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ABSTRACT 

In this paper we compare two production planning formulations in a rolling horizon setting. The first is 
based on fixed lead times that are a multiple of the period length, while the second uses non-linear 
clearing functions. A scaled-down simulation model of a wafer fab is used to assess the performance of 
the two formulations. We examine the impact of the planning window and period length on the 
performance of the production planning formulations. The performance advantage of clearing functions 
that is observed in a static setting can be also observed in a rolling horizon setting.  

 

1 INTRODUCTION 

Manufacturing integrated circuits on silicon wafers is one of the most complex manufacturing processes 
in use today. A diverse product mix that changes over time, reentrant process flows, many different 
machines with quite different performance characteristics and a high number of lots (the basic units of 
production control in semiconductor manufacturing) are typical for this type of production (Mönch et al. 
2013). Production planning in these manufacturing facilities, known as wafer fabs, tries to fulfill demand 
by planning the quantities of material released into the fab over time to minimize costs.  

The flow of material through capacity-constrained production facilities involves substantial delays due 
to queueing for congested resources. The average cycle time of the overall process can be of the order of 
several weeks in advanced wafer fabs (Mönch et al. 2013). Therefore, production planning formulations 
for wafer fabs must explicitly consider these delays. The estimates of cycle times used in production 
planning formulations are called lead times. Production planning formulations based on fixed lead times 
are discussed by Johnson and Montgomery (1974), Missbauer and Uzsoy (2010), and Voss and Woodruff 
(2003), among others.  

Many planning systems in current use are based on the widely used Manufacturing Resource Planning 
(MRP II) approach (cf. Hopp and Spearman 2008), which uses deterministic lead time estimates as 
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exogenous parameters. The estimation of lead times for use in production planning models is far from 
trivial. Underestimating lead times will cause work to be released too late, resulting in underutilized 
resources and late delivery to customers. Overestimating lead times, on the other hand, will cause high 
work in progress (WIP) levels with the associated inventory costs, limiting the firm's ability to react to 
demand changes in a timely manner. Long lead times may also result in additional costs due to higher 
safety stock levels. We know from queueing theory and simulation models that cycle times increase in a 
nonlinear manner with increasing resource utilization. The resource utilization, however, is determined by 
the work release decisions that are a result of the planning process. Due to this circularity, cycle times 
need to be treated as an output of the planning process, rather than an input. 

Researchers have recently begun to address the problem of production planning with workload-
dependent lead times (cf. Asmundsson et al. 2006, Pahl et al. 2007, Asmundsson et al. 2009, Missbauer 
and Uzsoy 2010, Kacar et al. 2013a, among others). In this paper, we assess the performance of a 
production planning model with fixed lead times and a second model with workload-dependent lead times 
under a wide range of operating conditions by simulating the execution of the release schedules 
determined by the models in a rolling horizon setting. Little is known with respect to the behavior of 
production planning models with workload-dependent lead times in a rolling horizon setting. 

The remainder of this paper is organized as follows. The problem setting is described in Section 2. 
This includes a discussion of related work. We then discuss the simulation environment used in course of 
the simulation experiments in Section 3. The results of the performed simulation experiments are reported 
in Section 4. 

2 PROLEM SETTING 

2.1 Planning Formulations 

We consider a finite time horizon of length T divided into discrete periods of equal length. The objective 
of the models is to determine the amount of each product to release into the wafer fab in each period so as 
to minimize the costs caused by these releases. Multiple machine types with limited capacity organized in 
work centers are considered. The first linear programming (LP) formulation that assumes fixed lead times 
is given as follows:  
 
Sets and indices 

G : set of all products 
K : set of all work centers 
t : period index 
g : product index 

k : work center index 
l : operation index  gO : set of all operations of product g    kO : set of all operations performed on machines of work center k  

 
Decision variables 

gtlY : quantity of product g completing its operation l in period t 

gtY : output of product g in period t from the last operation of its routing 

gtX : quantity of product g released into the first work center in its routing in period t 

:gtW  WIP of product g at the end of period t 

gtI : finished goods inventory (FGI) of product g at the end of period t 
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gtB : backlog of product g at the end of period t 

 
Parameters 

:gth  unit FGI holding cost for product g in period t 

:gtb  unit backlogging cost for product g in period t 

:gt  unit WIP cost for product g in period t 

:gtD  demand for product g during period t 

:kC  capacity of work center k in units of time 
:gl  processing time of operation l of product g   :, lgL  estimated time elapsing from the release of the raw material of product g to the completion of 

the operation l of product g. 
 
