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ABSTRACT

Network packet classification is the central building block for important services such as QoS routing and

firewalling. Accordingly, a wide range of classification schemes has been proposed, each with its own

specific set of characteristics. But while novel algorithms keep being developed at a high pace, there

barely exists tool support for proper benchmarking, which makes it hard for researchers and engineers to

evaluate and compare those algorithms in changing scenarios. In this paper, we present the Classification

Algorithm Testing Environment (CATE). CATE consistently and reproducibly extracts the key performance

characteristics, such as memory footprint and matching speed, for a predefined set of classification algorithms

from a highly customizable set of benchmarks. In addition, we demonstrate that CATE can be used to gain

new insights on both the input parameter sensitivity and the scalability of even well-studied algorithms.

1 INTRODUCTION

Packet classification is an essential part of various services in today’s packet-switched networks, such as

firewalling, policy routing, intrusion detection, and traffic rate limiting (Taylor 2005). In order to fulfill

its task, each of these services relies on a classification sub-system, which maps certain header fields of

each incoming network packet to a previously defined rule. Once the matching rule for a current packet

has been detected, the system knows how to further process the packet. As a simple example, consider a

firewall which is used to regulate the traffic entering or leaving a protected subnet. According to the rule

set specified by Table 1, the firewall can decide for each inspected packet whether it should be forwarded

or discarded.

Although the task of packet classification sounds simple at a first glance, it is generally difficult to

classify packets at high rates (Gupta and McKeown 2001). The reason for this is twofold: on the one

hand, there may be only a small time frame to process incoming packets in the worst case, e.g., 12.8 ns

Table 1: A simple example for a firewall rule set with four rules.

Rule Source IPv4-Address Destination IPv4-Addr. Protocol Source Port Dest. Port Action

1 10.42.0.1/16 10.42.0.17/32 TCP * 80 Allow

2 10.42.0.17/32 10.42.0.1/16 TCP 80 * Allow

3 167.1.0.0/24 10.0.0.0/8 UDP [1025:65535] * Allow

4 * * * * * Drop
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for a 40 Gbps link. On the other hand, the amount of work per packet increases as the rule set size grows,

which, for instance, happens due to an increasing number of hosts in a network (Vamanan et al. 2010).

According to the importance and difficulty of the packet classification problem, over the past years

a considerable amount of research on the development and optimization of classification algorithms was

conducted (Lakshman and Stiliadis 1998, Srinivasan et al. 1999, Gupta and McKeown 2000, Woo 2000,

Gupta and McKeown 2001, Taylor 2005, Kirsch et al. 2010). Each of the proposed algorithms has its own

unique set of advantages and drawbacks, and may or may not be applicable for a specific use case which

requires packet classification. Therefore, researchers or engineers, who are active in this domain, are faced

with the following questions:

• Which concrete algorithm should be selected for a specific target application?

• Do the algorithms scale with the input parameters dictated by the target application, such as rule

set sizes, rule set structures, or the number of regarded header fields?

• What happens in case of a major change of a certain input parameter?

In order to answer these questions, we propose the Classification Algorithm Testing Environment (CATE).

CATE is a benchmarking framework with the goal to extract the relevant key properties, such as classification

performance, memory footprint, and preprocessing time, from a set of regarded classification algorithms on

top of general purpose CPUs. This is done by running each regarded algorithm against a customizable set

of benchmarks, which exposes those properties and allows for detailed subsequent inspection. Moreover,

CATE defines a standard interface for common tasks in packet classification, such as setting rule sets and

classifying packet headers, that each regarded algorithm has to provide. Finally, CATE provides a fully

scriptable front-end by employing the Lua language as its configuration language. The main contributions

of this paper are:

• the introduction of CATE, an extensible and general-purpose benchmarking framework for packet

classification algorithms,

• the evaluation of four of the most well-known classification schemes, namely linear search, bit

vector search, HiCuts, and tuple space search within CATE, and

• new insights into the sensibility of the evaluated algorithms to substantial changes in the input

parameters.

CATE is publicly available as open source code on the project’s website (CATE Project Website 2015).

