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ABSTRACT

Wearable technologies are becomihg main interface between human and surrounding envirorforent

a variety of contexawareand autonomouapplications Ubiquitous smaltsize, and loncostsmartphones
carried by everyone nowadays are equipped with a host of embedded sengoovitdhagroundbreaking
opportunitiesto collect and use multimodal data in ddtaven decisionsupport systes1 Smulation
modelsare one of the most widely useéecision support tools in project managementaaahighly benefit

from the integration of contexial knowledge with the model desigim this paper,a discrete event
simulation (DES)model of construction operations involving human activisedesignedenriched with
wearable sensor datsing smartphones, and validatétie model parameters atefined using 1) a data
driven activity recognition and 2)static engineering estimation method for comparison. Results show that
the output of the datdriven simulation model is in a closer agreement with the values observed in the real
system.

1 INTRODUCTION

The “high volume, high velocity, ankigh variety information assét®r Big Data Gartner 2014)pare
finding their niche in coordinating urban technologies. Smart cities and internet of, #intygo recent
sensofcentricphenomena have been emerged to offer solutions for critical urban problems pertaining to
energyefficiency, transportation planning, and risk mitigation. However, deployment of sensors, as the
backbone of thesanovative phenomena in design, planning, aodstruction ofthe smart citi€s
infrastructure has yet to be investigated by researchers in academia and industry (Suzumura and Kanezashi
2014).

Wearable sensors have been emerged during the recentyestsrito collect data froprocessesn
which humansaredominantly involvedMost of recent research studies aim at collecting data from human
activities and behavior for medicaport and security application€heng et al. 201QJia 2009). In all
sweh studies, the goal is the recognition and classification of basic hactigities. For instance, it is
important for patients with heart disease or obesity to follow an exercise routine that can be readily
identified using wearable motion detection sEaglia 2009)In a broader schemtinere are other attributes
pertaining to human activitigbat may be of significance. For example, an important attrikontavedge)
is the time it take for an individual to carry owatcertain taskThis piece of knowledge can be effectively
extracted from data collected by wearable sensing deprogtding that the sensory data collected from
that individual is rich enough to help distingutklat task from its preceding and succeedasis.
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In designing simulation models, th#ributes of model elemengfould be defineth the model prior
to runningit. In discrete event simulation (DESctivities and resourcethéttravel between queuesid
activities) are consideredhe key modelelements. Ay change in theiattributescan affect theoverall
performance of the model in representing the real sy&articular to highly complex, dynamic, and ever-
changing operations suchth®se constituting nmst constructiorprojects,activity durationsare unique to
each project antthus, rougtestimatiosand predictiorarenotreliableenoughin determining their values.
Moreovert it is highly probable that attributesch as activity durations change over the courag@adject
with ahardly predictable patteritherefore, a systematic approach in extracting prdaessledge from
pervasivecontextaware sensors and integnatthe extracted knowledge with simulatimodel design can
substantially help in validation and verification of the model.

The research presented instipaper is built upothe need forconstructionpervasive computings
outlined above anthkesadvantage ofvearable technologies to extract totiual knowledge pertaining to
the attributes of simulation modadlementsin construction projectdn particular, aDES model of a
construction operation watesigned in which construction workers wgreonstant interaction with each
other.Different activitieswerecarried out by theseorkersin an experimental settinfgach workewore
an armband that carried a smartphone using which data was collg¢ctamiBg data from smartphone
built-in accelerometer and gyroscope sensasused to recognizeonstruction workers’ activities. As
discussed in the next Sectiothe nertial measurement unit (IMU) that consists of accelerometer,
gyroscope, and magnetometer is widely used to design human activity recognition systems for various
applications withinthe field of computer sciend&hoaib et al. 2015Next, machine learning classifiers
were emjpyedto recognize activities and eventually extract activity duratiBngbability distributions
werethenfit to theextracted duratiomalues of multiplénstances of each activignd usedh thesimulation
modelscript For result comparison purposeaother set of probability distributions were defined based
on theengineeringassumptions angstimations for thosactivities.A DES model was once designed based
on the knowledge-based activity durations #reh using estimated values. The output of the simulation
models were then compared to the observed values in the real systssess the model accuranyd
improvement achieved by integrating sensory data into the simulation.model