The first model can be stated as follows: 

min  
 


Gg

T

t
gtgtgtgtgtgt BbIhW

1

   
(1) 

subject to  
,1, gtgtgttg WYXW              for all TtGg ,,1,   (2) 

,1,1, gttggttggt DBIIY      for all TtGg ,,1,   (3) 

  lgLtggtl XY ,,  ,                    for all   gOlTtGg  ,,,1,   (4) 

  
 


Gg kOl

kgtlgl CY ,                   for all TtKk ,,1,   (5) 

0,,,,, gtgtgtgtgtlgt BIWYYX ,        for all  gOlTtGg  ,,,1,  . (6) 

 
The objective (1) to be minimized is the sum of WIP, inventory, and backlog cost over all products 

and periods. WIP variables and WIP balance constraints (2) are included to compute the WIP cost in the 
objective function. Constraint set (3) represents FGI material balance at the end of the line. Constraints 
(4) define the relation between the time a lot of product g is released into the wafer fab and its completing 
processing at operation l of product g. As soon as a lot is processed at a given operation, it becomes 
available to the next operation on its routing. Constraint set (5) ensures that the total time required to 
process all operations at each work center in a given period t does not exceed the time available at that 
work center. The model assumes that an operation consumes capacity in the period that it is processed. 
Finally, constraints (6) ensure nonnegativity of the decision variables. 

Model (1)-(6) incorporates lead time estimates. Let  lgL , be a fractional lead time estimate for 

operation l  of product g . We compute  lgL ,  by the recursion: 
           glgFFlgLlgL  1,:, , for all  ,, gOlGg        (7) 

where   0:0, gL . Here, 
gFF  denotes the flow factor of product g, defined as the ratio of the average 

time required for material started into the process to become available as FGI to the sum of the processing 
times of all its operations. FFg values are obtained from long simulation runs for a given bottleneck 
utilization. Since we estimate the integer lead times by rounding down the fractional estimates obtained 
from simulation, we refer to this model as the Simple Rounding Down (SRD) model (Kacar et al. 2012). 
In contrast to conventional fixed lead time LPs in the literature, the SRD model contains WIP variables 
and WIP balance constraints to account for WIP present in the wafer fab at the beginning of the planning 
window. An appropriate initialization of the initial WIP in the planning formulation is important. For this 
reason, the initial WIP available at a given operation at the start of period 1 is treated as initial inventory 
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that must be consumed before any newly released material can be processed. The lead times for this 
material are also modified to represent the time required for the material to transition from their initial 
location to the subsequent operations on their routings. 

Clearing functions (CFs) relate the expected output of a production resource in a planning period to 
some measure of the expected workload over that period. Early CF models had some difficulty in dealing 
with multiple products because it may be possible to create capacity for one product by holding WIP of 
another. To address this problem, Asmundsson et al. (2009) propose the Allocated Clearing Function 
(ACF) formulation where the output of the production resource is estimated using an aggregate workload 
measure and then allocated to individual products. The following additional notation is required for the 
ACF formulation: 

 
Sets and indices  kC : set of indices denoting the line segment used to approximate the CF for work center k  lK : work centers where operation l  can be performed 
 
Decision variables 

:gtlX  quantity of product g starting operation l  in period t 

:gtlW  WIP of product g at operation l  at the end of period t 
k
gtlZ : fraction of output from work center k  allocated to operation l  of product g  in period t 

 
Parameters 

:n
k  intercept of segment n  of the CF for work center k 

:n
k  slope of segment n  of the CF for work center k . 

