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ABSTRACT

We introduce an effort to create prototype capabilities to enable the Analysis of Mobility Platform (AMP)
to produce airliftschedules for the Agile Transportation for the' Zlentury (AT21) program at the
United States Transportation CommahiSTRANSCOM that are moreobustand flexible to real world
changes. AMP currently uses a deterministic simuldigsedprocess to produce schedylefectively
assuming that execution occurs under expected conditMeshave designeabbustness and flexibility
heuristicsthat generate different candidate schedules] a stochastic simulation that varies departure
delays using arobabilistic model based on reabrld Global Decision Support System (GDSS) data
Through stochasticsimulated execution®f candidée schedulesand several robustness/flexibility
measures, including schedule content comparison metric, our approactseeks thecandidateschedule

that besbalancs solution quality with robustness/flexibility. We present our heuristics, stochastic model
and measures, and summarize our initial findings and next stejbémt and flexible AT21 scheduling.

1 INTRODUCTION

The Analysis of Mobility PlatftormAMP) has beera Department of Defense (DoM)odel of record for
programmatic analysi®r the past tw decades. AMP models allodes of travel (air, land, and sea) to
execute the delivery of cargo specifiedTime-Phased Force arideploymentData (TPFDDs). This is
essentially a large, multacetedvVehicle Routing Problem with Pickup and Delivery drithe Windows.

AMP is based on a planning and scheduling algorithm that operates over time as part of a deterministic
discreteevent simulation Traditionally, AMP has been used for largeale simulations up to several
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years in duration in order to exploprogrammatic analyses, such as the impact of different asset
acquisitions. A recent program at the United States Transportation Coma@BRBANSCOM called
Agile Transportation for the 21Century (AT21) has beefocused onintroducing more optimization
technology into daye-day operations at USTRANSCOM and its components. To adkvweloping a
process to solve the strategic airlift scheduling problem, USTRANSCOM decided to modify AMP to
model this operational problem using the current state of thkel\@odto schedulehirty to forty-five
days ofreal cargo requirements that will move beginnimd O to 14daysout During anearlierinitial
phase of effori(Sommeret al. 2014), a novel schedule optimization capability was developed and
deployed thatused column generation and set covering approach to generate globally cost-optimal
missions for a given problem. This new capability demonstrated a very large reduction in cost and
lateness when compared against the existing AMP heuristics for an acceptable increase in planning time
by the combined optimizer and AMP procdadswever, the AT21 use case requires more than schedules
that just minimize cost and lateness. It also requires schedules that can effectively accommodate the
typical issues that arise during real-world execution of a complex schedlitieer-by building in enough
robustness to enable accommodation of minor changes to a mission’s execution wiir timited)
impact on other missions, or by building in enough flexibibtgnable oerational users to repair more
significant changes to a mission’s schedule with minimal impact on other missions.

We introducework underway in a second phase of effort that seeks to prototgpeschedule
optimization capabilitieso enable AMP to producgchedules that are quantifiably more robust/flexible.
To accomplish this, we have designed and performed early prototyping of three key capabilities:

1. Candidate Generation: The generation of multiple candidate schedules that can potentially vary
in their robustness/flexibility in order to suppors@arckhbased algorithm. A key method is to
apply heuristicsto incorporaterobustnessandbr flexibility properties into schedules, such as
incorporating different types of slacl\lfmadbeygi, Cohnand Lapp 2009; Careyl994; Lan,
Clarke and Barnhart 20Qdnto the schedulesr using network isolation method@dsenberger,
Johnson, and Nemhauser 2004) to minimize ripple effects.

2. Sochastic Smulation: The stochastic variatioof different operational delayalues in the AMP
discreteevent simulation in a manner that modaétayvariations in reaivorld Global Decision
Support System (GDSS) data. Within the simulation, a schedatiaptively executegsing the
schedule’swbustness/flexibility propertieshite obeyingall constraints enforced by AMP.

3. Robustness/Flexibility Assessment: The quantitative assessment of the robustness/flexibility of a
given candidate schedule based on how it exednte®chastic simulationsThis enableshe
comparison of dferent candidate schedules to determine their relative robustness/flexibility.

