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ABSTRACT 

Wearable technologies are becoming the main interface between human and surrounding environment for 
a variety of context-aware and autonomous applications. Ubiquitous, small-size, and low-cost smartphones 
carried by everyone nowadays are equipped with a host of embedded sensors that provide groundbreaking 
opportunities to collect and use multimodal data in data-driven decision support systems. Simulation 
models are one of the most widely used decision support tools in project management that can highly benefit 
from the integration of contextual knowledge with the model design. In this paper, a discrete event 
simulation (DES) model of construction operations involving human activities is designed, enriched with 
wearable sensor data using smartphones, and validated. The model parameters are defined using 1) a data-
driven activity recognition and 2) a static engineering estimation method for comparison. Results show that 
the output of the data-driven simulation model is in a closer agreement with the values observed in the real 
system. 

1 INTRODUCTION  

The “high volume, high velocity, and high variety information assets” or Big Data (Gartner 2014) are 
finding their niche in coordinating urban technologies. Smart cities and internet of things, as two recent 
sensor-centric phenomena have been emerged to offer solutions for critical urban problems pertaining to 
energy efficiency, transportation planning, and risk mitigation. However, deployment of sensors, as the 
backbone of these innovative phenomena in design, planning, and construction of the smart cities’ 
infrastructure has yet to be investigated by researchers in academia and industry (Suzumura and Kanezashi 
2014).  

Wearable sensors have been emerged during the recent years in order to collect data from processes  in 
which humans  are dominantly involved. Most of recent research studies aim at collecting data from human 
activities and behavior for medical, sport, and security applications (Cheng et al. 2010; Jia 2009). In all 
such studies, the goal is the recognition and classification of basic human activities. For instance, it is 
important for patients with heart disease or obesity to follow an exercise routine that can be readily 
identified using wearable motion detection sensors (Jia 2009). In a broader scheme, there are other attributes 
pertaining to human activities that may be of significance. For example, an important attribute (knowledge) 
is the time it takes for an individual to carry out a certain task. This piece of knowledge can be effectively 
extracted from data collected by wearable sensing devices providing that the sensory data collected from 
that individual is rich enough to help distinguish that task from its preceding and succeeding tasks.  
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In designing simulation models, the attributes of model elements should be defined in the model prior 
to running it. In discrete event simulation (DES), activities and resources (that travel between queues and 
activities) are considered the key model elements. Any change in their attributes can affect the overall 
performance of the model in representing the real system. Particular to highly complex, dynamic, and ever-
changing operations such as those constituting most construction projects, activity durations are unique to 
each project and thus, rough estimations and predictions are not reliable enough in determining their values. 
Moreover, it is highly probable that attributes such as activity durations change over the course of a project 
with a hardly predictable pattern. Therefore, a systematic approach in extracting process knowledge from 
pervasive context-aware sensors and integrating the extracted knowledge with simulation model design can 
substantially help in validation and verification of the model.  

The research presented in this paper is built upon the need for construction pervasive computing as 
outlined above and takes advantage of wearable technologies to extract contextual knowledge pertaining to 
the attributes of simulation model elements in construction projects. In particular, a DES model of a 
construction operation was designed in which construction workers were in constant interaction with each 
other. Different activities were carried out by these workers in an experimental setting. Each worker wore 
an armband that carried a smartphone using which data was collected. Streaming data from smartphone 
built-in accelerometer and gyroscope sensors was used to recognize construction workers’ activities. As 
discussed in the next Section, the inertial measurement unit (IMU) that consists of accelerometer, 
gyroscope, and magnetometer is widely used to design human activity recognition systems for various 
applications within the field of computer science (Shoaib et al. 2015). Next, machine learning classifiers 
were employed to recognize activities and eventually extract activity durations. Probability distributions 
were then fit to the extracted duration values of multiple instances of each activity and used in the simulation 
model script. For result comparison purposes, another set of probability distributions were defined based 
on the engineering assumptions and estimations for those activities. A DES model was once designed based 
on the knowledge-based activity durations and then using estimated values. The output of the simulation 
models were then compared to the observed values in the real system to assess the model accuracy and 
improvement achieved by integrating sensory data into the simulation model.   