The remainder of this paper is organized as follows: Section 2 introduces the packet classification

problem and motivates the need for benchmarking tool support. Section 3 describes the architecture of the

CATE framework. In Section 4, we briefly outline four of the most well-studied classification algorithms

are briefly outlined, which are evaluated in Section 5 with a particular focus on their input parameter

sensitivity. Next, related work is reviewed in Section 6, and finally, Section 7 concludes this paper.

2 PROBLEM STATEMENT

In this section we review the packet classification problem, which is defined as follows: let Hj be the

domain of possible header values for the j-th header field of a network packet, j ∈ {1, . . . ,d}. Given a

tuple of header values P = (h1, . . . ,hd) with h j ∈ Hj and an ordered list of rules (which is called rule

set or classifier) R = (R1, . . . ,Rn), the goal is to determine the smallest index i ∈ {1, . . . ,n} such that rule

Ri matches on H. Here, a rule Ri consists of d checks ci
j such that Ri = (ci

1, . . . ,c
i
d). Each check ci

j is

a function that maps elements from Hi to the Boolean space {true, f alse}. Rule Ri matches the header

values P iff the predicate ci
1(h1)∧ . . .∧ ci

d(hd) holds. In practice, the checks ci
j are often simple equality,

range, or prefix checks on unsigned integers (Lakshman and Stiliadis 1998, Gupta and McKeown 2001).

For example, rule no. 3 in Table 1 is defined by two prefix checks for the IPv4 source and destination

fields, one equality check for the transport layer protocol, and two range checks for the port fields (the

wildcard symbol ”*” means the entire domain for the corresponding field).

3038

http://gusew.github.io/cate


Gusew, Hager, and Scheuermann

The total number of fields per packet d as well as the numerical limits of each field Hi are defined by the

application (and, of course, by the used protocols). For the example in Table 1, we have d = 5, H1 = H2 =
{0, . . . ,232 − 1},H3 = {0, . . . ,255},and H4 = H5 = {0, . . . ,216 − 1}. This is also known as the common

five-tuple (Waldvogel 2000, Taylor 2005, Ramaswamy and Wolf 2006, Taylor and Turner 2007, Kirsch

et al. 2010). In the following, we refer to the packet header structure by the term field structure.

The field structure dictated by an application which employs packet classification has a major impact on

classification performance, preprocessing time, and storage requirements of classification algorithms (Gupta

and McKeown 2001). However, many well-known algorithms were originally only evaluated against the

five-tuple structure (Srinivasan et al. 1999, Gupta and McKeown 2000, Singh et al. 2003, Vamanan et al.

2010), which brings up the question how the performance characteristics adapt to changes in the field

structure. In fact, it has been observed that some algorithms suffer from severe performance penalties and

require significant changes when being applied in the context of the OpenFlow standard, which uses at

least twelve different header fields (Stimpfling et al. 2013). The CATE framework proposed in this work

can be used to detect such cases, because it provides built-in support for almost arbitrary field structures,

as we will demonstrate in Section 5.

3 CLASSIFICATION ALGORITHMS TESTING ENVIRONMENT

The CATE framework is a C++ application with the goal to measure the performance characteristics and

the scalability of packet classification algorithms. As such, a packet classification engine is simulated in

software, without transmitting data over a virtual or physical network interface. Thus, we intentionally

exclude any I/O components from the performed measurements in order to concentrate on only the algorithmic

properties of the benchmarked classification schemes. In order to perform a simulation, a user must supply

two inputs to CATE: a C++ implementation of the algorithms to be analyzed, and a Lua script that defines

(1) which algorithms should be analyzed, (2) which algorithm-specific parameters should be used for each

algorithm, and (3) which field structures, rule sets, and header traces should be used for the simulated packet

classification process. We intentionally decided for a white-box approach where the algorithm must be

provided as source code. We base this decision on the following two facts: first, an unknown, but potentially

high fraction of the work performed by a black-box algorithm could be comprised of I/O operations. Second,

there would be a communication overhead between the CATE framework and the inspected black box.