We introduce the methods we have designed and prototyped for each of these capabilities, as well as
our approach tantegrating these capabilities into a singleototype systen that generatesnore
robust/flexible schedules. The effort, which began in 2014 and will conipl266, continues to refine
our approach to achieving prototype robust and flexible AT21 scheduling using AMP.

2  APPROACH

Figure 1 illustrates our approach for creating robust/flexible schedules. It is a-lsasecdhmethod in

which a variety of candidate schedulesa@ first generated for a given scenario using an enhanced
version of the AMP Schedule Optimizer (SO). A candidate schedule represents a rutitste
representation of how cargo should move within the system on each day of the scenario, and does not
capture all the detailed timing of a complete schedule. Each of these candidates is expected to show some
differences in how it executes in the face of-fgatld events, and the goal of the approach is essentially

to test out each of those schedules in a number of stochastic simulation runs to gain an empirical estimate
of each candidate’s robustness/flexibility.
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The first step in assessing each candidate is to establish its baseline scheduling performance. This is
accomplished by executing the AMP detailed scheduler and dissetésimulation using its traditional
deterministic approach, which essentially provides typical, average values for execution variables, such as
the amount of time taken to service, load or unload a given type of aircraft at a given port. In creating this
baseline schedule {Sall timing details are worked out to the minute level, and all constraints of a legal
schedule are enforced, such as not exceeding available service resources, crew duty limits or port
congestion limits. That baseline schedule also establishes a baseline performance against the scheduling
objective functions, such as the amount of cargoessfully moved, total cost and average lateness.
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Figure 1: Endo-end approach for producing robust/flexible schedules.

Once a baseline is established, each candidate schedule is then executed multiple times using an
enhanceddMP simulation that stocstically varies the values of certain execution variables. The result
of each stochastic run is a fullystantiated schedule, and for each original candidate schedule, a set of
instantiated schedules is obtaineq)(STo measure only robustness, the scheduler is run in a mode where
it makes no repairs to the schedule when random variations result in a conflict. To measure flexibility
and robustness, the scheduler performs minor repairs of the schedule when needed.

Finally, to obtain an assessment ttie overall robustness/flexibility of the original candidate
schedule, each instantiated schedule is compared to the baseline schedule, both in terms of its difference
in performance, as well as in terms of how different the specific schedules areticAlgrameasure,
termed theschedule content comparison metric, quantifies differences between the content of baseline
and instantiated schedules (denot&H S| ) by assyning “cost” values to the individual changes made
during schedule repair. The statistical pattern of performance differences and schedule content
comparisonmeasures across the entire set of instantiated schedule is used to compute a single overall
measure of the robustness/flexibility of the original candidate schedAfter assessing each candidate,
the highest scoring candidatedspis chosen as the most robust/flexible solution.

3  CANDIDATE GENERATION

Several methods are used to generate candidate schedoleerto support enhanced robustness and
flexibility , includingcapturingopportunistic candidateslong the way to optimainsertingslack along a
route to absorb system delay when neededisatating subnetworks minimize cascading disruptions.
3.1  Opportunistic Candidates

Within AMP, the Schedule Optimizer (SO)essa series of Mixed Integer Program (MIP) solves to
generatemediumfidelity scheduls that are globally optimized against several performance criteria
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(Sommer et al2014) using the classical technique of branch and bound. Within branch and bound,
intelim integer solutions are found along the way to optimal (it is these solutions that are compared to the
current bound to determine optimality) as part of the solution prod@ss. approach we have uskd
generate different candidate schedules is to have the solver export dbeweahterim solutions.

There are a few drawbacks to relying upon capturing these solutions along the way. Primarily, there
iSs no guarantee that the incremental solutions will be of sufficient quality. For example, it is not
uncommon for the MIP to find a solution that is 20% from optimal and then jump to a solution that is 2%
from optimal that stops the searclurther, there is no particular guarantee that a given set of these
solutions along the way will vary meaningfullyofn the final solution in terms of their robustness. For
example, it is not uncommon for the MIP to find many highly similar solutions as it approaches optimal.
Because of these limitations, additional heuristic approaches to candidate generation are also used.

