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ABSTRACT 

When a customer arrives to a service system, how long should they expect to wait, and how long might 

their wait actually be? Computer simulation is an ideal tool for answering such questions for very general 

and complex queueing systems, but they are not always answered by the automatic statistical summary 

generated by commercial simulation languages. Using an illustration based on passenger check-in at an 

airport, we demonstrate how standard summary measures go wrong and provide methods that correctly 

answer these questions.  

1 INTRODUCTION 

We focus on assessing and interpreting the virtual waiting time of customers arriving to a queueing 

system that is not necessarily in “steady state.”  Stated simply, the virtual waiting time is the waiting time 

that an arriving entity would expect to see given that the entity arrives at a particular (simulated) time.  

We show that this measure is particularly interesting in a variety of systems and that many “standard” 

simulation experiment metrics appear to measure this, but do not, often leading an incorrect interpretation 

by the user. 

We start with a typical service system where the virtual waiting time will be of specific interest –

passengers arriving to an airport check-in counter where an important question is “how long will it take 

me to check-in for my flight?”  Even more specifically, a passenger with a 9:00 AM flight may want to 

know “Am I likely to be checked in by 8:30 if I arrive at 7:30?” Clearly this time estimate is important in 

determining when a passenger should leave their house to make their flight – underestimating this time 

can have dire consequences.  Answering this question requires an assessment of the distribution of wait 

time for a customer arriving at 7:30 AM; in queueing theory this is called the virtual waiting time (Gross 

et al., 2008). Generically, let W(t) be the virtual waiting time for a customer arriving at time t. Of course, 

while the customer is focused on arriving at a specific time, airport management may be interested in W(t) 

throughout the day, not just at t = 7:30 AM. Possible summary measures of the distribution of W(t) 

include its mean, standard deviation and extreme percentiles. 

Our simplified airport check-in system will have the following characteristics: 

• The model is terminating – Arrivals start at 6:00 a.m., end at 10:00 p.m., and the system stays 

open until all passengers are processed; 

• The passenger arrival process is non-stationary; 

• The check-in counter has time-dependent agent capacity (using a resource schedule) and a single 

passenger queue; 
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• Premium and Regular passengers – the passenger queue is prioritized based on passenger type. 

While there are clear interests in system performance from the airport management perspective 

(overall system performance metrics), we focus exclusively on the arriving passenger’s perspective in this 

paper.  In particular, we wish to use a simulation model to estimate the virtual waiting time for a 

passenger arriving at a given time.  We use a Simio simulation (described in the next section) for our 

analysis and will show how the “standard” measures of time-in-system (TIS) can be misleading and how 

to compute more appropriate estimates of the virtual waiting times.  Other simulation packages that we 

are familiar with generate very similar performance metrics/statistics – the issues we highlight are not 

Simio-specific. 

2 INITIAL MODEL 

Figure 1 illustrates our basic model.  The model is a single-server queueing system with a non-stationary 

arrival process and a time-dependent Agent capacity (using a resource schedule).  This mimics the basic 

behavior of the “ticket counter” at many airports.  The object properties that define the arrival process and 

the resource schedule are also illustrated in the figure for clarity.  The prioritization by passenger type is 

handled using the Ranking Rule for the Agents object instance (Largest Value First of Entity.Priority).  

The passenger type for an arriving entity is set probabilistically using an add-on process triggered on 

entity creation in the Passengers object instance (the add-on process is not shown in Figure 1). 

The model collects standard performance metrics including the number of passengers in the queue 

and the times that passengers (overall and by passenger type) spend in the system.  Figure 2 shows a 

dynamic status plot for one replication of the model.  The plot shows the instantaneous number of 

passengers in the queue (NIQ) and the cumulative average time passengers spend in the system by 

passenger type and overall (TISPremium, TISRegular, and TISOverall, respectively).  Finally, Figure 3 

shows the standard SMORE (Simio MORE) plot (Nelson, 2008) for the average time that regular 

customers spend in the system based on 500 replications of the model.  We chose these specific 

metrics/performance measures because they would be “standard” results computed “at no extra cost to the 

modeler” by the Simio model (note that similar standard statistics are computed automatically by many 

other commercial simulation packages).  As such, these would be the likely metrics that users would 

initially examine to assess the system performance characteristics. 