Thus, it would be necessary to subtract this overhead from the obtained total execution time of such a

black box in order to achieve precise classification times. This, however, is impractical, as the overhead

can hardly be quantified. Of course, there is also I/O and management overhead in the white-box approach,

but in contrast to the black-box approach it can be identified and can almost completely be excluded from

the measurement results, as we demonstrate in our evaluation. Furthermore, extracting the exact sizes of

the individual data structures used for classification is a very cumbersome task in the black-box scenario

because even a rough description of these data structures may not be given.

Figure 1 provides an overview of CATE’s core components. For each benchmark execution, CATE’s

configuration interpreter processes the provided Lua script and builds a data structure which is used by

the benchmark executor in order to set up and run all simulations. In order to measure an algorithm’s

key characteristics, a chronograph manager collects and organizes measured time spans and a memory

trace manager logs memory allocations and accesses of traced variables during a simulation run. Both is

realized by manual code instrumentation, so that the user can decide about granularity and scope of the

measurements. While an automatic code instrumentation could also be supported by defining (1) a set of

concrete objects for which the memory usage is traced, and (2) certain scopes for which the time spans

are measured, this practice would impose restrictions on programmers which might outweigh its benefits.

For time duration measuring, dedicated function calls (start and stop) are inserted in an algorithm’s source

code. If a variable is enclosed in a code instrumentation construct, memory metering functionality for this

variable is provided by utilizing class inheritance and C++ template techniques. Type implementation of

the traced variable is therefore enriched at compile time so that the allocation and de-allocation, as well
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as all reading and writing accesses to the variable can then be logged at runtime. Of course, if time spans

and memory usage are measured concurrently, the obtained time durations can turn out to be higher than

without activated memory metering. We evaluate and discuss this effect in Section 5.3.

Figure 1: Overview of CATE’s software components and their interactions.

The framework itself is separated by design from implementations of classification algorithms. On

this account, the object code of each benchmarked classification algorithm is dynamically loaded by the

algorithm loader module. Therefore, users can add, delete, or modify an algorithm implementation by

utilizing CATE’s generic data primitives without the need to recompile the entire framework. The connection

of the framework to implementations of classification algorithms is an interface with a small number of

member functions, namely

• setRules for setting a rule set,

• setParameters for defining specific algorithm parameters,

• classify for classifying packet headers,

• updateRule for adding, modifying, or removing a rule during a benchmark run.

Results are collected during all test runs and are evaluated afterwards by an evaluation and statistics

module. It calculates specific values, for example mean, median, and standard deviation values by taking into

consideration all repetitions of the same benchmark. When all simulation runs are completed, documents

with summaries of each benchmark are generated, together with raw data to enable a custom analysis of

certain characteristics that are not covered by the framework.

In its current version, CATE supports the execution of packet classification algorithms on general-

purpose CPUs. Therefore, running the benchmark executor on specialized hardware, such as GPUs or Field

Programmable Gate Arrays, is currently not possible. These architectures require very different time and

memory measurement techniques. However, in such scenarios, certain CATE modules could still be used

to generate test data sets for benchmark execution or to analyze and visualize obtained measurement data.

In Listing 1, we show an exemplary Lua script which could be used in order to benchmark the HiCuts

algorithm. Two parameters specific to HiCuts are defined in line 2 and the common five-tuple is specified

as the field structure in line 3. Next, in lines 5 to 15, a rule set consisting of two rules which correspond

to rules no. 1 and no. 4 in Table 1, is created. In lines 17 to 21, a header trace of two example headers is

specified. Finally, the benchmark is registered in line 24.

The main advantage of using Lua lies in variability and power available for the user. For instance, rules

or header traces can also be composed programmatically or read from a file. Furthermore, an extensive

benchmark can contain many different algorithms, each with its own set of specific parameters, a huge

number of rule sets as well as header traces, and different field structures. CATE’s scriptable front-end

allows to break down this complexity to a single Lua script with a few nested loops.
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1 −− S p e c i f y HiCuts a l g o r i t h m w i t h cus tom p a r a m e t e r s ( b i n t h and space f a c t o r )

2 a l g = c r e a t e A l g o r i t h m ( ” H i C u t s 5 t p l . s o ” , { 16 , 3 . 0 } )