2 RESEARCH BACKGROUND

DES has been used in various research fields such as material flow and supply chain ma(iagenosit
et al. 2007 Wohlgemuth et al. 2006RRecently, due to thdynamic and complex nature of construction
projects,someresearch studies attempteddesign more realistic simulation models collecting data
from construction entities (Song and Eldin 20¥2hdatikhaki et al. 201Zhang et al. 2013However,
such studies are mostly limited in scasthey haveonly targeéd specific operatiopand used a single
mode ofdata to extract contextual knowledge. The authors have previously investigated the design and
implementation of a muhlinodal datadriven simulation system for construction engineering and
managemeniCEM) applications Akhavian and Behzadan 2013, 2014&jeviously, the applicability and
feasibility of a knowledgdased simulation model was demonstrated through the use of a wireless sensors
network (WSN) to ollect multiplemodes of data such assitioral, orientation, and payload. This study
takes a further step in design and implementatiatatz#driven simulation modelsithin theCEM domain
using a more ubiquitous data collection scheme. In the designed methodology, smartphones asstandalon
self-sufficient data collection, storagand transmission nodeme used to provide data for activity
recognition. Such data acquisition setting is not vulnerable to ambient fantbchallenges often present
in real jobsits such aslust and weather conditions thaguire frequent maintenance and calibratibthe
sensorsin addition to their value to human activity recognitismartphones can lasoplaced in heavy
equipment cabins for construction equipment activity recognif&@hgvian and Behzadan 2014a).

A great deal of research in pervasive computing within the domagoraputer sciencaims at
recognizing daily human activities using smartphone buileirsers. Miluzzo et al. (2008) conducted one
of the earliest studies in this context and discussed important design decisions to resolve corresponding
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limitations. More recent studies adoptetethodologies that are, in essence, similarebyploying
smartphone sensais classify human activities using machine learning classification algor{Bayat et

al. 2014;Khan et al. 2014Martin et al. 2013Thiemjarus et al. 2013)n all such studies, however, data
collection was performetbr classificationof routine dailyactivitiessuch as walking, standing, jogging,
running, climbing up- and downstairs, and bikingHowever the process of activity recognition &
construction jobsités relatively more challenging hat is essentiallgiue to thenoredegres of freedom

and discretion each worker has while performing his or her tasks. Furthewodkers’interactions with
eachother, material, and equipment coupled with the underlgmgplexity of fieldtasksmake the
recognition process even more complicatedthis study, three different processes are investigated each
containingactivities with different natures to evaluate the performance of an activity recognition system
for activity duration extraction towards more accusiteulation input modeling.

3 THE OPERATION EXPERIMENT DESIGN

The goal of the operation that was reated in this research was to prepare, transport, and install wood
sectionsin a full-scale outdoor experimental setting that resembled a real construction. jBlugite 1

shows anapshot of the experimerits shown in this Figure, the cyclic operation starts with a worker, W1

who saws lumber inside an imaginary wood worksaiog prepare wood sections of proper sizes and
shapes. These sections are then transported to the installatiooyatkga other workers, W2 and3who

are tasked with loading the sections into wheelbarrows, pushing wheelbarrows to the installation area, and
dumpingthe sectionsvhere an installer worker, W#& waiting to receive the sections and install them in

their positions.Also, Figure 2 shows a snapshot of the accelerometer and gyroscope data on the
smartphones data collection and logging applicativat wasusedin the experiment

1 =\ I e R L
| Wood Workshop I8 —1 T #Instailation Area
- Worker W1 (s . Worker W4
' ! 43 = | : . - ..-i i _ plaEhs /

Transportation

Workers W2 & W3 @&

Figure 1: Snapshot of the operation showing four workers performing the experiment.

Figure 2: Different body motions create distinctpagterns iraccelerometer and gyroscope data.