 
The objective function of the ACF formulation and the FGI material balance constraints are the same 

as in the SRD model. The WIP balance constraints (2), the fixed lead time constraints (4), and the 
capacity constraints (5) are replaced by new constraints that explicitly represent the cycle time behavior 
of the work centers. We obtain the following additional constraints: 
 

,,1, gtlgtigtiltg WYXW                              for all  gOlTtGg  ,,,1,   (8)  ltggtlgl
n
k

k
gtl

n
kgtlgl WXZY ,1,   ,       for all      kCnlKkgOlTtGg  ,,,,,1,    (9) 

 
,1

,


 kOlGg

k
gtlZ                                                 for all TtKk ,,1,   (10)

0,, k
gtgtlgtl ZWX ,                                         for all  gOlTtGgKk  ,,,1,,  . (11)

Constraints (8) ensure the WIP balance at each work center. In constraints (9), the CF relates the 
expected output of each work center in a period to the planned load of the work center in that period. The 
output allocation among operations is modeled by constraints (10). The k

gtlZ  variables scale up the 

available workload of product g  at the beginning of period t  to approximate the total workload of all 
products in that period. This yields an upper bound on the output of product g  at work center k . In the 
ACF formulation, any initial WIP at an operation is included in the argument of the CF that determines 
the amount of output the work center can produce in a given period. We refer the reader to Asmundsson 
et al. (2009) for more details of the ACF formulation.  

We fit the CFs to empirical data obtained from a simulation model of the manufacturing system under 
consideration similar to the approach described in Kacar et al. (2013a). The simulation model is used to 
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collect observations of     ,:,:
,,
 


kOlGg

gtlgtkt
kOlGg

gtlglkt XXYY   and    
kOlGg

ltggltk WW
,

,1,:1, :  for each 

period t  and each work center k. The functional relationship between releases, initial WIP, and output ktY  
is established by dividing the resource load axis into two intervals containing an equal number of data 
points and fitting separate linear functions to the data in each segment using the linear regression function 
in SAS-OR. The third segment has a slope of zero and an intercept equal to the work center’s theoretical 
capacity limit.  

2.2 Related Work 

Leachman (2001) proposes several high-fidelity production planning formulations for wafer fabs that 
consider fractional lead times. Model formulations based on integer-valued fixed lead times and CFs are 
proposed and compared in Asmundsson et al. (2006, 2009), Kacar et al. (2012), and Kacar et al. (2013a). 
The ACF formulations outperform the fixed lead time-based formulations for a wide range of situations in 
a static setting. Kacar et al. (2013b) find that fractional lead time-based formulations significantly 
outperform the SRD formulation in a static setting, yielding performance comparable to that of ACF. 
Häussler (2014) investigates the impact of the period length on the performance of ACF formulations. 

Rolling horizon planning in supply chains is an important recent research topic (Sahin et al. 2013). 
Spitter (2005) discusses supply chain planning approaches in a rolling horizon setting. Master planning 
approaches for a simplified semiconductor supply chain are studied in a rolling horizon setting by 
Ponsignon and Mönch (2014). However, this paper assumes fixed lead times. A simulation-based 
framework is proposed that allows for executing the release schedules. An extensive literature review by 
Lin (2014) has studied the issue of schedule stability or nervousness, the repeated changes in planned 
quantities due to the replanning that occurs in the rolling horizon environment. 

Rolling horizon approaches using CFs are rarely discussed in the literature. Stampfer et al. (2013) 
consider a small hybrid flow shop containing nine work centers, while Lin (2014) considers a single stage 
production system. Process conditions like reentrant flows or batching as found in wafer fabs are not 
taken into account in both papers. Orcun and Uzsoy (2011) examine the performance of rolling horizon 
methods using fixed lead times and CFs in a simple serial supply chain, and find that the different 
planning models lead to quite different dynamic behavior in the supply chain. 

2.3 Problem Formulation 

It is known from the literature (Ponsignon and Mönch 2014, among others) that rolling horizon 
approaches allow a more realistic performance assessment of planning approaches. In some situations, the 
advantage of optimization-based approaches is much smaller in a rolling horizon setting than in static 
settings. As pointed out by Sahin et al. (2013), we need a better understanding of rolling horizon methods 
in order to achieve planning stability without compromising the quality of the production plans.  

In the present paper, we examine whether the advantage of the ACF formulation over SRD persists in 
a rolling horizon setting under different demand settings with forecast errors. We consider the expected 
profit as the main performance measure in this paper. Simulation experiments with a scaled-down 
simulation model of a wafer fab are performed to address this research question. We also investigate the 
impact of the planning window, the number of periods considered in the optimization model solved in 
each period, and the length of a planning period on the performance of the ACF formulation. 