3 s t r c = {32 , 32 , 8 , 16 , 16} −− b i t s per f i e l d : IP , IP , p r o t o c o l , por t , p o r t

4

5 r u l e s e t = c r e a t e R u l e s e t ( ) −− S p e c i f y a r u l e s e t

6 a d d R u l e T o R u l e s e t ( r u l e s e t , { −− 1 s t r u l e

7 r u l e A t o m P r e f i x ( i p v 4 T o i ( ” 10 . 4 2 . 0 . 1 ” ) , maskToi ( 1 6 ) ) , −− 10 . 4 2 . 0 . 1 / 1 6

8 ru l eAtomExac t ( i p v 4 T o i ( ” 10 . 4 2 . 0 . 1 7 ” ) ) , −− 10 . 4 2 . 0 . 1 7 / 3 2

9 ru l eAtomExac t ( 6 ) , −− TCP

10 ruleAtomRange ( 0 , 0xFFFF ) , ru l eAtomExac t ( 8 0 ) } ) −− p o r t s

11 a d d R u l e T o R u l e s e t ( r u l e s e t , { −− 2nd r u l e

12 r u l e A t o m P r e f i x ( 0 , maskToi ( 0 ) ) , −− IP s r c .

13 r u l e A t o m P r e f i x ( 0 , maskToi ( 0 ) ) , −− IP d e s t .

14 ruleAtomRange ( 0 , 0xFF ) , −− p r o t o c o l

15 ruleAtomRange ( 0 , 0xFFFF ) , ruleAtomRange ( 0 , 0xFFFF ) } ) −− p o r t s

16

17 h d r s = c r e a t e H e a d e r s e t ( ) −− S p e c i f y p a c k e t h e a d e r s

18 addHeade rToHeade r se t ( hdrs , −− 1 s t header

19 { i p v 4 T o i ( ” 10 . 4 2 . 1 4 . 1 9 ” ) , i p v 4 T o i ( ” 10 . 4 2 . 0 . 1 7 ” ) , 6 , 5994 , 80} )

20 addHeade rToHeade r se t ( hdrs , −− 2nd header

21 { i p v 4 T o i ( ” 10 . 4 2 . 0 . 4 ” ) , i p v 4 T o i ( ” 10 . 4 2 . 0 . 1 7 ” ) , 6 , 3724 , 8080} )

22

23 −− Combine a l l e l e m e n t s t o a benchmark c o n f i g u r a t i o n

24 r e g i s t e r B e n c h m a r k ( ” HiCuts , 10 r u n s ” , a lg , s t r c , r u l e s e t , hdrs , 10)

Listing 1: Small example of a Lua script in CATE with two rules and two headers.

4 CLASSIFICATION ALGORITHMS

Before we dive into the evaluation of the CATE framework, in this section we briefly familiarize the

reader with some of the most prominent packet classification schemes which were analyzed with CATE.

As proposed by Taylor (2005), classification techniques can be subdivided in four generic groups, namely

exhaustive search, decomposition, decision tree and tuple space, as depicted in Figure 2.

Linear Search The linear search is an instance of the exhaustive search techniques and the most

straightforward packet classification technique. As the name suggests, this algorithm searches all rules in

a rule set linearly according to their priority, until the first matching rule is found. While the search can be

parallelized using adequate hardware components, such as GPUs or TCAMs (Taylor 2005, Varvello et al.

2014), a software implementation running on a general purpose CPU has a time and space complexity of

O(dn). This linear relation of search time with rule set size has lead to the development of more sophisticated

algorithms with better search time complexity, but usually at the price of higher space requirements.

Bit Vector Search The bit vector scheme is a decomposition technique, which reduces the d-

dimensional packet classification problem to d one-dimensional binary searches, followed by a subsequent

combination step (Lakshman and Stiliadis 1998). For each dimension j, each of the binary searches yields

a bit vector of n bits. Here, bit i in vector j indicates whether rule i could be a possible match in dimension

j. Next, the index of the first matching rule is computed by combining all found bit vectors by bitwise

AND operations to a result vector. The index of the first matching rule corresponds to the index of the

most significant set bit in the result vector. Although the bit vector search performance is still linear due

to the search for the most significant bit, in practice it can exploit bit-parallelism because many operations

can be encoded into a single instruction (e.g., the bitwise ANDs) on a machine-specific word width (e.g.,

32 or 64). The good search performance comes at the cost of memory requirements which are quadratic

in the number of rules. However, we will show in Section 5 that the bit vector space usage tends to be

linear if the rule set contains many rules with wildcarded checks.

