las argument, while the upper and right-hand axes are suppressed with the bty argument.

The resulting plot given in Figure 5 shows that the number in queue peaks at seven customers in line.

Interestingly, the plot highlights two early periods of lengthy inactivity in the system, corresponding to two

relatively large interarrival times between jobs. After viewing the plot, these interarrival times are easy to

spot in the output$numberInQueueT results above.

0 10 20 30 40 50

0

1

2

3

4

5

6

7

time

n
u
m

b
e
r

in
 q

u
e
u
e

Figure 5: Number in queue for the first 50 customers, with time-averaged statistic superimposed.

The time-averaged number in the queue, which is the area under the curve in Figure 5 divided by the

total simulation time, is easy to compute using R. The meanTPS function given below is another example

of how students may supplement R by using their own code to assist in analysis and understanding. Within

this function, the last three statements use R’s vectorized programming capabilities to easily compute the

normalized area under the curve, which is then returned. (An iterative approach could be used instead.)

meanTPS <- function(times, numbers) {

obsPeriod = times[length(times)] - times[1]

timeIntervals = diff(times)

areas = c(timeIntervals, 0) * numbers

return(sum(areas) / obsPeriod)

}

3512

Lawson and Leemis

As shown below, ourmeanTPS function can be used to compute and display the time-averaged number in the
queue by providing as arguments the times and numbers given by ssq. This value can then be superimposed
onto the time plot as a dashed horizontal line using R’s abline function, as depicted in Figure 5. Such
visualization is extremely useful in helping students understand the meaning of time-persistent statistics.

> meanTPS(output$numberInQueueT, output$numberInQueueN)

[1] 2.05734

> abline(h=2.05734, lty="dashed")

As a final example, Little’s formula (Little 1961), which relates certain observation-based statistics to
time-persistent statistics, can also be verified using R. One form of Little’s formula states that the sum
of the wait times must equal the area under the function in Figure 5. We use ssq below to generate 50
customer arrivals to an M/M/1 queue, and then use R functions to demonstrate that the sum of the 50 wait
times equals the area under that function.

> output = ssq(seed=8675309, maxArrivals=50, saveAllData=T, showOutput=F)

> sum(output$waitTimes)

[1] 113.767

> timeIntervals = diff(output$numberInQueueT)

> sum(c(timeIntervals,0) * output$numberInQueueN) # sum rectangle areas

[1] 113.767

8 CONCLUSIONS

The R language has received scant attention in the discrete-event simulation community. The goal of this

paper was to introduce R in the context of a single-server queue simulation model, and to show how R

can be used to easily conduct custom post-processing analysis. Despite weaknesses in animation and in

execution speed due to being an interpreted language, R has many other strengths that make it an excellent

computing platform for a variety of approaches to a first course in discrete-event simulation.

REFERENCES

Kaczynski, W. H., L. M. Leemis, and J. H. Drew. 2012. “Transient Queueing Analysis”. INFORMS Journal

on Computing 24 (1): 10–28.

Law, A. M. 2015. Simulation Modeling and Analysis. 5th ed. New York: McGraw-Hill.

Little, J. 1961. “A Simple Proof of L = λW”. Operations Research 9 (3): 383–387.

AUTHOR BIOGRAPHIES

BARRY LAWSON is Associate Professor of Computer Science at the University of Richmond. He received

Ph.D. and M.S. degrees in Computer Science from The College of William & Mary, and his B.S. in Math-

ematics from UVA’s College at Wise. His research interests are in agent-based simulation, with biological

applications. He is a member of ACM, IEEE, and INFORMS. His email address is blawson@richmond.edu.

LAWRENCE M. LEEMIS is Professor in the Department of Mathematics at The College of William

& Mary. He received B.S. and M.S. degrees in Mathematics and a Ph.D. in Industrial Engineering from

Purdue University. His interests are in reliability and simulation, and has extensive consulting and research

contract experience. He is a member of ASA and INFORMS. His email address is leemis@math.wm.edu.

3513

mailto://blawson@richmond.edu
mailto://leemis@math.wm.edu