Each process involves one or more activities assigned to different wdilkees.the intention is to
explore the generalizabiligf the developed framework by evaluating the accuracy of recognizing activities
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with different movement patternk the wood workshop, the process of cutting the lumber pieces consists
of only one activity, sawingcarried out by worker WIT'he transport&on process involves four activities
namely putting sections into the wheelbarrowlaading, pushing a loaded wheelbarrow pushing,
dumping the sections in the installation area or unloading, and returning the empty wheelbarrow or
returning Workersw2andWa3are responsible for the transportation process. Finally, workes W&gked

with the installation process which involves the activities hammeximturning the wrench. All the
aforementioned processes, activities, and tasked workers are suadmaritable 1The Loading and
unloadingactivities follow underlying operational rules that are enforced in the experiment and later in the
simulation models. These rules are as follows:

1. Theloadingactivity will not be executed until there are at least two wood sections available for
transportation. Therefore, when there are less than two sections prepared by wosdketeitiier
or bothworkersW2andW3are available, they will wait in a queuetiliat least two sections are
ready for loading. With the same token, if either or both workerad2V3 are available, one
section should wait until there is at least one more section prepareddaytidét both sections can
be loaded.

2. Forunloadingacivity, it is assumed that the space available for unloaded sections is enough only
for two sections and unloadiragtivity should be executed in only one instance, meaning that if
there is any section waiting to be processed by wakikthe available wdwersw2 or W3 should
wait until there is no section awaiting installation process.

3. Forloading andunloadingactivities, only one instance of each activity can be performed at any
given time, meaning that simultaneous execution of either loaatingploading activity is not
allowed.

Tablel: List of the processes involved in the operation and activities within each process.

Process Activity Worker

Cutting Lumber | Sawng w1
Loading

, Pushing W2

Transportation loadi &
Unloading W3
Returning

. Hammering

Installation : W4

Turning the Wrench

4  SIMULATION MODEL OF THE OPERATION

The operation described in Sectionvds carefully modeled in Stroboscope (STate and ResOurce Based
Simulation of COnstruction ProcEsses), a DES scripting environment bageadivity Cycle Diagrams
(ACDs) that isdesigned foithe simulation of processes common to construatiogineering lartinez
1996). $mulation modelscreated in Stroboscope are based on a networkt@fconnected modeling
elementgdescribed in a sipt containingprogramming statements that give the elements urighavior

and control the simulatiofMartinez and loannou 1994y his network of the interconnectedements
(a.k.a. the ACD) is designed to be similaappearance and function @ CLONE simulation platform,
which was the first system developed specifically for construction operations (Halpin TB&ACD of

the operation described in SectioisZhown in Figure 3n this Figure, resourcaaove from each node

to the succeeding node in the direction shown by the connection link. A circle with a slash in the bottom
right corner is a Queuthat serves as the storage location for the resources. A rectangbecwttbff in
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the topleft corneris called a Comtand a regular rectangle is called a Norralkese two nodes represent

two different types of activities and hold the resources for the amount of time determined by activity
durations. In particular,@ombiis always preceded by a Queuigile aNormalactivity cannot be preceded

by a Queueln Figure 3,LumbersWait holdslumber pieces before they are taken by wolkérfor

activity Sawing. The WorkerW1Wait Queue populated with 1 entity (i.e. 1 worker) ensures that only
one instance of thBawing activity is carried out in any point of time. Upon being sawed, sections wait in
SectionsWaitl Queue to be loaded for transportation. This Queue satisfies the first operational rule
described in Section 3. The WorkersW2&W3WaitllQueue is where Workers W2 aWd3 are drawn

from one by one to load only two sections, if available. Similar to SectionsWaitl, this Queue also
contributes to satisfying the first operational rule. When enough sections and transportation workers are
available, thd.oading Comb is activated, lasts for its assigned duration, and then releases the captured
resource (i.e. worker) to theéauling Normal. Again, this activity will hold the resource for the amount

of time determined by its corresponding duration. Next, according to the second operational rule in Section
3, Workers W2and/orW3 wait in the WorkersW2&W3Waitl Queue before the space is available for

activation of the Unloading Combi. Finally, the SectionsWaitll Queue is where at most two
sections are being held before thmn proceed to thelammering Combi. It must be noted that the
Hammering Combi will not be activated if either of ti8=ctionsWaitll orWorkerWw4Wait Queues

does not have available resources. Such situation happens for example if worker W4 is capt@ed by th
TurningtheWrench Normal.