HiCuts Decision tree algorithms, such as HiCuts, exploit the geometric view of the rule set, which

is a collection of d-dimensional hypercubes, and transform the rules into one or several multi-dimensional

search tree structures (Gupta and McKeown 2000, Singh et al. 2003, Vamanan et al. 2010). A decision tree

3041



Gusew, Hager, and Scheuermann

Figure 2: A categorization of classification algorithms (based on Taylor (2005)).

is constructed recursively by firstly creating a single root node which contains the entire regarded rule set.

Then, the node is cut along one or several dimensions in order to create child nodes which each contain

only a subset of the rule set. This procedure terminates when the number of rules in the current node is

lower than a predefined threshold. Given a packet header, a decision tree is traversed until a leaf node is

reached, whose rules are then searched linearly. In general, decision tree approaches to packet classification

are considered to be extremely fast during packet classification, but also very memory-intensive (Gupta

and McKeown 2001, Vamanan et al. 2010). We confirm this in Section 5 for the HiCuts algorithm, which

yields the best classification performance, but also the largest and most unpredictable memory requirements

in comparison to the other three algorithms regarded in our evaluation. Furthermore, we demonstrate that

HiCuts appears to scale very well with an increasing number of regarded header fields, in contrast to every

other approach investigated in this work.

Tuple Space Search Tuple space search partitions the rule set based on certain rule properties into

a group of equivalence classes, so-called tuples (Srinivasan et al. 1999). Each tuple can be searched

efficiently with an adequate technique, such as hashing. Hence, the first matching rule can be found by

probing each tuple and returning the smallest matching index i. The classification performance as well as

the space requirements depend on the concrete search scheme used to probe the tuples. The performance

gain of tuple space search is based on the assumption that the number of tuples is far less than the number

of rules. In fact, our evaluation confirms that the performance of tuple space search heavily depends on

the structure of the rule set.

5 EXPERIMENTS AND EVALUATION

In this section, we present three different simulation scenarios: First, we measure and analyze the probe

effect imposed on measured time durations for activated memory usage metering in order to evaluate

our proposed framework CATE. Second and third, we examine the influence of changes in the input

parameters of the four previously discussed example classification algorithms and obtain new insights into

their sensitivity.

5.1 System Setup

All simulation runs were executed on an x86 Intel i5 M430 CPU with 2.27 GHz and Linux 3.13. The

operating system runs in a virtual machine (32 bit) to limit the amount of RAM to 1024 MB and to enforce

single core operation. To avoid side effects, all other active processes and users were excluded from the

system during execution. Even though we took care to exclude external influences as far as possible,

system interrupts or intransitive operating system scheduling actions may influence to some extent the

measured time durations. Therefore, we configured CATE to repeat time measurements eight times per

simulation. The arithmetic mean with a corresponding standard deviation is calculated. Memory results

are, in contrast, independent from the number of repetitions, because all four algorithm implementations

are strictly deterministic so that no statistical fluctuations can occur.
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5.2 Rule Sets and Headers

We use ClassBench, as introduced in (Taylor and Turner 2007), to generate synthetic rules for rule sets

and the corresponding headers. ClassBench is a tool specialized on the common five-tuple, and is provided

with a collection of seed files which contain a sophisticated representation of real rule sets’ characteristics.

We employ the publicly available seed files fw1 and acl1 of firewalls and access control lists (Song,

H. 2007), and vary the sizes for the generated rule sets from 200 to 5000 rules in steps of 200. In all

simulation configurations, 100,000 headers are classified. In the following subsections, we refer to both

types of the generated synthetic rule sets and the corresponding headers by fw1 N and acl1 N, with

N ∈ {200,400,600, ...,5000}.