There is nothing inherently “wrong” with these performance measures/plots if interpreted correctly; 

we simply suggest that they provide almost no useful information (and perhaps even misleading 

information) about our performance metric of interest – the virtual waiting time.  To make an informed 

choice about when to leave for the airport, a passenger needs good information about the expected time in 

system, the standard deviation of the time in system, and perhaps extreme percentiles for the 

corresponding distribution of time in system for the specific time that the passenger arrives to the airport.  

A quick glance at the NIQ line in Figure 2 shows that the number of passengers waiting in line varies 

dramatically throughout the day.  In our simplified system, the time that passengers spend in the system 

will similarly vary throughout the day.  However, the TISRegular, TISPremium, and TISOveall lines in 

the plot do not exhibit this variation by the nature of how they are computed (each is a “running average” 

through time). 

The SMORE (Simio Measure of Risk and Error) plot (Figure 3) is an excellent tool for controlling the 

sampling error (using the confidence intervals) to determine the appropriate number of replications to 

confidently assess the distribution characteristics (the mean, variance, percentiles, etc.).  Accordingly, one 

may be tempted to use these distribution characteristics to answer the “when should I leave for the 

airport” question.  However, the SMORE plot provides good information about the mean passenger time 

in the system over the entire replication which corresponds to one day in our example.  In more detail, the 

SMORE Plot is based on the following:  On replication ! ! !!!!! ! !  of the simulation, let 

!!! !!!! !!!!!!
 be the customer waiting times in the order in which customers complete their waiting. 
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Figure 1.  Initial Simio model. 

For each replication, compute the replication mean 
j

W  – these replication means provide the data for the 

SMORE plot.  The sample mean of the daily average waiting times is given by 

! ! !
!

!
!!

!

!!!

!
!

!

!

!!

!!"

!!

!!!

!

!!!

 

This is the brownish dot around the value of 21 in Figure 3 and this value is commonly computed in other 

simulation languages/packages as well.  This is typically accompanied by a confidence interval (CI) of the 

form 

! ! !
!!

!

!
!!!!

!

!
 

where !  is the standard deviation of the daily averages !!!!!!!!! . This is the brownish box 

surrounding the sample mean in Figure 3.   

While one might be tempted to  use these measures to answer the question of when to depart for the 

airport, none of them are useful for the following reasons: 
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• ! does not estimate the mean, or expected value, of waiting time for an arrival at 7:30 AM (or 

any other fixed time) unless we believe that the waiting time process is stationary. If the arrival 

rates, staffing levels, or check-in protocols change throughout the day, then the process is not 

stationary. The data !!!!!!!!! are averages through time (from the start to the end of the 

check-in day) and therefore they mask the time-dependent effects (see the NIQ line in Figure 2). 

• The CI is a measure of error for how well ! estimates its true mean !!!!. You can think of the 

``true mean’’ as what ! would become if you let the number of replications ! grow infinitely 

large; the CI measures the error from stopping with finite !. Thus, the CI does not tell us anything 

about the variability of an individual customer’s check-in experience – a critical factor for 

determining an appropriate departure time. 

• Although the standard deviation ! is a measure of variability, it is the variability of the daily 

averages !!!!!!!!! not the individual customer’s waiting times. So it also is not the right 

answer. 

 

Figure 2.  Status plot for Number-in-Queue and Time-In-System (in minutes). 

3 AN ALTERNATIVE APPROACH 

It is conceptually easy to simulate the random variable W(t) for some specific time like t = 7:30 AM: 

On each of n replications, insert a marked customer arrival exactly at 7:30 AM, track the customer until 

they clear check-in, and record their waiting time. Let W1 (7:30),…,Wn (7:30) be the observed waiting 

times of the marked customer across n replications. These data will be independent and identically 

distributed (i.i.d.) so standard statistical analysis applies for estimating the mean, standard deviation and 

percentiles of virtual waiting time. As a practical matter, however, this method has problems: There is the 

minor programming issue of inserting and tracking a customer arrival exactly at 7:30 AM. More 

importantly, this method should only be applied for a single fixed time, like 7:30 AM. If we want to 

assess the virtual waiting time throughout the day, and do so by inserting marked arrivals every, say, 1 

minute, then we substantially increase the actual load on the check-in system and the model is no longer a 

valid representation of the airport. Our focus in this section will be on how to get useful approximations 
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to the virtual waiting time distribution, or at least the mean and standard deviation of it, without using the 

“insert an entity” approach. 