2 RESEARCH BACKGROUND  

DES has been used in various research fields such as material flow and supply chain management (Tannock 
et al. 2007; Wohlgemuth et al. 2006). Recently, due to the dynamic and complex nature of construction 
projects, some research studies attempted to design more realistic simulation models by collecting data 
from construction entities (Song and Eldin 2012; Vahdatikhaki et al. 2013; Zhang et al. 2013). However, 
such studies are mostly limited in scope as they have only targeted specific operations and used a single 
mode of data to extract contextual knowledge. The authors have previously investigated the design and 
implementation of a multi-modal data-driven simulation system for construction engineering and 
management (CEM) applications (Akhavian and Behzadan 2013, 2014b). Previously, the applicability and 
feasibility of a knowledge-based simulation model was demonstrated through the use of a wireless sensors 
network (WSN) to collect multiple modes of data such as positional, orientation, and payload. This study 
takes a further step in design and implementation of data-driven simulation models within the CEM domain 
using a more ubiquitous data collection scheme. In the designed methodology, smartphones as standalone 
self-sufficient data collection, storage, and transmission nodes are used to provide data for activity 
recognition. Such data acquisition setting is not vulnerable to ambient factors and challenges often present 
in real jobsites such as dust and weather conditions that require frequent maintenance and calibration of the 
sensors. In addition to their value to human activity recognition, smartphones can be also placed in heavy 
equipment cabins for construction equipment activity recognition (Akhavian and Behzadan 2014a). 
 A great deal of research in pervasive computing within the domain of computer science aims at 
recognizing daily human activities using smartphone built-in sensors. Miluzzo et al. (2008) conducted one 
of the earliest studies in this context and discussed important design decisions to resolve corresponding 
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limitations. More recent studies adopted methodologies that are, in essence, similar by employing 
smartphone sensors to classify human activities using machine learning classification algorithms (Bayat et 
al. 2014; Khan et al. 2014; Martín et al. 2013; Thiemjarus et al. 2013). In all such studies, however, data 
collection was performed for classification of routine daily activities such as walking, standing, jogging, 
running, climbing up- and down-stairs, and biking. However, the process of activity recognition in a 
construction jobsite is relatively more challenging. That is essentially due to the more degrees of freedom 
and discretion each worker has while performing his or her tasks. Furthermore, workers’ interactions with 
each other, material, and equipment coupled with the underlying complexity of field tasks make the 
recognition process even more complicated. In this study, three different processes are investigated each 
containing activities with different natures to evaluate the performance of an activity recognition system 
for activity duration extraction towards more accurate simulation input modeling.      

3 THE OPERATION EXPERIMENT DESIGN 

The goal of the operation that was replicated in this research was to prepare, transport, and install wood 
sections in a full-scale outdoor experimental setting that resembled a real construction jobsite. Figure 1 
shows a snapshot of the experiment. As shown in this Figure, the cyclic operation starts with a worker, W1, 
who saws lumber inside an imaginary wood workshop and prepare wood sections of proper sizes and 
shapes. These sections are then transported to the installation area by two other workers, W2 and W3 who 
are tasked with loading the sections into wheelbarrows, pushing wheelbarrows to the installation area, and 
dumping the sections where an installer worker, W4, is waiting to receive the sections and install them in 
their positions. Also, Figure 2 shows a snapshot of the accelerometer and gyroscope data on the 
smartphone’s data collection and logging application that was used in the experiment. 
 

 

Figure 1: Snapshot of the operation showing four workers performing the experiment. 

 

Figure 2: Different body motions create distinctive patterns in accelerometer and gyroscope data. 