Worker-
W4aWait

Turningthe-
Wrench 5C6

Sections-
Waitll

Hammering

Sections-
Waitl

Available-

5
Loading [ Pushing Soace

L

Workers-
W2gws3-
Waitll

We3 We2
Returning [€

Figure 3:The ACD of the operation for modeling in Stroboscope.

While the ACD shown in Figuref&ovides a high level representation of the simulated operation, more
specific operational details are incorporated in the script of the model. This is where attributes of the queues
and activities as well as the model parameters are assigned. Such attributes define how model parameters
behave For example, the followingample lines from the model script show how some of the network
elements inducing activities (Normal and Combi), Queues, and links are defined in Stroboscope:

/* Definition of Network Elements
QUEUE SectionsWaitl Sections;
COMBI Loading;

NORMALPushing;
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QUEUE WorkersW2&W3Waitl  Workers;
COMBI Unloading;
LINK CP1 WorkerWlWait Sawing;

LINK CP2 Sawing WorkerW1Wait;
LINK SC1 LumberWait Sawing;
LINK SC2 Sawing SectionsWaitl;

Another key attribute is the durations of Combi and Normal activities. Activity durations are sampled
from the specified probability distributions. In the next Section, the activity recognition framework
developed in this research in order to extract realistic activity durations is described.

5 DURATION EXTRACTION THROUGH ACTIVITY RECOGNITION

In this study, data are collected using mobile phone accelerometer and gyroscope sensors. r@allected
sensorydata are segmented into windows containing certain nuoflaata points. Next, kestatistical

features are calculated within each window. Furthermore, each segment is labeled based on the
corresponding activity class performed at the time identified by the timestamp of the collectiedoddéa

to train a pedictive model,supervised classifiers were used to recognize activities performed in the
experiment. Details of data collection and preprocessing configurations are presented in Table 2.

Table2: Sensory data collection configurations used for activity recognition.

Configurations Mechanism or Values Used

Sampling Frequency 100 Hz for both accelerometer and gyroscope

Data Preparation Interpolating missing data and removing data with close timestamp
Window Size 128 data points with 50% overlap

Extracted Features Statistical time and frequency domain using fast Fourier transform

Five supervised machine learning classifiers, namely, neural network, decision tree, k-nearest neighbor
(KNN), logistic regression, and support vector machine (SVM) were trained and tested using 10-fold
stratified cross validation. The specificationst@fsemachine learning algorithms aoldssifcationdetails
is outlinedin a previousstudyby the authors to recognize construction equipment actidtidsan be
found in @khavian and Behzadan 2019 able3 shows the classification agaey results for individual
classifiers for each of the processes involved in the experiment operations.

Table3: Classification accuracy (%) of activities in each of the three processes using the five classifiers.

nework | _tree | K™ | Regression | SVM
Cutting Lumber 96.27 95.58 96.22 96.54 96.64
Transportation 88.17 85.62 87.68 85.84 78.34
Installation 87.78 78.57 87.73 82.23 82.18

As tabulated in Table 3, neural network outperforms the other four classifiers in terms of overall
classification accuracy, while KNN is closely following neural network in all three categories. Therefore,
in order to incorporate both classifiers for potential improvements in classification accuracies, an ensemble
methodology is also adopted. Bootstrap aggregation or Baggithg ensemble algorithm used in this
researchUsing this algorithmT training data subsets each containingraming examples are selected
randomly with replacemeritom the original training set of mxamplesThe classification result of the
ensemble is determined through plurality voting (Lin et al. 208&re, the number of training datasetis T
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= 20. Classification was performed on the activity level within each process, meaning that the result of the
classification in terms of accuracy in correctly predicting the activities within each process is reported. It is
worth mentioning that within eaatlass, an extra activity is included as itiang state in which the worker
is not contributing to any of the assigned activities within the process.