5.3 Measuring the Probe Effect

As described in Section 3, the CATE framework is intended to extract the key performance characteristics

of classification algorithms. In general, CATE is able to collect three different types of quantities: time

spans, memory footprints, and memory access patterns. We found that these three types of quantities

are sufficient to measure all common performance characteristics of interest, including classification time,

preprocessing time, and memory requirements. However, in order to extract the memory access pattern

of a data structure used by a classification algorithm, such as, for instance, a decision tree, it is necessary

to instrument the data structure in such a way that it logs memory allocations as well as read and write

operations. Unfortunately, this inevitably leads to runtime overhead due to counter updates which, in turn,

deteriorates the measurements for time durations, such as classification and preprocessing time. Hence, to

achieve the most accurate measurement results, the classification code must be instrumented differently for

each regarded performance aspect, which leads to code duplication. For example, in order to measure the

most accurate classification time, no logging of memory operations must be performed concurrently and

therefore, all memory logging primitives must be removed from the code in advance. While subtracting the

duration of all memory operations from the measured overall classification time would lead to equivalent

results in theory, this is hard to realize in practice: memory operations are performed very frequently

and thus the cumulative time duration of all memory operations would be significantly distorted due to a

necessarily limited precision of the time measurements.

CATE solves this problem by supporting a deactivation of logging memory accesses and allocations

through a preprocessor directive. Although a small fraction of additional instrumentation code is still

compiled into the executable, we will show in our results that the induced overhead is very small when

compared to code without any instrumentations for memory measurements. Therefore, CATE enables the

usage of the same piece of code for measuring time durations as well as memory access patterns.

In the remainder of this section, we quantify and evaluate the imposed overhead between the activated

memory measuring state (on), the disabled mode by a preprocessor directive (off ), and the clean state which

is achieved by manually removing all instrumentations for logging memory operations. For each activation

state, we will execute the classification of the fw1 2000 rule set with a five-tuple field structure. Here,

we are only interested in the measured classification times and expect to observe highest duration values

for activated memory metering activation state. The values for deactivated metering should be lower, and

minimum values are expected for time durations when executing cleaned code.

Figure 3a shows the measurements for the mean classification duration of each combination of an

algorithm with a memory metering activation state. For all time measurements, we show error bars with

95% confidence intervals. The probe effect is well noticeable when comparing the classification duration

measurements for the enabled (on) and disabled (off ) scenario. Between the disabled scenario and the

cleaned code, we observe only small differences of at most 0.94 percent.

In addition, Figure 3b shows the classification performance of each regarded algorithm in relation

to the linear search, grouped by the activation states. It can be seen that the differences between the

performance relations of the disabled (off ) and cleaned (clean) scenarios are negligibly small. Indeed, the
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Figure 3: Measurement results for analyzing the probe effect.

highest observable deviation was only 2.04 percent points for the bit vector scheme. In contrast, there is a

clear difference of the relation between tuple space search and the other three algorithms in the on scenario,

when compared to off and clean states. In summary, we conclude that the manual effort of cleaning an

algorithms implementation code from instrumentation is not rewarded by significantly more accurate time

measurements. Hence, in the following sections, we capture memory usage results with activated memory

metering functionality and in order to perform time measurements, we disable memory metering by the

preprocessor directive.

5.4 Variation of the Rule Set Size

In this section we vary the sizes of rule sets and measure time durations and memory usage in order to

compare the performance of all four algorithm implementations. To this end, we use the rule sets fw1 200

to fw1 5000 and acl1 200 to acl1 5000. The field structure is the common five-tuple.

As the rule set size increases, more rules potentially need to be checked for each incoming packet

header. The search effort therefore generally increases for all of our example algorithm implementations,

as the time complexity of each of them depends on the total number of rules in the rule set. We expect

to observe this in the data with classification time durations. Also, allocated memory space is expected to

increase, for example linearly for linear search and quadratically for the bit vector.

We present the results in Figure 4. In Figure 4a, the mean classification durations per processed header

for each algorithm and rule set size for fw1 are depicted. We show measurements of allocated memory

for all algorithms in Figure 4b and to facilitate comparisons between the memory allocations of the linear

search and the bit vector algorithm, we depict the results separately on linear vertical axes in Figure 4c.