3 SIMULATION ENVIRONMENT 

3.1 Simulation Framework 

The simulation infrastructure we use for evaluating the ACF and SRD formulations consists of planning, 
control, and execution levels. It is based on the framework for simulation-based performance assessment 
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proposed by Ponsignon and Mönch (2014). A blackboard-type data layer in the memory of the simulation 
computer is the center point of the infrastructure. It is between the planning and execution level. The 
execution level is provided by a simulation model. A stop and go approach is taken, i.e., the simulation 
stops to compute a production plan that is determined using feedback from the simulation up to that point 
in time, and the plan is then transformed into a release schedule. The simulation then proceeds to 
implement this schedule until the next production plan has to be computed along the simulation timeline 
in a rolling horizon setting. 

The production planning models and corresponding algorithms are implemented in the highest level of 
the infrastructure. The time between two consecutive planning occurrences is called the re-planning 
interval. For simplicity, we use a re-planning interval of one period. Demand fulfillment functionality is 
implemented to update the realized inventory and backlog values between two consecutive planning 
occurrences. Realized inventory, backlog, and WIP quantities from the execution level are stored in a 
blackboard-type data layer. The updates from the execution level at each planning occurrence are 
aggregated by the control level and incorporated as parameters into LP models. The LP models are 
generated based on the information stored in the data layer at the beginning of each planning occurrence 
on the planning level. The production planning algorithms determine production plans that are translated 
into lot release schedules by the control level, i.e., the lots to be released within a period are distributed 
uniformly over the period. Finally, the lot starts are triggered on the execution level and the processing of 
the corresponding lots is carried out. The infrastructure is coded in the C++ programming language, and 
the ILOG CPLEX libraries are used to solve the LP models, while AutoSched AP is used as the 
simulation engine. The overall architecture is depicted in Figure 1. 
 

 

Figure 1: Architecture of the simulation infrastructure. 

3.2 Simulation Model 

The scaled-down representation of a wafer fab described by Kayton et al. (1997) is used to simulate the 
execution of the release schedules. Reentrant process flows, batch processing machines, unreliable 
machines, and multiple products with different process flows are included in the model based on typical 
attributes of a real-world wafer fab. The model consists of eleven work centers, each with one machine 
except for work center 4 that has two machines. First in First out (FIFO) dispatching is used at all work 
centers. Three products, each with a different number of process steps, are considered. The same 
lognormal distributed processing times are used for all products and process steps at each machine. 

Instantaneous material transfer between successive process steps is assumed. Work centers 1 and 2 are 
batch processing machines with a minimum and maximum batch number of two and four lots, 
respectively. Any mix of lots can be processed as a batch. The expensive and scarce resources for the 
photolithography process in semiconductor manufacturing usually constitute the bottleneck in the fab. 
The bottleneck machines on the process flows of product 1 and 2 can be found at work center 4, while 
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that of product 3 can be found at work center 11. The batch processing machines in front of the bottleneck 
machines add variability to the arrival pattern of lots to be processed. Variability in the system is caused 
by Gamma distributions for the failures of the unreliable machines derived from work centers 3 and 7, 
which can cause starvation at the bottleneck machines. 

4 SIMULATION EXPERIMENTS 

4.1 Design of Experiments 

According to Subsection 2.3, we expect that the performance of both the ACF and SRD formulations 
depends on the planning window and the period length. We investigate a period length of one day and of 
seven days, respectively. The cycle times of the products range from around 16 hours to more than one 
day. Two different planning windows that are a multiple of the period length are studied for each period 
length. Prior to generating demand instances, simulation runs are performed to obtain mean demand 
values for one period that lead to different bottleneck utilization levels. This setting is called stationary 
load. A product mix of 3:1:1 is taken for the mean demand values. In the level load (ll) scenarios, we 
generate normally distributed demand for each product in each period to obtain the desired mean 
bottleneck utilization levels of 70% and 90% over the simulation horizon. This results in negatively 
correlated demand where the product mix in each period varies, but the average resource utilization in 
each period remains constant at either 70% or 90%, depending on the specified utilization level.  