3.2 Slack Insertion

Slack insertion is the purposeful addition of {dssnefficient delays in a schedule in order to improve
the realized execution of the schedule which is subject to unexpected delays due to weather, unexpected
closings, ovekapaciated airports, and so on. It is also a technique to reduce churn later in the
scheduling process where new requirements or changes to existing missinasessary due to real
world constraints as execution time approaches. Slack can provide flexibility for planners to adjust to the
inevitable changes that occur as a schedule is taken from initial planning to eventual execution.

The motivation for including slack in the planning stage rather than relying solelytwtablutions
is that theSO creates efficiency in the entire system. Planning for such delays allows the optimizer to
organize the schedule often much better than only accounting for the true delmys aden if the
planned schedule has unnecessary delays. Another motivatiamclieding slack is that the S@nly
plans on the day level. The simulation creates the instantaneous plan from that schedule which can result
in even more delay if the instantaneous airport capacity used is greater than expected. As these delays
propagag, the simulation must deviate more and more from the optimized plan, as the constraints become
more violated- likely causing cascading delay.

Figure 2 illustrates the delay propagating through a system that was planned without slack. In this
schedule, the delay impacts the arrival and departure times at all future stops on the route. These delays
will also impact all other traffic at the airports along the route.

Planned schedule without slack
9HRS 8 HRS 8 HRS -
oute

Executed schedule without slack

Future slot times affected by delay

8 HRS

(@)
Planned schedule with slack Bl Flying time
NEXT
) [ | Delay
Executed schedule with slack

-
Future slot time affected by delay but ground time remains in scheduled window

(b)
Figure 3: (a) Schedule without slack; (b) Schedule with slack
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In our enhanced SO, the schedules produced add slack along the route. Figure 3 illustrates the same
notional stop sequence as in Figure 2, but with slack added at each ground stop. A delay at a particular
node impacts the departure time at thgt fstop along the route as well as the arrival time at the following
stop. However, because of the slack inserted the disruption ends tiemr@eparture time at the second
stop remains within the scheduled window and all subsequent stops are unaffected.

The resulting SO schedules will necessarily be less effective/efficient with added slack because of
additional lateness; however, the detailed end solutions from the stochastic simulations may be more
effective. A key goal of our enhanced SO is to determine how much slack to add without making the
solution less efficient overall than necessary. The optimal solution without slack is often too tight.
However, adding too much slack or adding it naively will cause unnecessary lateness and increases in
cost We have created several different slack heuristics in order to explore different approaches (based on
different intuitions) to determining where to insert slack and how much slack to insert, including:

1. Even dack: Our simplest heuristic adds the same amount of slack to every stop along the route.
This approach captures the intuition that many types of delays (such as weather or equipment
failure) can occur at any time and as such are equally likely across the route.

2. End-of-route delay: While even slack can be effective at accommodating delays wherever they
may occur, anotheéntuition is that the need for slack may occur more toward the end of the route
(e.g., as network congestimencountered or as executidely effects accumulate)ur second
heuristic adds no slack in the beginning of the route,dratiually increases the amount of slack
in the middle of the route, and adds a larger amount of slack for stops toward the end of the route.

3. Congested-forward slack: The intuition behind the congestHforward slack heuristic is that
unexpected delays, and therefore propagated delays, tend to occur after congested locations on a
route.The heuristithas several implementations. One is to only slddk to stops on a route that
occur after a congested locatioA second(called congestetbrward-scakd)is to increase the
amount of slack at stops after each successiveested) location the route visita third (called
congestedorwardtaperedl reduces the amount of slack after cansige noneongested stops.

A fourth implementation uses the scaled and tapered policies together.