Each process involves one or more activities assigned to different workers. Here, the intention is to 
explore the generalizability of the developed framework by evaluating the accuracy of recognizing activities 
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with different movement patterns. In the wood workshop, the process of cutting the lumber pieces consists 
of only one activity, sawing, carried out by worker W1. The transportation process involves four activities 
namely putting sections into the wheelbarrow or loading, pushing a loaded wheelbarrow or pushing, 
dumping the sections in the installation area or unloading, and returning the empty wheelbarrow or 
returning. Workers W2 and W3 are responsible for the transportation process. Finally, worker W4 is tasked 
with the installation process which involves the activities hammering and turning the wrench. All the 
aforementioned processes, activities, and tasked workers are summarized in Table 1. The Loading and 
unloading activities follow underlying operational rules that are enforced in the experiment and later in the 
simulation models. These rules are as follows: 

 
1. The loading activity will not be executed until there are at least two wood sections available for 

transportation. Therefore, when there are less than two sections prepared by worker W1, and either 
or both workers W2 and W3 are available, they will wait in a queue until at least two sections are 
ready for loading. With the same token, if either or both workers W2 and W3 are available, one 
section should wait until there is at least one more section prepared by W1 so that both sections can 
be loaded.  

2. For unloading activity, it is assumed that the space available for unloaded sections is enough only 
for two sections and unloading activity should be executed in only one instance, meaning that if 
there is any section waiting to be processed by worker W4, the available workers W2 or W3 should 
wait until there is no section awaiting installation process. 

3. For loading and unloading activities, only one instance of each activity can be performed at any 
given time, meaning that simultaneous execution of either loading or unloading activity is not 
allowed. 

Table 1: List of the processes involved in the operation and activities within each process. 

Process Activity  Worker 

Cutting Lumber Sawing W1 

Transportation 

Loading 
W2  
& 
W3 

Pushing 

Unloading 

Returning 

Installation 
Hammering  

W4 
Turning the Wrench 

4 SIMULATION MODEL OF THE OPERATION  

The operation described in Section 3 was carefully modeled in Stroboscope (STate and ResOurce Based 
Simulation of COnstruction ProcEsses), a DES scripting environment based on Activity Cycle Diagrams 
(ACDs) that is designed for the simulation of processes common to construction engineering (Martinez 
1996). Simulation models created in Stroboscope are based on a network of interconnected modeling 
elements described in a script containing programming statements that give the elements unique behavior 
and control the simulation (Martinez and Ioannou 1994). This network of the interconnected elements 
(a.k.a. the ACD) is designed to be similar in appearance and function to CYCLONE simulation platform, 
which was the first system developed specifically for construction operations (Halpin 1977). The ACD of 
the operation described in Section 3 is shown in Figure 3. In this Figure, resources move from each node 
to the succeeding node in the direction shown by the connection link. A circle with a slash in the bottom 
right corner is a Queue that serves as the storage location for the resources. A rectangle with a cut-off in 
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the top-left corner is called a Combi and a regular rectangle is called a Normal. These two nodes represent 
two different types of activities and hold the resources for the amount of time determined by activity 
durations. In particular, a Combi is always preceded by a Queue while a Normal activity cannot be preceded 
by a Queue. In Figure 3, LumbersWait holds lumber pieces before they are taken by worker W1 for 
activity Sawing. The WorkerW1Wait Queue populated with 1 entity (i.e. 1 worker) ensures that only 
one instance of the Sawing activity is carried out in any point of time. Upon being sawed, sections wait in 
SectionsWaitI Queue to be loaded for transportation. This Queue satisfies the first operational rule 
described in Section 3. The WorkersW2&W3WaitII Queue is where Workers W2 and W3 are drawn 
from one by one to load only two sections, if available. Similar to SectionsWaitI, this Queue also 
contributes to satisfying the first operational rule. When enough sections and transportation workers are 
available, the Loading Combi is activated, lasts for its assigned duration, and then releases the captured 
resource (i.e. worker) to the Hauling Normal. Again, this activity will hold the resource for the amount 
of time determined by its corresponding duration. Next, according to the second operational rule in Section 
3, Workers W2 and/or W3 wait in the WorkersW2&W3WaitI Queue before the space is available for 
activation of the Unloading Combi. Finally, the SectionsWaitII Queue is where at most two 
sections are being held before they can proceed to the Hammering Combi. It must be noted that the 
Hammering Combi will not be activated if either of the SectionsWaitII or WorkerW4Wait Queues 
does not have available resources. Such situation happens for example if worker W4 is captured by the 
TurningtheWrench Normal.  