Table 4 shows the Bagging ensemble result of classification accuracies for each posess in
Table 4, the classification accuracy results have been improved using the Bagging ensemble model. The
accuracy of activity recognition for the first process involving the saagtigity is almost perfect and it is
expected that it closely matches the obseagdidity durations. However, activities that comprise the other
two processes, namely transportation and installation have not been classified as accurately, although more
than 90% accuracy was achieved. Therefore, the durations extracted from th@sesatvexpected not
to be as close to the observed durations as the first process. However, it should be noted that the similarity
of the extracted durations to the observed values does not necessarily conform the same accuracy as their
associated actity recognition accuracy. In other words, although it is expected that the durations of
activities within the cutting lumber process is predicted with the highest accuracy of all, the accuracy of
predicting activity durations for the transportation andailfetion processes may not follow the same
results in terms of relative accuracies. This is due to the fact that extracting activity durations follows a
heuristic algorithm according to which many of the misclassified instances are ignored. In essence, th
algorithm first replaces instances of any different classes that are appeared within a large number of detected
instances of the same class. For example, few instances of gldasdified after many instances of class
C; followed by other instances of class&e considered as class CThe exact numbers followed by this
heuristic algorithm depends on the sampling frequency, window size, and rough approximation of the
activity durations. Here with sampling frequency of 100 Hz, window sizes of 128 data points with 50%
overlap that amounts to 0.64 seconds of data, any two instances of an activity that normally takes more than
20 seconds but are separated out to less than 12 seconds are merged. Such heuristics result in improved
accuracy for activity duration extractiom.should be noted that these result are derived from testing the
model with the data that was collected from the same jobsite from which training data was collected.
Therefore, further experiments are required tointgabjectindependent results.

Table4: Bagging classification accuracy (%) for recognizing activities within each process.

Process Accuracy (%)
Cutting Lumber 99.28
Transportation 90.09
Installation 92.97

6 SIMULATION INPUT MODELING

In this Section, the process of input modeling of the operation simulation is described. Simulation input
modeling includes fitting probability distribution functions to the activity durations and has a high impact
on the accuracyf the model. First, observed activity durations using the recorded videotape of the
experiment are compared to those extracted through the activity recognition system. This step serves to
guarantee that extracted activity durations are not statistically significantly different from those that actually
took place in the real experiment.lifere is a statistically significant difference between the two sets of
duration values, then it cannot be expected from the data-driven simulation model to outgutlvakito
the actual ones observed in the experiment.

In order to compare observed and extracted activity durationstutient festis used to evaluatbe
null hypothesis of no considerable difference between the expected and sample distritatiiebshows
the result of the test for activities within each proce#s shown in this Table, the null hypothesis for none
of the activities was rejected through comparison of the observed and extracted activity durations with 5%
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significance levelThis confirms that the two sets of activity durations are not statistically significantly
different.

Table5: Comparison of the observed and extracted activity durations using sttefnt t-

Observed Extracted Nl
Process Activity Duration (sec) | Duration (sec) | p-value H oL':hesis
Mean SD | Mean SD yp
Cutting Lumber | Sawing 2795 | 6.50 | 27.97| 6.57 0.78 Not rejected
Loading 8.96 1.40 9.24 1.75 0.27| Not rejected
_ Pushing 14.02 | 243 | 14.14| 281 0.63 Not rejected
Transportation - -
Unloading 13.18 | 1.96 | 1353 | 2.01 0.08 Not rejected
Returning 11.33 | 2.14 | 11.39| 2.29 0.78 Not rejected
Hammering 17.05| 248 | 1759 2.8 0.09| Not rejected
Installation '
Tumningthe | 4549 345| 1344 335  0.75 Not rejected
Wrench