Analogical results for the acl1 rule sets are presented in Figure 4d to Figure 4f.

Figures 4a and 4d indicate that the linear search performs worst and HiCuts performs best for each rule

set size. The bit vector and tuple space search lie in between, with linearly increasing mean classification

durations per header for increasing rule set sizes. For the acl1 rule sets, tuple space search performs far

better than for the fw1 rule sets, as we see in Figure 4d compared to Figure 4a. It can even outperform

the bit vector for acl1, which is due to a lower number of tuples in the acl1 rule set structure than in

fw1. For instance, we counted 26 tuples in acl1 4000, in contrast to 420 tuples in fw1 4000.

Figure 4b indicates that linear search allocates the lowest amount of memory, as expected. HiCuts has

a space usage which is of magnitudes higher than of the other three algorithms, mainly due to its complex

decision tree structure and the duplication of rules during the tree construction process. This is visible

in Figure 4b as well as in Figure 4e. On the other hand, HiCuts outperforms other algorithms in terms

of classification time, as depicted in Figures 4a and 4d. Furthermore, Figures 4b and 4e suggest that the

size of the created HiCuts decision trees strongly depends on the structure of the rule set, and that HiCuts’

memory allocation is difficult to estimate in advance.
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Figure 4: Measurement results for the variation of the rule size.

Interestingly, Figures 4c and 4f indicate that memory allocation by the bit vector scheme follows a

linear trend, in contrast to the expected quadratic increase. This behavior can be explained by the huge gap

in the number of wildcards between the fw1 and acl1 rule sets: e. g., fw1 4000 contains 449 wildcard

checks, whereas acl1 4000 contains only 22 wildcard checks. In fact, the number of wildcards in rules

has an impact on the constructed search structure of the bit vector algorithm. The more rules in a rule set

have a wildcard in the same field, the lower is the amount of memory allocated, as multiple rules which

are wildcarded in the concerning dimension can share the same bit vector. This finding indicates that

the rule set structure has a strong influence on the memory footprint of the bit vector algorithm. Thus, a

classification realized by the bit vector scheme may exhibit the same space requirements as a linear search

if the used rule set contains a high number of wildcards, but offers far better performance.

5.5 Variation of the Field Structure

In the previous experiments, we used the common five-tuple as the field structure, according to many

previous works in this domain (Srinivasan et al. 1999, Gupta and McKeown 2000, Singh et al. 2003,

Vamanan et al. 2010). However, many recent applications demand more complex field structures. For

instance, the OpenFlow standard specifies at least twelve regarded header fields (Stimpfling et al. 2013).

This opens up the question how existing packet classification schemes scale with an increasing number

of relevant header fields. Therefore, we evaluated memory usage and classification performance for three

different synthetical field structures, namely a two-tuple with two 32 bit values, a four-tuple with four

32 bit values, and a ten-tuple with ten 32 bit values. The rule sets and header sets were created by the

concatenation of multiple ClassBench output files with the fw1 seed file and a size of 2000 rules.

In general, we expect the classification performance to decrease with increasing number of header

fields, as more checks have to be performed for each processed header. Similarly, the memory footprint

of the used classification algorithms should increase due to an increase in the number of checks per rule.

The results of this experiment are presented in Figure 5. Figures 5a and 5b show the mean durations per

header as well as the memory footprints of the allocated data structures per algorithm for the different field

structures, respectively. As expected, the mean classification duration values of all algorithms are lower
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Figure 5: Measurement results for different field structures (2-, 4- and 10-tuples), grouped by algorithms.

for the two-tuple measurements than for the four- or ten-tuple. However, Figure 5a reveals that HiCuts’

classification performance decreases much less than those of the other three algorithms.

When it comes to the memory footprint of the allocated search structures, as shown in Figure 5b, we

observe a similar trend: while the memory requirements increase for the linear search, bit vector search,

and tuple space search, HiCuts’ memory footprint significantly decreases with an increasing number of

header fields. The reason for this behavior seems to be that during tree construction, the HiCuts algorithm

has more degrees of freedom for choosing the optimal dimension to cut, which leads to a more compact

decision tree. Therefore, HiCuts is the only algorithm in our evaluation where we could observe a positive

impact on the memory footprint with an increasing size of the field structure.