 

 

Figure 3.  SMORE plot for the average time regular passengers spend in the system. 

Two key insights are important: First, the waiting times that are naturally generated by the simulation,  

!!! !!!! !!!!!!
, are waiting times in the order in which waiting is completed; therefore they are not 

directly useful for the virtual waiting time problem. Instead, we need to consider waiting times ordered by 

the time of customer arrival. Second, to avoid inserting virtual customers or directly calculating virtual 

waiting time, we can partition time into contiguous intervals or buckets and let arrivals during each time 

bucket represent what would happen to virtual arrivals during that period. We need these buckets to be 

short enough that arrivals during the interval see essentially the same system load, but long enough so that 

it is almost certain that there will be arrivals during each interval (observing no arrival during a time 

interval does not mean the virtual waiting time is 0 because the system could be highly congested from 

previous intervals).  When the simulation is driven by a nonstationary Poisson arrival process with 

piecewise constant rate, then a bucket length that corresponds to the length of a constant-arrival-rate 

interval is a possible starting point and will be our approach in this paper. 

From here on we focus on a specific time bucket (say the one that contains 7:30 AM), but this is only 

for expository convenience – the ideas apply to all of the buckets and our implementation below divides 

the (simulated) day into individual buckets and processes all of them. To make the notation distinct, let 

!!! !!!! !! !!!!
 be the waiting times on replication ! of the customers who arrived during this time bucket. 

Then 

 ! ! !
!

!
!!

!

!!! !
!

!

!

!!
!!"

!!

!!!

!

!!!  

is, by its definition, an unbiased estimator of the expected value of the sample average waiting time for 

arrivals during the time bucket, and 

! ! !
!!

!

!
!!!!

!

!
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is a valid CI, where ! is now the standard deviation of the daily bucket averages !!. In a sense, this makes 

the average value !, which was previously wrong because it averaged across the entire day, relevant by 

restricting it to arrivals in a small time bucket – assuming the buckets are set correctly. 

We implemented this method in Simio so that our model would generate SMORE plots for each of 

the time buckets.  To do this, we defined a Tally statistic (an observational statistic) for each of the 16 

buckets (we choose to use hourly time buckets to match our arrival process) and created a table with 16 

rows so that we could access the individual Tally statistics using an index (the table row).  Finally, we 

need to tell the model to store each observation (the TIS for each entity) in the correct Tally statistic (time 

bucket).  The trick here is that we need to use a passenger’s arrival time rather than departure time to 

determine the appropriate time bucket.  The Tally and table definitions and the add-on processes that 

implement this method are shown in Figure 4 (the add-on process is executed when an entity enters the 

sink).  The Assign step determines the integer hour (0-based) that the entity arrived (HrIndex) – for our 

model, this will be an integer between 1 and 16.  The Tally step records the time that the entity has spent 

in the system to the correct tally statistic using the HourlyTIS table and the bucket index computed in the 

previous step.  

 

Figure 4.  Tabulation of time-in-system by hourly buckets. 

Figure 5 shows four of the 16 resulting SMORE plots (we arbitrarily choose the hours from 6:00 a.m. 

until 10:00 a.m.).  The “T_07” bucket includes our 7:30 airport arrival and indicates that the mean check-

in time during this hour is approximately 20 minutes.  This method will give us good information about 

the average TIS by hour (we can use replications to make them arbitrarily “good” using the CI as our 

guide).  Of course, the risk-averse traveler will not be comfortable with planning based only on the 

average delay, even if well estimated, and it is in assessing the variability that things become tricky as the 

standard SMORE plot risk measures are relative to the bucket means rather than to the individual arriving 

passenger times (as discussed above). While the data within a time bucket are clearly dependent, if we 

have chosen the time buckets well then we can treat them as approximately stationary, which implies that 

we can treat the waiting times as identically distributed; this will be key. 
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Figure 5.  SMORE plots for hourly buckets for 6:00 a.m. - 10:00 a.m. 