4. Jack budget: All the previous heuristics have the SO determine specific slack amounts at specific
nodes along the route. However, a different intuitioth& this imparts a certain amount of
rigidity to the mediurdidelity SO schedule that may not be appropriate given the extra
knowledge that is available to the detailed AMP scheduler. Our fourth key approach is to identify
a certain total amount of slack to insert in an SO schedule, but then allow the detailed AMP
scheduler to vary where along the route to place that slack when computing the baseline schedule.
This allows, for example, instantaneous estimates of congestion computed in AMP to influence
where the slack is placed. This slack budget approach is implemented an adobtisivalint in
the MIP, and as an enhancement to the AMP detailed scheduler.

These heuristics have been prototyped to demondeatsbility. However, whilethey provide
approaches tovarying the amount of slacklong the route, work continues on determining the actual
amounts of slack to apply. Our plan is to leveraigtorical data p average delays at differelocations
as well as to empirically test out the impact of different slack vatue®ur robustness/flexibility
assessments) order to find an appropriate balance between robustness and inefficiency.

33 Network |solation

Our third approachot generating candidate schedulesoigsolate the locations into distinct networks,
assigning a set of aircraft to fly only to/through a subset of locations, rather than allowing any aircraft to
go to any base. This approach is much like an airline with a hubpake- network assigning aircraft to

only a single hub and hiang as few aircraft as possible travel between different hubs.
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Sometimes an entire airport becomes either unavailable, such as due to weather or an insurgent attack,
or heavily congested. The more aircraft scheduled to use that airport, the more routes are impacted by the
closure/delay, and the worse the final result becomes. By isolating bases into separate networks, we
reduce the impact to the overall schedule. Only the few aircraft using that base are affected, with no
effect on the rest of the schéelu

There is a tradeff involved here. By enforcing this segmentation, we disallow possible route
combinations. As a result, the overall schedule will not be the “optimal” deterministic one. However, we
expect that when reatorld events interfere wh the planned schedule, this approach will perform better
than one optimized for a perfect world.

Our network isolation method begiwith the set of pickumhop off pairs and builda connectivity
graph (matrix) showing which bases are linked to easbrotWe make a connection between two bases
if there is a requirement for a pickup at one to be delivered to the other. This graph may not be fully
connected. When it isn't, the separate falbnnected portions make up our initial sugiworks. Figure
4 shows an example of this. The different colors highlight the “natural” sub-networks from the
requirements set.Depending on the requirements, one or more of these “naturaliesworks may
contain an undesirably large number of bases. When that happens, we can subdivide them further, having
only one or two bases overlapping and being assigned to more than one sub-network.

Figure 4: Requirements graph.

The next step is to assign a home base and-aouém base to each saktwork. A pair of bases is
selected based on the average route distance for each requirement, with some internal logic to balance the
overall utilization of each home base and the capacity needed to satisfy all the requirements. There may
be more sulmetworks than available home bases, so it is possible for more than emetwaolk to be
assigned to the same home base. However, what is not allowed is foranechase to be paired to
more than one home base.

The third phase, countertuitively, is to consolidate the sutetworks. The rationale is this: The
more segmented the networks are, the fewer routes can be generated, and the further from optimal the
final solution will be. Hence, by performing some reconsolidationcare restore some of the route
generation flexibility and get a better solution while still keeping the most important aspects of the
network isolation. This consolidation can be one of four types:

1. Do no consolidation at all. Maintain complete segregation among the sub-networks.

2. Subnetworks which originate from the same home base can use aonyterbase paired with
that home base.

3. Subnetworks which originate from the same home base are consolidated into a single larger sub
network. The difference b&een this option and the previous one is that a single route can
satisfy requirements from distinct initial sabtworks.

4. An aircraft assigned to one home base can use any base and fulfill any requirement, so long as it
does not use an @pute base assigd to a different home base. This option gives the most
flexibility in route selection while keeping the important isolation of segregating the transoceanic
refueling stops.
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The final phase involves generating the routes used by thewiiih the Schede Optimizer.
During route generation, the network isolation restricts which missions can be joined into a single route.
When prepending the aircraft home base to a requirement mission, the only route generated is the one
from the home base assignedtiattrequirement’s subetwork. Thisrestriction results in an immediate,
massive reduction in the number of routes generathen appending pickup-drop off pairs to the
growing route, the network isolation again restricts which routes can be genieratgeral ways. First,
regardless of the network isolation option, new missions are limited to those that can be reached via the
restricted set of eroute bases. Second, the specific network isolation option limits which potential
pickup-drop off pairs can be appended. Finally, the return trip home is limited to certairntestops.