 

 

Figure 3: The ACD of the operation for modeling in Stroboscope.   

 While the ACD shown in Figure 3 provides a high level representation of the simulated operation, more 
specific operational details are incorporated in the script of the model. This is where attributes of the queues 
and activities as well as the model parameters are assigned. Such attributes define how model parameters 
behave. For example, the following sample lines from the model script show how some of the network 
elements inducing activities (Normal and Combi), Queues, and links are defined in Stroboscope: 

 
/* Definition of Network Elements 
QUEUE SectionsWaitI   Sections; 
COMBI Loading; 
NORMAL Pushing; 
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QUEUE WorkersW2&W3WaitI Workers; 
COMBI Unloading; 
LINK CP1  WorkerW1Wait  Sawing; 
LINK CP2  Sawing    WorkerW1Wait; 
LINK SC1  LumberWait  Sawing; 

  LINK SC2  Sawing    SectionsWaitI; 

 
 Another key attribute is the durations of Combi and Normal activities. Activity durations are sampled 
from the specified probability distributions. In the next Section, the activity recognition framework 
developed in this research in order to extract realistic activity durations is described. 

5 DURATION EXTRACTION THROUGH ACTIVITY RECOGNITION 

In this study, data are collected using mobile phone accelerometer and gyroscope sensors. Collected raw 
sensory data are segmented into windows containing certain number of data points. Next, key statistical 
features are calculated within each window. Furthermore, each segment is labeled based on the 
corresponding activity class performed at the time identified by the timestamp of the collected data. In order 
to train a predictive model, supervised classifiers were used to recognize activities performed in the 
experiment. Details of data collection and preprocessing configurations are presented in Table 2. 

Table 2: Sensory data collection configurations used for activity recognition. 

Configurations Mechanism or Values Used 

Sampling Frequency 100 Hz for both accelerometer and gyroscope 

Data Preparation Interpolating missing data and removing data with close timestamp  

Window Size 128 data points with 50% overlap 
Extracted Features Statistical time- and frequency domain using fast Fourier transform 

  
Five supervised machine learning classifiers, namely, neural network, decision tree, k-nearest neighbor 

(KNN), logistic regression, and support vector machine (SVM) were trained and tested using 10-fold 
stratified cross validation. The specifications of these machine learning algorithms and classification details 
is outlined in a previous study by the authors to recognize construction equipment activities and can be 
found in (Akhavian and Behzadan 2015). Table 3 shows the classification accuracy results for individual 
classifiers for each of the processes involved in the experiment operations. 

Table 3: Classification accuracy (%) of activities in each of the three processes using the five classifiers. 