We develop the variance estimator intuitively by considering the following thought experiment: You 

have run ! replications of the simulation and saved all of the waiting times within the time bucket of 

interest on each replication. Now you are asked to use these data to simulate the delay of an arbitrary 

customer arriving during that time bucket. Here is an algorithm that makes intuitive (and statistical) sense: 

1. Randomly select one of the ! replications, say replication !, with equal probability !!!. 

2. From the !! waiting times recorded from the time bucket on replication !, randomly select one of 

them with equal probability !!!!. 

3. Return the selected value as !. 

What is the variance of !!!!"# ! , given the data, for this algorithm? 

!
!
!"#$ !!!"#" ! ! !"! !!! ! !"# ! !!!

! ! !!
!
! !"# !!

!
!

!
!!
!

!

!!!

!
!

!
!! ! !

!

!

!!!

 

where !!
! is the sample variance of the waiting times in the time bucket on replication !. Technically, this 

is the bootstrap estimator of the variance of a random waiting time from the time bucket (Shao and Tu, 

1995). It consists of two terms: the average variability around the mean of the observations in the bucket, 

and the variance of the bucket mean itself; its performance might be improved slightly by dividing by 

! ! ! instead of ! in the second term. This estimator acknowledges that in a smallish interval the mean 
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waiting time may vary substantially from day to day, and there is likely a strong dependence between the 

sample mean and sample variance.  

Unfortunately, adding this computational logic to Simio is not as straightforward as was the hourly 

buckets (where we were able to use Simio’s built-in SMORE plot generation logic), so we chose to 

“export” the required data and use an external program to conduct the further analysis.  Figure 6 shows 

the updated add-on process that is executed when entities enter the sink (as previously described, the 

Assign step determines the time bucket and the Tally step records the TIS to the appropriate Tally – see 

Figure 4).  We added a Write step that writes the individual entity arrival times 

(ModelEntity.TimeCreated) and the TISs (TimeNow – ModelEntity.TimeCreated) to 

an external file. 

 

 

Figure 6.  Write step that writes the individual entity arrival times and TISs to an external file. 

Next, we ran 500 replications of our model, creating 500 external files – one file for each replication.  

The files contained the arrival time/TIS pairs for each entity in the corresponding replication.  Finally, we 

used a Python program to aggregate the data from all replications by time bucket.  At this point, we had 

16 buckets (lists in our Python program) where each bucket included the individual TIS values for entities 

that arrived during the corresponding hour across all 500 replications – the !!! !!!! !! !!!!
 values 

described above for all buckets.  Once we had these values, computation of the variance terms as 

described above was straightforward. 

Before discussing the analysis, we make one additional change to the model.  Since our Python 

program had all of the individual Yij values, we plotted histograms of the individual hourly buckets 

aggregated across all 500 replications – so each histogram includes all observations within the given hour 

over all replications.  Figure 7 shows the histograms for the same 4-hour period as the SMORE plots in 

Figure 5.  We were initially surprised by the bi-modal shape for the 8:00 and 9:00 buckets (and the start 

of this shape in the 7:00 hour).  Some thought and model investigation led us to the conclusion that this is 

due to the mixing of the Premium and Regular passengers in our Tally statistics.  As the system becomes 

busier, the benefit of being a Premium passenger – prioritization in the check-in line – becomes more 

pronounced.  Since any individual passenger will either be Premium or Regular and will obviously know 

this when planning their departure time, we need to separate the observations so that we can evaluate the 

respective virtual waiting time distributions separately.  While looking at the histograms in Figure 7 this 

phenomenon seems obvious (and one could certainly argue that we should have known this before seeing 

the histograms through careful examination of the plots in Figure 2 and the corresponding experimental 

results) it is important to note that the bi-modality is definitely not discernable from the standard SMORE 

plots for the overall TIS or the time-bucket TISs.  As such, it could easily be overlooked.  In this case, 

observing the “raw data” in histogram form saved us.  Therefore, we modified the Simio model so that it 

creates separate buckets by passenger type and hour, resulting in 32 individual buckets.  In the following 

analysis, we focus exclusively on the Regular passenger buckets (the Premium passenger analysis would 

be identical from a methodological standpoint). 
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Figure 7.  Histograms of individual TIS values for passengers arriving between 6:00 a.m. and 10:00 a.m. 