We have prototyped the network isolation capability to demonstrate its feasibility, and plan to
empirically explore the degree to which different sdtwork consolidatin approaches impact the
robustness and flexibility of our solutions.

4 STOCHASTIC SIMULATION

AMP currently contains a deterministic simulation that executes scheduled missions over time in tandem
with the scheduling process. Specifically, during the run of AMP, the simulation clock moves forward
one day at a time. Scheduling decisions are made each day and those decisions, as well as any earlier
ones, are simulated as appropriate for that day. To create an effective stochastic simulation capability, we
designed arefficient enhancement of the current AMP scheduling approach, where a singleudMP r
becomes a single stochastic run. In this “Stochastic AMP” approach, the core scheduling process of AMP
is used to apply and enforce the myriad of constraints built into that process. Rather than using only the
deterministic values of the current codmwever, the scheduler randomly determines certain key
variablesfor each mission, such as the ground time spent by a particular aircraft at a particular airport on
a particular day. These random values are used within the AMP algorithm to schedule all the specific
details of the mission, which are then simulated as usual by AMP.

To generate and keep track of the random values, we integrated a Drools rule engine with AMP. The
Drools rules specify the types of random factors to apply at particulaspnitite code, and enable the
simulation to draw from the appropriate probabitignsityfunctions for those factors. This approach
applies an important consistency rule to ensure that the stochastic simulation is meaningful: The AMP
constraint schedulas currently designed to perform a search over multiple possible ways to schedule a
mission. To ensure that the search is not simply choosing the best set of random variables, all random
draws for that mission are recorded. If a particular draw has been made for that mission at a particular
port on that particular scheduling day, then the exact same value ifousedt mission on that day at
that port every time the search explores that option (e.g., when considering different routes that overlap at
that port, or when exploring alternative scheduling decisions for the same route)..

This approach enables the entire AMP scheduling process itself to introduce stochasticity while
producing a valid scheduling solution. Anportant additional requirement tfis approach is the ability
for AMP to accept a partial or fully defined schedule and then seek to match it as best as possible during
the stochastic scheduling process. A single “Stochastic AMP” run will accept a prior schedule,
schedule/simulate it @nday at a time while determining stochastic events and computing stochastic
values (particularly certain ground times anereute times) based on a Drools faesse. The fadiase is
a separate component that contains the stochastic modeling rules to apply and the current stochastic state
across all missions, ports and days. The final schedule produced is a complete schedule where the specific
scheduling decisions (e.g., how long spent at each port) reflect the stochastic events.

41  Modeling Underlying Factors

At the simplest level, a stochastic simulation merely requires that certain elements in the simulation be
randomly varied. In a scheduling problem as complex as the AMP problem, however, there are a number
of elements that are meaningfully intefaied, and hence should be meaningfully im#ated in a

2360



Hussain, Sommer, Collins, Baum, Shapiro, Ogden, Dea, Vela, and Chang

stochastic simulation Within our approach, certain random variations asell where appropriategn
underlying stochastic factorather than solely @adependent random events.

The easiesto-understand example of an underlying stochastic factor is weather. Say the simulation
“rolled the dice” and determined that there was a deldye to weather of a certain length for a given
mission at a given airport on a given day. Consider now tktenmssion at the same airport on the same
day. A naivestochasticsimulation might randomly roll the dice with no regard for the previous roll and
come up with no delay due to weather. While the overall effect of the rolls might capture the random
variability at the large scale based on the underlying probability defwsistions, that naive simulator
would not provide meaningful insights into the effect of weather on a planned schedule. A more
sophisticatedstochasticsimulator, by contrast, would itgad “roll the dice” to determine if there was
weather at that port on that day, and then randomly determine the impact of that weather on all missions
flying through that port on that day. This approanhldesthe analyst to more easily see the impdct o
weatherrelatedeffects on a schedule, as well as provide a more meaningful assessment of how robust a
schedule was to realistic weather eventdowever, it does not require a complete model of weather
around the world to be createdust a consistertteatment of related stochastic draws at shared locations.