We divide the simulation horizon into three-week subintervals in the time-varying (tv) demand load 
scenarios. For the scenarios with 90% average utilization, the utilization for each subinterval is selected to 
be either 85% or 95% with equal probability. The demand for each product is then set to achieve this level 
of bottleneck utilization. This leads to an average utilization level of 90% across all the periods. For the 
case of 70% average utilization, we set the utilization levels for the subintervals to be either 60% or 80% 
with equal probability to obtain an average utilization level of 70% across all periods. In this case the 
demands of the products are positively correlated. The demand scenarios are generated based on the level 
of resource utilization and the degree of variability that is determined by the coefficient of variation (CV). 
Demand for product g is generated for each period of the entire simulation horizon according to: 

                max,,,1,1: sk
g

k
g

k tkrMd  ,       (12) 

where max,st  denotes the length of the simulation horizon,  g
kM  the mean demand for product g in period 

k  and kr  is a realization of the normally distributed random variable  2
1 ,0~ NR  with CV . 

Because the demand is based on forecast, a demand volatility of 05.0  is used to generate the demand 
values for each period and product along the planning window of the planning occurrence nas follows:  

 

          
   





 ,,,2 if,~1

1  if,
:

max1 tttrd

td
D

nt
g

tn

g
ng

nt
    (13) 

where ntr~  is a realization of the random variable  1,0~2 NR  and maxt  the length of the planning window. 
To examine the effects of system variability, long and short machine failure durations are considered. The 
Gamma distributed Mean Time to Failure (MTTF) and Mean Time to Repair (MTTR) values in the model 
of Kayton et al. (1997) are used to represent the short failure case. The long failure case is obtained by 
doubling the MTTR and the MTTF values yielding the same average availability as in the short failure 
scenario. Different CFs are fit for each level of failure duration. Five independent instances are generated 
for each demand scenario and ten replications are performed for each instance to obtain statistically 
significant results. The design of experiments is summarized in Table 1. 

The simulation is run for 104max, st  and 182max, st  periods in case of a period length of one week 

and one day, respectively. The production plan is revised after a single period, i.e., only the first period is 
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implemented. Long simulations are executed at the beginning of the simulation experiments to take a 
snapshot of the location of lots in front of the machines. Based on this, an initial WIP distribution is 
chosen to reduce initialization effects.  

Table 1: Design of experiments. 

Factor Level Count
Planning model ACF, SRD 2 

Period length (days) 1, 7 2 
Planning window (periods) 7, 15 2 

Mean utilization over horizon low, high 2 
Utilization over time stationary load, level load, time-varying load 3 

CV 0.1, 0.25 2 
Machine failures short, long 2 

Mean demand scenarios  5 
Simulation replications per demand scenario  10 

Total simulation runs  9600 
 

The realized profit is used for performance assessment. The unit revenue value is 60, while the unit 
backlog, WIP, and inventory costs per week are 50, 35, and 15, respectively. All experiments are carried 
out on a computer with 3.6 GHz Intel Core(TM) i7-4790 CPU and 16GB RAM. The computing times for 
SRD are, depending on the planning window, up to 10 seconds, while the corresponding times for ACF 
are up to 100 seconds. 

4.2 Simulation Results 

We start by presenting the profit values obtained from the rolling horizon setting for SRD and ACF. The 
realized profit per period for different planning windows is depicted in Figure 2 for high mean utilization. 
Due to space limitations, we do not show the corresponding results for low mean utilization since the 
results are similar to the high utilization case. The left- and right-hand chart sets show the results for 
period lengths of one and seven days, respectively. For instance, the notation tv90-10-S describes the 
average profit value of all demand scenarios and replications for a utilization level of 90% with time-
varying demand, a demand CV of 0.1, and short failure durations. The notation ACF 7 indicates that ACF 
is used as planning formulation and that the planning window is seven periods. Figure 2 shows that ACF 
outperforms SRD in many situations. The impact of the length of the planning window on the profit is 
limited, probably since re-planning occurs after each planning period. At the same time, the release 
quantities cannot be very different for a different length of the planning window because the release 
decisions are heavily influenced by the treatment of the initial WIP in the period.  

The output-release relationship (4) and the capacity assignment of the SRD formulations are more 
accurate for short period lengths. The CF represents the expected output in a period, and this gets much 
more variable as the period gets shorter. Thus, the profit difference for ACF and SRD is smaller for a 
period length of one day. In addition, the shorter planning period leads to more frequent updating of 
information between planning and execution levels. 