There is clearly additional effort required to compute !!, so it is worth asking whether it is different 

from simply computing the sample variance of all of the observed waiting times 

 !

!!""
!
!
!

!
!!!" ! !!!

!!

!!!

!

!!!

 

where ! ! !!! . Tedious algebra shows that not only is !!""
!
! !

! in general, but !!""
!  gives too much 

weight to waiting times that came from  time buckets that had larger numbers of observations, even if 

such intervals are unlikely. 

The initial experimental results are shown in Table 1.  The table compares the mean and standard 

deviation values from the SMORE plots (the standard deviation was computed using the reported 

confidence interval half-width) with the values computed using the method described above.  Note that 

our results match our intuition – there is no discernable difference in the computed means, but the 

SMORE plot standard deviation values are significantly lower than their counterparts computed using the 

appropriate method.  This is because the SMORE plot standard deviations are for the bucket means over 

replications and the computed standard deviations are for individual observations.  In the context of our 

example, the traveler using the SMORE plot to estimate the risk of being late (or early) would 

underestimate that risk.  This is an important result if you do not want to miss your flight – note that the 

underestimation is severe in the bucket that includes the 7:30 flight. 

We now turn our attention to computing quantiles (percentiles) using the time-bucket approach. The 

quantiles displayed in the SMORE plots are critical components for assessing the “risk” associated with 

the performance metric (Nelson, 2008).  However, since the quantiles in the standard SMORE plots are 

for the mean values over the entire day or by bucket (as described above), we need a different method for 

calculating the quantiles for the virtual waiting times.  The key to our approach is that we have been 
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treating our data as coming from a mixture distribution: there is an (outer) distribution of time buckets – 

characterized by the number of observations in a bucket !! – and an inner distribution of waiting times 

!!" within a bucket. 

 

Table 1: Comparison of the simulation-reported and computed results for means and standard deviations.  

The deltas are computed so that negative values indicate that the simulation underestimates the 

corresponding metrics. 

Simulation-reported Results Computed Results Deltas 

Hr Mean Std. Dev. Obs Mean Std. Dev. Mean Std. Dev. 

6:00 0.108 0.057 28299 0.108 0.093 -0.41% -38.96% 

7:00 0.265 0.114 46795 0.265 0.153 0.14% -25.46% 

8:00 0.319 0.136 75413 0.319 0.156 -0.07% -12.62% 

9:00 0.343 0.158 93939 0.343 0.174 0.02% -8.91% 

10:00 0.396 0.197 93835 0.396 0.209 -0.02% -5.88% 

11:00 0.326 0.219 74576 0.326 0.232 -0.03% -5.72% 

12:00 0.239 0.217 65673 0.239 0.228 0.16% -4.93% 

13:00 0.263 0.270 65448 0.263 0.286 -0.04% -5.64% 

14:00 0.533 0.337 56216 0.533 0.359 0.07% -6.00% 

15:00 0.582 0.391 37832 0.582 0.401 -0.05% -2.47% 

16:00 0.422 0.392 28405 0.422 0.405 -0.09% -3.17% 

17:00 0.236 0.375 22251 0.236 0.386 -0.11% -2.85% 

18:00 0.247 0.349 20953 0.247 0.360 0.14% -3.00% 

19:00 0.264 0.322 20639 0.264 0.334 0.09% -3.53% 

20:00 0.277 0.299 20988 0.277 0.313 0.04% -4.45% 

21:00 0.238 0.262 18454 0.238 0.276 0.13% -4.96% 

 

 

Usually to get a ! quantile (where ! ! ! ! !) estimate we invert an empirical cdf; in this case the 

empirical cdf is a mixture distribution, and we want to find !! such that 

! !! !
!

!
!! !! !

!

!

!

!!

! !!" ! !!

!

!!!

! !

!

!!!

 

Now consider the pairs !!!" !!!! where !! ! !!!!. Sort all of the !!"’s from smallest to largest, but keep 

the correct weight associated with each one. For notation, we now have !!!!!!!!!!! for ! ! !!!!! !! 

where ! ! !!!  is the total number of waiting times, and we have sorted the !s from smallest to largest. 

We now want to find the smallest value of ! such that 

!!!! ! !"

!

!!!