4.2 Stochastic M odel

We have developed a stochastic simulation that uses the undddgiogapproach based on a stochastic
model derived from real-world dat@here argwo highlevel types of variability that typically occur in

the real world- changes in requirements and delays during mission execution. Data on the former may
be obtainedrom the Joint Operation Planning and Execution System (JOPES)ndatstandingnd
incorporating this type of variability into a stochastic simulation is a significantly complex problem.
Much more tractable to understand and model is the data on mission delays, which is available from the
Global Decision Support System (GDS%Jerce, we focused on modeling delays.

A GDSSdata setwas collected containing large number (~260) of departure delay codeach
specifying a different reason for a delay (e.g., equipment issues, weather, crew-$sueser 170,000
missions. For ewg stop at which a mission is delayed more than 15 minutés departure beyond
what was initially planned, GDSS in principle contains a delay code and delay amount corresponding to
the primary reason for that delay. A detaithlysis and logical greing of this data was performed to
produce amntology (see Table 1) for interpreting the diverse delay codes into an actionable framework

Tablel: Mission delay ontology.

Number of Aircraft /Missions Affected One / Many

Relation to Aircraft/Mission Internal / Environmental
Disruption Process Probabilistic / Deterministic
Causality Direct / Indirect

Service Delay (or Shift) Yes/Yes (shift)/ No
Maintenance Delay Yes/ No

Location Delay Occurred Local/ En-Route/ Destination

An important aspect of this ontology is that it enables multiple delay codes with the same
classifications to be grouped together to determine a single common probability density function. In this
way, specific delay codes can be abstracted out of the stmchanulation. Instead, common types of
random variations can be modeled instead. This approach provides significant flexibility in both the data
analysis and the stochastic modeling method. Another important aspect of this ontology is that it can be
used to filter out data that will not be of specific use in the stochastic simulation approach we are using.
In our current model, three key types of delays codes are not included:
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o ‘“Deterministic” delays effects are ignored since they are already compytedMP. For
instance, the AMP automatically computes the crew rest times so that they obey constraints. So,
if there are certain random delays in a mission that result in the need for the crew to rest, then
AMP will already automatically insert that rest.

e Delays that occur at “Destination” locations are ignored since the current AMP scheduling
algorithm sequentially makes all decisions at the current node independently of the next node.

o ‘“Indirect” delay effects are ignored since they are already computed within AMP (e.g., a delay
caused by another aircraft’s delay will already propagate in AMP).

Further, we used only data for the first delayed sorties on each mission to avoidabouibieg
delays and excluded sorties for which the delay codes wergamuisly defined. This ontologyas
usedto compute initial probability density functioBDFs)representing the stochastic variability for six
different delay variables

The delay in the start of service for a plane at a port.

The increase in service duration for a plane at a port.

The total ground delay for a plane at a port.

The total ground delay for multiple planes at a port due to weather.

The total ground delay for multiple planes at a port due tonveather factors.

The departure deldpr a phane flying between two ports due to en-route weather factors.

ogkrwnE

The resulting PDFs for each delay type are shown in FigureThase PDFs were generated using
only the 50 most frequentlyecurring delay codes in the data set. Each PDF is drawn as a cumulative
distribution function (CDF). All of these six distributions are statistically different distributions, which is
a valuable result since it means that it is meaningful to distinguish these variables from each other in our
model. Together, these distributions account for 62% of theorapagated delay (matching our criteria
above) in the data set, and form a strong basis for our initial stochastic model of delay. As we continue
our work in our second year, the remaining codes will be classifiecdded to our model.
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Figure 5:(a) Cumulative distribution functions for the six stochastiday variablesvithin our model
(b) Breaking up a PDiato portions that can be drawn from separately.