Cost is the major cause of the different profit values when changing the period length as seen from 
Figure 3, since all models are constrained to meet demand as far as possible. The bars are labeled 
consistently with Figure 2, with the addition of the name of the corresponding planning formulation. The 
results for period lengths of one and seven days are distinguished where the results for one day periods 
are to the left of the heavy vertical bar. The average backlog, inventory, and WIP costs per period of all 
instances over the demand scenarios, simulation replications, and planning windows are plotted.  
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Figure 2: Profit comparison for different period lengths. 

 

Figure 3: Cost distribution for different period lengths. 

In the static setting, the SRD formulation suffers from regularly and significantly changing cycle times 
under time-varying demand pattern. The changes under level load-type demand are smoother and cause a 
better performance of the SRD formulation. Frequent updates from the execution level in the rolling 
horizon setting reduce the impact of the different demand patterns on the performance, unlike in the static 
setting where the demand pattern had a marked impact on the relative performance of the two models 
(Kacar et al. 2013a). A consistent observation from Figure 3 is that the ACF model holds both FGI and 
WIP, whereas the SRD model holds no FGI and incurs high backlogs. This suggests that SRD is 
overestimating the ability of the system to produce output in a given period of time, causing it to release 
work too late. While the ACF model holds somewhat higher WIP than SRD, the difference is not 
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extreme, and the cost of the additional WIP is more than offset by the reduction in backorder costs due to 
more timely release of work into the line. In the SRD model lead times are treated as deterministic 
exogenous parameters, but at high utilization levels small fluctuations in workload cause large changes in 
cycle time. The nonlinear CFs capture the workload-dependent lead times represented by output 
quantities and yield substantial improvements, in particular, in case of high utilization levels. Higher 
demand variability and longer failure durations result in lower profit and affect the difference between the 
results of the two planning formulations. The ratio of the average realized profit from the ACF model to 
those from the SRD model for a planning window of 15 days are summarized in Table 2. We see that 
improvements up to 19% are possible. 

Table 2: Ratio of the realized profit for ACF relative to that from SRD. 

70-10-S 70-25-S 70-10-L 70-25-L 90-10-S 90-25-S 90-10-L 90-25-L Period  
length Stationary demand 
1 day 1.01 1.01 1.01 1.01 1.04 1.10 1.09 1.01 
7 days 1.10 1.10 1.10 1.11 1.13 1.13 1.15 1.18 
 Time-varying demand 
1 day 1.01 1.01 1.02 1.01 1.05 1.07 1.09 1.02 
7 days 1.11 1.11 1.11 1.12 1.14 1.13 1.17 1.18 
 Level load demand 
1 day 1.01 1.01 1.01 1.01 1.05 1.10 1.08 1.00 
7 days 1.11 1.11 1.11 1.12 1.14 1.13 1.17 1.19 

 

We compare the results of the different planning models for each demand realization using the 
Friedman test (Conover 1980) to assess the statistical significance of the results. While we do not present 
details of this analysis due to space limitations, in most experimental conditions the ACF model 
outperforms the SRD model at a significance level of 0.95. 

5 CONCLUSIONS AND FUTURE RESEARCH 

In this paper, we compared two different production planning formulations using a rolling horizon 
approach. The first formulation is based on fixed lead times that are a multiple of the planning period 
length, while the second formulation applies nonlinear CFs. Using a scaled-down simulation model of a 
wafer fab, we demonstrated that the advantage of the formulation with nonlinear CFs carries over to the 
rolling horizon setting. We also demonstrated that the period length has an impact on the performance of 
the production planning formulations with CFs, i.e., larger periods lead to an improved performance of 
the formulations based on CFs. 

There are several directions for future research. First of all, we have to repeat the experiments from 
this paper for larger simulation models as in (Kacar et al. 2013a). Secondly, we are interested in using 
more advanced demand models, such as the Martingale Model of Forecast Evolution (MMFE) (cf. Heath 
and Jackson 1994, Chen and Lee 2009, Norouzi and Uzsoy 2014) in order to build planning models that 
can ensure a specified service level under demand uncertainty. Albey et al. (2014) present some initial 
results in this direction under a static planning environment. Thirdly, it is interesting to study the stability 
of production plans when demand uncertainty is taken into account in a rolling horizon setting. We expect 
that the stability of production plans can be increased by considering frozen periods or by using 
appropriate release change costs as proposed by Lin (2014). 