 Neural 
Network 

Decision 
Tree 

KNN 
Logistic 

Regression SVM 

Cutting Lumber  96.27 95.58 96.22 96.54 96.64 

Transportation 88.17 85.62 87.68 85.84 78.34 

Installation 87.78 78.57 87.73 82.23 82.18 
 
 As tabulated in Table 3, neural network outperforms the other four classifiers in terms of overall 
classification accuracy, while KNN is closely following neural network in all three categories. Therefore, 
in order to incorporate both classifiers for potential improvements in classification accuracies, an ensemble 
methodology is also adopted. Bootstrap aggregation or Bagging is the ensemble algorithm used in this 
research. Using this algorithm, T training data subsets each containing m training examples are selected 
randomly with replacement from the original training set of m examples. The classification result of the 
ensemble is determined through plurality voting (Lin et al. 2003). Here, the number of training dataset is T 
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= 20. Classification was performed on the activity level within each process, meaning that the result of the 
classification in terms of accuracy in correctly predicting the activities within each process is reported. It is 
worth mentioning that within each class, an extra activity is included as the idling state in which the worker 
is not contributing to any of the assigned activities within the process. 
 Table 4 shows the Bagging ensemble result of classification accuracies for each process. As seen in 
Table 4, the classification accuracy results have been improved using the Bagging ensemble model. The 
accuracy of activity recognition for the first process involving the sawing activity is almost perfect and it is 
expected that it closely matches the observed activity durations. However, activities that comprise the other 
two processes, namely transportation and installation have not been classified as accurately, although more 
than 90% accuracy was achieved. Therefore, the durations extracted from these activities are expected not 
to be as close to the observed durations as the first process. However, it should be noted that the similarity 
of the extracted durations to the observed values does not necessarily conform the same accuracy as their 
associated activity recognition accuracy. In other words, although it is expected that the durations of 
activities within the cutting lumber process is predicted with the highest accuracy of all, the accuracy of 
predicting activity durations for the transportation and installation processes may not follow the same 
results in terms of relative accuracies. This is due to the fact that extracting activity durations follows a 
heuristic algorithm according to which many of the misclassified instances are ignored. In essence, the 
algorithm first replaces instances of any different classes that are appeared within a large number of detected 
instances of the same class. For example, few instances of class C2 classified after many instances of class 
C1 followed by other instances of class C1 are considered as class C1. The exact numbers followed by this 
heuristic algorithm depends on the sampling frequency, window size, and rough approximation of the 
activity durations. Here with sampling frequency of 100 Hz, window sizes of 128 data points with 50% 
overlap that amounts to 0.64 seconds of data, any two instances of an activity that normally takes more than 
20 seconds but are separated out to less than 12 seconds are merged. Such heuristics result in improved 
accuracy for activity duration extraction. It should be noted that these result are derived from testing the 
model with the data that was collected from the same jobsite from which training data was collected. 
Therefore, further experiments are required to obtain subject-independent results.    

Table 4: Bagging classification accuracy (%) for recognizing activities within each process. 

Process Accuracy (%) 

Cutting Lumber 99.28 

Transportation 90.09 

Installation 92.97 

6 SIMULATION INPUT MODELING  

In this Section, the process of input modeling of the operation simulation is described. Simulation input 
modeling includes fitting probability distribution functions to the activity durations and has a high impact 
on the accuracy of the model. First, observed activity durations using the recorded videotape of the 
experiment are compared to those extracted through the activity recognition system. This step serves to 
guarantee that extracted activity durations are not statistically significantly different from those that actually 
took place in the real experiment. If there is a statistically significant difference between the two sets of 
duration values, then it cannot be expected from the data-driven simulation model to output values close to 
the actual ones observed in the experiment.    
 In order to compare observed and extracted activity durations, the student t-test is used to evaluate the 
null hypothesis of no considerable difference between the expected and sample distributions. Table 5 shows 
the result of the t-test for activities within each process. As shown in this Table, the null hypothesis for none 
of the activities was rejected through comparison of the observed and extracted activity durations with 5% 
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significance level. This confirms that the two sets of activity durations are not statistically significantly 
different. 

Table 5: Comparison of the observed and extracted activity durations using student t-test. 

Process Activity  
Observed 

Duration (sec.) 
Extracted 

Duration (sec.) p-value 
Null 

Hypothesis 
Mean SD Mean SD 

Cutting Lumber  Sawing 27.95 6.50 27.97 6.57 0.78 Not rejected 

Transportation  

Loading 8.96 1.40 9.24 1.75 0.27 Not rejected 

Pushing 14.02 2.43 14.14 2.81 0.63 Not rejected 

Unloading 13.18 1.96 13.53 2.01 0.08 Not rejected 

Returning 11.33 2.14 11.39 2.29 0.78 Not rejected 

Installation  
Hammering 17.05 2.48 17.59 2.46 0.09 Not rejected 
Turning the 
Wrench 