 

Then our quantile estimate is !!!!.  As an approximate ! ! ! !""# confidence interval for !! we can 

use two additional sorted values, !! ! !!!!!, obtained as follows: 

!"#$%&'(!!!"#$%&$'&! ! ! ! !!!

!

!!!
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!"#$$%&'(!!!"#$%&$'&% ! ! ! !!!

!

!!!

 

where !! ! ! ! !!!!!! !!! ! !!!! and !! ! ! ! !!!!!! !!! ! !!!! (note that we do not show the 

confidence intervals in the tables below, but the available code computes them).  This CI is a 

generalization of the normal approximation to the standard nonparametric confidence interval for a 

quantile based on the binomial distribution; see, for instance, Banks et al. (2010). This approximation will 

be best when the number of replications ! is large.  This estimator will likely be poor when the number of 

observations in a bucket is small; in that case the sample quantile from the sorted data maybe be better. 

Table 2: Comparison of the simulation-reported and computed results for 25
th

 (LP) and 75
th

 (UP) 

percentile values.  The deltas are computed so that negative values indicate that the simulation 

underestimates the corresponding metrics. 

Simulation-reported Results Computed Results Deltas 

Hr Mean LP UP LP1 UP1 LP2 UP2 LP UP 

6:00 0.108 0.066 0.1324 0.037 0.152 0.038 0.157 79.4% -12.9% 

7:00 0.265 0.182 0.3424 0.146 0.369 0.151 0.376 25.0% -7.2% 

8:00 0.319 0.227 0.4048 0.206 0.421 0.210 0.424 10.0% -3.9% 

9:00 0.343 0.222 0.4469 0.216 0.456 0.220 0.459 2.7% -2.0% 

10:00 0.396 0.250 0.5231 0.243 0.531 0.245 0.533 2.7% -1.5% 

11:00 0.326 0.138 0.4566 0.136 0.469 0.138 0.470 1.6% -2.6% 

12:00 0.239 0.073 0.3529 0.063 0.352 0.064 0.353 15.9% 0.3% 

13:00 0.263 0.088 0.3360 0.072 0.346 0.074 0.348 22.1% -2.9% 

14:00 0.533 0.297 0.6752 0.276 0.707 0.280 0.713 7.7% -4.5% 

15:00 0.582 0.300 0.7504 0.297 0.760 0.305 0.772 0.9% -1.3% 

16:00 0.422 0.114 0.5855 0.106 0.607 0.109 0.613 7.3% -3.5% 

17:00 0.236 0.057 0.2162 0.032 0.253 0.032 0.256 79.4% -14.5% 

18:00 0.247 0.081 0.2358 0.056 0.270 0.059 0.275 44.8% -12.7% 

19:00 0.264 0.092 0.2975 0.070 0.319 0.074 0.330 31.7% -6.7% 

20:00 0.277 0.100 0.3321 0.078 0.358 0.084 0.373 27.6% -7.2% 

21:00 0.238 0.081 0.2861 0.060 0.308 0.063 0.320 34.7% -7.1% 

 

Table 2 compares the quantile values from the simulation with those computed as described above 

(LP1 and UP1).  For comparison, we also computed the quantiles by simply sorting all of the individual 

bucket values (LP2 and UP2).  As before, we see a significant underestimation of the risk in the 

simulation-reported LP/UP values over the computed results LP1/UP1.  Specifically, LP overestimates 

the lower percentiles and UP underestimates the upper percentile, significantly shrinking the “likely 

region” as described by Nelson (2008).  Note that this over/under estimation is more pronounced during 

the “less busy” times in our example model – again, in line with our intuition. Both estimators are 

computed from the same set of simulation output data – there is nothing wrong with the simulation itself 

– our point is that an appropriate estimator matters. 

4 CONCLUSIONS 

In a very practical sense, virtual waiting time is the performance measure of most interest to customers, 

and few service systems are actually stationary so time of arrival typically matters. Default simulation 

output analysis, however, emphasizes system-level performance measures and averaging through time. 

This paper illustrates that daily waiting-time averages are often substantially different from what 

individual customers should expect, and the variability of those averages is almost unrelated to the 
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variability of an individual customer’s waiting-time experience. Averages within time buckets are far 

more relevant to individual customers, but even then care must be taken to correctly assess the variability 

around this average.  
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