ACKNOWLEDGMENTS 

The research of Reha Uzsoy was supported by the National Science Foundation under Grant No. CMMI-
1029706. 

2893



Ziarnetzky, Kacar, Mönch, and Uzsoy 
 

REFERENCES 

Albey, E., A. Norouzi, K.G. Kempf, and R. Uzsoy. 2014. “Demand Modeling with Forecast Evolution: 
An Application to Production Planning.” Technical Report, Fitts Department of Industrial and 
Systems Engineering, North Carolina State University, Raleigh, NC. 

Asmundsson, J. M., R. L. Rardin, C. H. Turkseven, and R. Uzsoy 2009. “Production Planning Models 
with Resources Subject to Congestion.” Naval Research Logistics 56:142-157. 

Asmundsson, J. M., R. L. Rardin, and R. Uzsoy 2006. “Tractable Nonlinear Production Planning Models 
for Semiconductor Wafer Fabrication Facilities.” IEEE Transactions on Semiconductor 
Manufacturing 19:95-111. 

Chen, L., and H. L. Lee 2009. “Information Sharing and Order Variability Control Under a Generalized 
Demand Model.” Management Science 55(5):781-797. 

Conover, W. J. 1980. Practical Nonparametric Statistics. New York: John Wiley. 
Häussler, S. 2014. “Comparison of Two Optimization based Order Release Models with Fixed and 

Variable Lead Times and an Empirical Validation of Metamodels of Work Centres in Order Release 
Planning.” Ph.D. thesis, Department of Information Systems, Production and Logistics Management, 
University of Innsbruck. 

Heath, D. C., and P. L. Jackson 1994. “Modeling the Evolution of Demand Forecasts with Applications to 
Safety Stock Analysis in Production Distribution Systems.” IIE Transactions 26(3):17-30. 

Hopp, W. J. and M. L. Spearman 2008. Factory Physics: Foundations of Manufacturing Management. 
Boston: Irwin/McGraw-Hill. 

Johnson, L. A. and D. C. Montgomery 1974. Operations Research in Production Planning, Scheduling 
and Inventory Control. New York: John Wiley. 

Kacar, N. B., D. F. Irdem, and R. Uzsoy 2012. “An Experimental Comparison of Production Planning 
using Clearing Functions and Iterative Linear Programming-Simulation Algorithms.“ IEEE 
Transactions on Semiconductor Manufacturing 25(1):104-117. 

Kacar, N. B., L. Mönch, and R. Uzsoy 2013a. “Planning Wafer Starts using Nonlinear Clearing 
Functions: a Large-Scale Experiment.“ IEEE Transactions on Semiconductor Manufacturing 
26(4):602-612. 

Kacar, N. B., L. Mönch, and R. Uzsoy 2013b. “A Comparison of Production Planning Formulations with 
Exogenous Cycle Time Estimates Using a Large-Scale Wafer Fab Model.“ In Proceedings of the 
2013 Winter Simulation Conference, edited by M. Kuhl, R. Pasupathy, S.-H. Kim, and A. Tolk, 3731-
3744. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc. 

Kayton, D., T. Teyner, C. Schwartz, and R. Uzsoy 1997. “Focusing Maintenance Improvement Efforts in 
a Wafer Fabrication Facility Operating Under the Theory of Constraints.“ Production and Inventory 
Management Journal 38(4):51-77. 

Leachman, R. C. 2001. “Semiconductor Production Planning.“ In Handbook of Applied Optimization, 
edited by P. M. Pardalos and M. G. C. Resende, 746-762. New York: Oxford University Press. 

Lin, P.-C. 2014. “Managing Release Changes in Rolling Horizon Production Planning.“ Ph.D. thesis, 
Edward P. Fitts Department of Industrial & Systems Engineering, North Carolina State University. 

Missbauer, H., and R. Uzsoy 2010. “Optimization Models for Production Planning.“ In Planning 
Production and Inventories in the Extended Enterprise: A State of the Art Handbook, edited by K. G. 
Kempf, P. Keskinocak, and R. Uzsoy, 437-508. New York: Springer. 