13.39 3.42 13.44 3.35 0.75 Not rejected 

  
 The objective of creating simulation models of the operation experiment is to compare the results of 
the simulation created based on the extracted activity durations (data-driven model) to the one created 
according to the estimated activity durations (static model). To this end, estimated activity durations were 
defined by taking into account the [minimum, maximum], or three-point estimation [minimum, mode, 
maximum] durations for each activity which is a common practice in creating construction simulation 
models or project management schedules using project evaluation and review technique (PERT) (Halpin 
and Riggs 1992). These two schemes are in essence equivalent to sampling from uniform and triangular 
distributions. Therefore, these two probability distributions were considered for activity durations inside 
the static model. The parameters of the two probability distributions however were estimated according to 
two heuristics; the instructions given to the workers performing the activities, and engineering assumptions 
of the variance for such durations considering the nature of each activity. For example, worker W1 was 
asked to saw each piece of lumber for about 25 to 30 seconds. Therefore, the probability distribution 
considered for this activity was a uniform distribution with a minimum of 22 and maximum of 33 to account 
for 3 seconds of variations from the extrema. For the extracted durations, Kolmogorov–Smirnov and Chi-
Square goodness-of-fit (GoF) tests were used to find the best distribution fit to durations of instances for 
each activity according to the both test statistics. More details about the GoF tests and their applications in 
data-driven simulation can be found in (Akhavian and Behzadan 2014b). Table 6 shows the probability 
distributions fitted to the extracted activity durations along with those estimated for each activity. The 
following sample lines show how extracted activity durations are defined inside Stroboscope: 

 
DURATION Sawing     'Triangular[12,31.6,40]'; 
DURATION Loading    'Triangular[6,8.1,13]'; 
DURATION Pushing    '9 + Gamma[1.63, 3.16]'; 
DURATION Unloading    '9 + 8 * Beta[1.83, 1.41]'; 
DURATION Returning    '6 + Gamma[1.26, 4.28]'; 
DURATION Hammering    'Normal[17.8,2]'; 

7 PERFORMANCE OF THE DATA- DRIVEN VS. STATIC SI MULATION MODEL  

Using the two sets of probability distributions shown in Table 6, two identical simulation models are created 
based on the ACD introduced in Section 4. The only difference between the two simulation models is in 
the activity durations defined in the input script of each model. 
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Table 6: Probability distributions used inside the two simulation models. 

Activity  
Probability Distributions Used for 

Extracted Duration 
(Data-Driven Model) 

Estimated Durations 
(Static Model) 

Sawing Triangular[12,31.6,40] Uniform[22, 33] 

Loading Triangular[6,8.1,13] Uniform[5, 7] 

Pushing 9 + Gamma[1.63, 3.16] Uniform[8, 12] 

Unloading 9 + 8 × Beta[1.83, 1.41] Uniform[7, 12] 

Returning 6 + Gamma[1.26, 4.28] Uniform[7, 10] 

Hammering Normal[17.8,2] Triangular[13,15,17] 

Turning the Wrench 7 + 14 × Beta[1.62, 1.78] Triangular[13,15,17] 
 
 Each model was run for 50 replications by generating random numbers from the same seed, and five 
measures were collected for comparison of the outputs of the simulations to the real world observations. 
The measures include the average waiting times (in seconds) of the entities in the four Queues namely 
SectionsWaitI, SectionsWaitII, WorkersW2&W3WaitI, and WorkersW2&W3WaitII, as well as the total 
operation time (in minutes). Figure 4 shows the comparison between these five measures. For each measure 
shown in this Figure, the first bar from the top refers to the value of that measure observed in the real-world 
operation. The second bar with a slightly lighter color corresponds to the mean of the average waiting times 
resulted from the data-driven simulation after 50 replications. The error bar refers to the standard deviation 
of these 50 replications. The third bar with the lightest color is the result of the static simulation created 
based on the estimated activity durations with the error bar that refers to the standard deviation. 