The objective of creatingimulation models of the operation experiment is to compare the results of
the simulation created based on the extracted activity durationsdftata-model) to the one created
according to the estimated activity durations (static model). To this etimdated activity durations were
defined by taking into account the [minimum, maximum], or tlpeet estimation [minimum, mode,
maximum] durations for each activity which is a common practice in creating construction simulation
models or project management schedules using peyettation and review techniq@@ERT) (Halpin
and Riggs 1992)These two schemes are in essence equivalent to sampling from uniform and triangular
distributions. Therefore, these two probability distributions were considered for activitiodsrisiside
the static model. The parameters of the two probability distributions however were estimated according to
two heuristics; the instructions given to the workers performing the activities, and engineering assumptions
of the variance for such durations considering the nature of each activity. For example, workas W1
asked to saw each piece of lumber for about 25 to 30 seconds. Therefore, the probability distribution
considered for this activity was a uniform distribution with a minimum of 22@dmum of 33 to account
for 3 seconds of variations from the extrema. For the extracted durations, Kolmogorov—Smirnov and Chi-
Square goodness-{if-(GoF) tests were used to find the best distribution fit to durations of instances for
each activity accaling to the both test statistiddore details about the GoF tests and their applications in
datadriven simulation can be found in (Akhavian and Behzadan 20T4ble 6 shows the probability
distributions fitted to the extracted activity durations along with those estimated for each athigity.
following sample lineshow how extracted activity durations aréimed inside Stroboscope:

DURATION Sawing ‘Triangular[12,31.6,40];
DURATION Loading "Triangular[6,8.1,13]’;
DURATION Pushing '9 + Gamma[1.63, 3.16];
DURATION Unloading '9 + 8 * Beta[1.83, 1.41];
DURATION Returning '6 + Gamma[1.26, 4.28];
DURATION Hammering ‘Normal[17.8,2]";

7 PERFORMANCE OF THE DATA- DRIVEN VS. STATIC SIMULATION MODEL

Using the two sets of probability distributions shown in Table 6, two identical simulation models are created
based on the ACD introduced in SectiorT#e only difference between the two simulation models is in
the activity durations defined in the input script of each model.
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Table6: Probability distributions used inside the two simulation models.

Probability Distributions Used for
Activity Extracted Duration Estimated Durations
(Data-Driven Model) (Static Model)
Sawing TriangularfLl2,31.6,40] Uniform[22, 33]
Loading Triangular[6,8.1,13] Uniform[5, 7]
Pushing 9 + Gamma[l1.63, 3.16] Uniform[8, 12]
Unloading 9 + 8 x Beta[1.83, 1.41] Uniform[7, 12]
Returning 6 + Gamma[l.26, 4.28] Uniform[7, 10]
Hammering Normal[17.8,2] Triangular[13,15,17]
Turning the Wrench | 7 + 14 x Beta[1.62, 1.78] | Triangular[13,15,17]

Each model was run for 50 replications by generating random numbers from the same seed, and five
measures were collected for comparison of the outputs of the simulations to the real world observations.
The measures include the average waiting times (in seconds) of the entities in the four Queues namely
SectionsWaitl, SectionsWaitll, WorkersW2&W3Waitl, and WorkersW2&W3Waitll, as well as the total
operation time (in minutes). Figudeshows the comparison betweensd#féeve measures. For each measure
shown inthis Figure, the first bar from the top refers to the value of that measure observed inoelceal
operation. The second bar with a slightly lighter color corresponds to the mean of the average waiting times
resulted from the datdriven simulation aér 50 replications. The error bar refers to the standard deviation
of these 50 replications. The third bar with the lightest color is the result of the static simulation created
based on the estimated activity durations with the error bar that refeesstmndard deviation.