Mönch, L., J. W. Fowler, and S. J. Mason. 2013. Production Planning and Control for Semiconductor 
Wafer Fabrication Facilities: Modeling, Analysis, and Systems. New York: Springer. 

Norouzi, A., and R. Uzsoy 2014. “Modeling the Evolution of Dependency between Demands, with 
Application to Production Planning,“ IIE Transactions 46:55-66. 

2894



Ziarnetzky, Kacar, Mönch, and Uzsoy 
 

Orcun, S., and R. Uzsoy. 2011. “The Effects of Production Planning on the Dynamic Behavior of a 
Simple Supply Chain: An Experimental Study. “ In Planning in the Extended Enterprise: A State of 
the Art Handbook, edited by K.G. Kempf, P. Keskinocak, and R. Uzsoy, 43-80. Berlin: Springer. 

Pahl, J., S. Voss, and D. L. Woodruff 2007. “Production Planning with Load Dependent Lead Times: An 
Update of Research.“ Annals of Operations Research 153:297-345. 

Ponsignon, T., and L. Mönch 2014. “Simulation-based Performance Assessment of Master Planning 
Approaches in Semiconductor Manufacturing.“ OMEGA 46:21-35. 

Sahin, F., A. Narayanan, and E. P. Robinson 2013. “Rolling Horizon Planning in Supply Chains: Review, 
Implications and Directions for Future Research.“ International Journal of Production Research 
51(18):5413-5436. 

Stampfer, C., S. Haeussler, and H. Missbauer. 2013. “The Impact of Foreknowledge of Demand in Case 
of Optimization-based Order Release Mechanism in Workload Control: A Simulation Study based on 
a Make-to-order Manufacturer.“ Technical Report, Department of Information Systems, Production 
and Logistics Management, University of Innsbruck.  

Spitter, J. M. 2005. “Rolling Schedule Approaches for Supply Chain Operations Planning.“ Ph.D. thesis, 
Technische Universiteit Eindhoven. 

Voss, S., and D. L. Woodruff (2003). Introduction to Computational Optimization Models for Production 
Planning in a Supply Chain. Berlin, New York: Springer. 

AUTHOR BIOGRAPHIES 

TIMM ZIARNETZKY  is a Ph.D. student at the Chair of Enterprise-wide Software Systems, University 
of Hagen. He received M.S. degree in Mathematics from the Technical University Dortmund, Germany. 
His research interests include production planning and simulation-based production control. He can be 
reached by email at <Timm.Ziarnetzky@fernuni-hagen.de >. 
 

NECIP BARIS KACAR  is an Operations Research Specialist at the SAS Institute. He holds a Ph.D. 
degree in Industrial Engineering with Minor in Operations Research from the Edward P. Fitts Department 
of Industrial and Systems Engineering at North Carolina State University, and also holds a M.S. from the 
same university. He received a BS degree in Mechanical Engineering from Bogazici University, Istanbul, 
Turkey. His research interests are in production planning, supply chain management, inventory 
optimization and simulation based optimization. He can be reached via email at <Baris.Kacar@sas.com>. 
 

LARS MÖNCH is full professor of Computer Science at the Department of Mathematics and Computer 
Science, University of Hagen where he heads the Chair of Enterprise-wide Software Systems. He holds 
M.S. and Ph.D. degrees in Mathematics from the University of Göttingen, Germany. After his Ph.D., he 
obtained a habilitation degree in Information Systems from Technical University of Ilmenau, Germany. 
His research and teaching interests are in information systems for production and logistics, simulation, 
scheduling, and production planning. He can be reached by email at <Lars.Moench@fernuni-hagen.de>. 
 

REHA UZSOY  is Clifton A. Anderson Distinguished Professor in the Edward P. Fitts Department of 
Industrial and Systems Engineering at North Carolina State University. He holds BS degrees in Industrial 
Engineering and Mathematics and an M.S. in Industrial Engineering from Bogazici University, Istanbul, 
Turkey. He received his Ph.D. in Industrial and Systems Engineering in 1990 from the University of 
Florida. His teaching and research interests are in production planning, scheduling, and supply chain 
management. He was named a Fellow of the Institute of Industrial Engineers in 2005, Outstanding Young 
Industrial Engineer in Education in 1997, and has received awards for both undergraduate and graduate 
teaching. He can be reached by email at <ruzsoy@ncsu.edu>. 

2895