As far as we are aware, similar investigations of the impact of different field structures on classification

performance and space usage have not been done before. We note that the field structure can have great

influence on the performance and memory usage characteristics of an algorithm.

6 RELATED WORK

As network packet processing is a performance-critical task in switches, routers, firewalls, and other

networked systems, the research community has proposed a large body of benchmarks in this area of

application. CommBench (Wolf and Franklin 2000), NetBench (Memik et al. 2001), and NpBench (Lee

and John 2003) are benchmarks which aid in the analysis and design of network processors. Similarly,

PacketBench (Ramaswamy and Wolf 2006) is a benchmark for generic packet processing applications. While

these works consider network packet classification as one possible generic use case, they do not address

the specific properties of classification algorithms. In contrast, the CATE framework is entirely specialized

on the analysis and comparison of classification schemes and thus is able to measure and extract the key

performance characteristics of classification schemes in a user-specified resolution. The ability to measure

both execution times and memory footprints concisely in an algorithm-centric way distinguishes CATE from

general-purpose profiling tools such as valgrind (Nethercote and Seward 2007) or DTrace (Cantrill

et al. 2004). Although these tools can be used for performance and/or memory measurements, it is often

hard to clearly map their output data to specific parts of the analyzed classification algorithm.

Of course, many previous works compared different performance aspects of a wide variety of clas-

sification algorithms (Singh et al. 2003, Vamanan et al. 2010, Varenni et al. 2005, Sahasranaman and

Buddhikot 2001, Stimpfling et al. 2013). In order to do so, the authors had to implement their own specific

benchmarking toolchains in order to conduct experiments, which is a tedious and cumbersome work. CATE

is intended to help researchers and engineers in such use cases, where the specific characteristics of one

or several classification algorithms must be analyzed or compared. It does so by providing a standardized

interface for custom algorithm implementations and integrated techniques for measuring the performance

of an algorithm. Furthermore, CATE generates summaries with statistical evaluations for each benchmark,

as well as it produces data sets with measured raw data for further manual investigations.
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The tools which are most closely related to CATE when it comes to packet classification benchmarks

are ClassBench (Taylor and Turner 2007) and FRuG (Ganegedara et al. 2010). Their functionality, however,

is orthogonal to CATE, as ClassBench and FRuG generate rule sets which can be used as input parameters

to classification algorithms. In contrast, CATE implements a highly configurable runtime environment for

the performance analysis of classification algorithms.

7 CONCLUSION

In this paper we presented CATE, a flexible benchmarking framework for packet classification algorithms

targeted at general purpose CPUs. CATE allows to precisely measure the key performance characteristics

of the evaluated algorithms, such as classification speed, memory usage, and preprocessing time, at a

user-specified level of granularity. The benchmark runs performed within CATE are highly customizable

because each benchmark configuration is specified as a Lua script. In addition, the CATE framework

supports header field structures of an almost arbitrary user-specified format in order to open up a new

degree of freedom in the evaluation of classification schemes. The CATE framework as well as an initial

library of algorithm implementations are publicly available (CATE Project Website 2015). We plan to

extend the algorithm library in the future and openly invite researchers to use the provided infrastructure.

We evaluated CATE by measuring the performance characteristics of four of the most well-studied

classification algorithms, namely linear search, bit vector search, HiCuts, and tuple space search. During

the measurements we put particular emphasis on the sensitivity of those algorithms to changes in the input

parameters, such as the structure of the used rule sets and the number of header fields, which lead to

interesting results: first, we find that the classification performance of tuple space search is far more sensitive

to the rule set structure than the performance of all other discussed algorithms. Second, we measured that

the memory usage of the bit vector algorithm decreases with an increasing number of wildcarded fields in

the used rule set, which is contrary to HiCuts’ space requirements. Finally, we observed that while HiCuts

provides the best classification performance at the cost of the highest and most unpredictable space usage,

it is the only algorithm in our evaluation whose time and space properties scale well with an increasing

number of header fields.
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