8 DISCUSSION OF THE RESULTS 

According to Figure 4, the observed values for all five measures are within one standard deviation of the 
results obtained from the data-driven simulation model. This is while all the output measures obtained from 
the static simulation with estimated values are underestimating the waiting times and total duration of the 
operation. In fact, this is what happens most of the time in construction projects where simulation models 
created in the planning and pre-construction stage estimated significantly underestimate or overestimate the 
durations of the real world processes (Halpin and Riggs 1992). This is while uniform and triangular 
probability distributions (and not fixed values) were used for estimating activity durations inside the static 
model. It must be noted, however, that the underestimation observed in the output of the static simulation 
model in all five measures is particular to this specific example and cannot be generalized to other problems. 
More specifically, the measures obtained from the static model could have as well resulted in an 
overestimation. What is of outmost importance in interpreting the results is the noticeable difference 
between the outputs of the two simulation models and the fact that the result of the data-driven model is 
closer to real-world observations.  

A considerable discrepancy can be seen in the result obtained from the static simulation and the 
observed value for the average waiting time in Queue SectionsWaitI. This can be explained as follows; 
since the WorkersW2&W3WaitII average waiting times in bar chart (d) are very close (considering the 
scale of this chart), the availability of workers should not have influenced the difference. Therefore, it can 
be explained through the difference in durations considered for the Sawing activity. It turns out that the 
data-driven simulation with the probability distribution of Triangular [12,31.6,40] for Sawing activity, 
samples from a lower range of numbers starting from 12 seconds, while the minimum value for the uniform 
distribution of the observed values is 23 seconds. This results in a much faster Sawing in reality which in 
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turn provides more sections waiting in the SectionsWaitI Queue. Other than Sawing, most of the 
other activities have estimated distributions resulting in sampling of lower values. 

 

 

Figure 4: Comparison of results obtained from the real-world experiment, and the output of static and data-
driven simulation models. 

 Regardless of the reasons for any discrepancy between the extracted and estimated activity durations, 
the very fact that any difference in activity durations can substantially change the simulation output statistics 
verifies the significance of having more realistic simulation models through data-driven input modeling.      

9 SUMMARY AND CONCLUSIONS  

In this paper, a complex operation involving multiple interactions between human workers performing 
construction activities was described and modeled in DES using process-level data collected from the crew 
in real time. Sensory data consisted of accelerometer and gyroscope data and were collected using 
smartphones affixed on workers’ upper arms. Activities performed by the workers were then recognized 
and classified using the supervised machine learning classifiers. Following activity recognition, 
corresponding activity durations were extracted and probability distributions were fit to the extracted 
durations. Moreover, these durations were compared to the values observed in the real world experiment to 
confirm their fidelity. Extracted activity durations were then fused into a data-driven DES model created 
based on the experiment design in order to compare the results against those of a similar but static simulation 
model with estimated values for activity durations. 

Analysis of the output obtained from the two simulation models with respect to five quantifiable 
measures (i.e. average waiting times of the entities in four Queues namely SectionsWaitI, 
SectionsWaitII, WorkersW2&W3WaitI, and WorkersW2&W3WaitII, as well as the total 
operation time) revealed that the data-driven simulation model created based on the knowledge (i.e. activity 
durations) extracted by the developed activity recognition framework outperforms the static simulation 
model created based on estimated activity durations. Considering the fact that often times the common 
practice in creating construction simulation models is using historical (secondary) information and 
subjective assumptions in designing model attributes, obtaining results in close agreement with reality 
reaffirms the significance of substituting this traditional approach in creating simulation models with a more 
robust and reliable data-driven and knowledge-based methodology that was described in this paper.  
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10 FUTURE WORK 

Future work of this study includes incorporating positional data using smartphone built-in global 
positioning system (GPS) sensors to further improve the accuracy of activity recognition and enrich the 
extracted contextual knowledge. Another potential direction for future work in this area will be to explore 
whether the results achieved so far can be used for automatically extracting process knowledge such as 
activity durations and precedence logic for the purpose of ubiquitously updating and maintaining simulation 
models in true real time.  Another branch of future work is automated identification and analysis of unsafe 
workers’ postures in physically demanding construction activities. Work-related Musculoskeletal Disorder 
(WMSD), back, knee, and shoulder injuries are among the most common injuries that can be prevented or 
reduced by complying with Occupational Safety and Health Administration (OSHA) or the National 
Institute for Occupational Safety and Health (NIOSH) standards and rules (NIOSH 2015; OSHA 1990).    
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