8 DISCUSSION OF THE RESULTS

According to Figure 4, the observed values for all five measures are within one standard deviation of the
results obtained from the dadaiven simulation model. This is while all the output measures olot&iom
the static simulation with estimated values are underestimating the waiting times and total duration of the
operation. In fact, this is what happens most of the time in construction projects where simulation models
created in the planning and preastruction stage estimated significantly underestimate or overestimate the
durations of the real world processéalpin and Riggs 1992)This is while uniform and triangular
probability distributions (and not fixed values) were used for estimating activity durations inside the static
model.It must be noted, however, that the underestimation observed in the output of the static simulation
model in all five measures is particular to this specific example and cannot be generalized to other problems.
More specifically, the measures obtained from the static model could have as well resulted in an
overestimation. What is of outmost importangeinterpreting the results is the noticeable difference
between the outputs of the two simulation models and the fact that the result of the data-driven model is
closer to reaivorld observations.

A considerable discrepancy can be seen in the resultnettéiom the static simulation and the
observed value for the average waiting time in Queue SectionsWaitIThis can be explained as follows;
since the WorkersW2&W3Waitll average waiting times in bar chart (d) are very close (considering the
scale of this chart), the availability of worked®uld not have influenced the difference. Therefore, it can
be explained through the difference in durations considered f&@atveng activity. It turns out that the
datadriven simulation with the probability distribution @fiangular [12,31.6,40for Sawing activity,
samples from a lower range of numbers starting from 12 seconds, while the minimum value for the uniform
distribution of the observed values is 23 seconds. This results in a much faster Sawing in rbadryirw
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turn provides more sections waiting in the SectionsWaitl Queue. Other than Sawing, most of the
other activities have estimated distributions resulting in sampling of lower values
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Figure4: Comparison of results obtainidm the real-world experiment, and the output of static and data-
driven simulation models.

Regardless of the reasons for any discrepancy between the extracted and estimated activity durations,
the very fact that any difference in activity durations can substantially change the simulation output statistics
verifies the significance of having more realistic simulation models through data-driven input modeling.

9 SUMMARY AND CONCLUSIONS

In this paper, a complex operation involving multiple interactions betlwaeranworkers performing
construction activities was described and modeled in DES using ptecekdata collected from the crew

in real time. Sensory data consisted of accelerometer and gyroscope data and were collected using
smartphones affixed on workers’ upper arms. Activities performed by the workers were then recognized
and classified using the supervised machine learning classifiers. Following activity recognition,
corresponding activity durations were extracted and probability distributvens fit to the extracted
durations. Moreover, these durations were compared to the values observed in the real world experiment to
confirm their fidelity. Extracted activity durations were then fused into adtfatan DES model created

based on the expgeent design in order to compare the results against those of a similar but static simulation
model with estimated values for activity durations.

Analysis of the output obtained from the two simulation models with respect to five quantifiable
measures (i.e. average waiting times of the entities in four Queues namely SectionsWaitl,
SectionsWaitll, WorkersW2&W3Waitl, and WorkersW2&W3Waitll, as well as the total
operation time) revealed that the data-driven simulation model created based on the knoeledtjeity
durations) extracted by the developed activity recognition framework outperforms the static simulation
model created based on estimated activity durations. Considering the fact that often times the common
practice in creating construction simulation models is using historical (secondary) information and
subjective assumptions in designing model attributes, obtaining results in close agreement with reality
reaffirms the significance of substituting this traditional approach in creating simulation models with a more
robust and reliable data-driven and knowledge-based methodology that was described in this paper.
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10 FUTURE WORK

Future work of this study includes incorporating positiodata using smartphonbuilt-in global
positioning system (GP3ensordo further improve the accuracy afttivity recognition and enrich the
extracted contextual knowledgendther potential direction for future work in this area will be to explore
whether the results achieved so far can be used for automasgiigting process knowledge such as
activity durations and precedence logic for the purpose of ubiquitously updating and maintaining simulation
models in true real timeAnother branch of future work is automated identification and analysis of unsafe
workers’ postures in physically demanding construction activities. Weldéed Musculoskeletal Disorder
(WMSD), back, knee, and shoulder injuries are among the most common injuries that can be prevented or
reduced by complying with Occupational Safety and tHeAldministration (OSHA)or the National

Institute for Occupational Safety and Health (NIOSkEIndards and rulésllOSH 2015 OSHA 1990).
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