Severalof the PDFs have a multhodal nature (see Figure 5b). Our modelsubese modes to

furtherbreak up the overall distribution into portions that can be randomly drawn from in an independent
manner(e.g., the “Good”, “Bad”, “Ugly” portions shown in Figasb). This is of particular use for delay
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factors that affect many aircraft since it enables us to ensure that different aircraft experience an
underlying delay issue of similar magnitude (e.qg., if the weather at a port on a given day is “Bad”, all
affected aircrafait that porexperience delays drawn from the “Bad” portion of the distribution).

5 ROBUSTNESS/FLEXIBILITY ASSESSMENT

The ultimate goal of ouassessmerdpproachs to provide a value that indicates the “goodness” of the
original baseline schedule so that it can be meaningfully compared against other baseline schedules and
the “best” one chosen. “Good” and “best” will ultimately reflect a tradeoff between the quality of the
solutions on the primary performance criteria (e.g., lateness, cost) and ability of a baseline schedule to
appropriately(i.e., robustly and flexiblyhandle realistic stochastic eventsle use several measurfes
assessing the qualitygbustness and flexibility of a given baseline schedule.

Measuringsolutionquality is straightforward using statistical measuné&ey performance variables
(e.g.,timelinessof delivery, amount of cargo movednd cost)across the set of stochastic schedules.
However, measuring the ability of a schedule to handle stochastic evapte done in several ways:

e Pre/post differences. Computing the difference between the baseline (“p&Schasticity
schedule and thiastantiatedschedules (“postétochasticity to get an estimate of how much has
to change in the former to produce the latter. The schedule content compaeasane (see next
section)can be viewed as an estimate of “the number of phone thadis'would be needenly
human schedulers in real life to handle corresponding delay events.

e Sochastic dial: Determining how much stochasticity can be applied to the baseline schedule
before solution quality deteriorates below an acceptable level. We can vary this “stochastic dial”
by increasing or decreasing the number and magnitude of the variations allowed. A baseline
schedule that produces better quality stochastic solutions under high stochasticity is deemed more
robust than one that produces worse ones.

e Repairability: Estimating the scale of repairs that must be made to the baseline schedule in order
to produce a high quality solution. While performing the stochastic scheduling, multiple
alternative scheduling choices may be considered (e.g., different ways to handle an issue that
arises where the schedule needs some type of repair). Given a particular repaimalgorith
baseline schedule that tends to require more, extensive repairs is deemed less flexible than one
that requires fewer, simpler repairs. The key to this measure is deriving an estimate of repair
complexity from the actions of the repair algorithm itselThe measure is effectively a direct
measure of “the number of phone calls” needed to handle the random events, and is related in
principle to theschedule content comparisoretric

We have primarily focused on creating the schedule content comparéasure and demonstrat
its initial feasibility. As we proceed, we will explore the correlation between the repair measure and the
schedule content comparison measure.

5.1  Schedule Content Comparison

A key concept in the assessment of robustness is the quantification of differences between baseline
schedules and the stochastic schedules resulting from simulation of disruptions and replarating.a
robust schedule is onihat can preserve quality (lateness, resource utilization efficiency, etc.) while
requiring a minimal number of changes from the planned bas@linée metrics for schedule quality are
widely known and employed in airlift planning, metrics for schedule content difference are less
commonly used.

Techniques for quantifying the difference between a pair of entities often assign abstract “cost”
values to operations by which one can be “edited” to resemble the other. The technique is most often used
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to quantify differences betweaharacter strings (Levenshteif66) or graphs (Gao et al. 2010), but the
notion can be made to apply to airlift schedules as well. That is, the difference between a baseline and
stochastic schedule can be seen as resulting from a series of three types” afptditions (1)
modifications to mission parameters, (2) deletion of planned missions, and (3) insertion of new missions.
A logically consistent cost scheme would assign lower dosksss impactful changes, for example a

slight mission delay relativeo a complete nsision cancellation. Specific cost values for operations
affecting scheduled missions are best defined in consultation with subject matter experts, to assure that
the resulting measures of schedule differences capture intuition about the severity oofrdfferent

types of mission changes.

Given a scheme for assigning costs to mission changes, differences in schedule content can be
associated with the “edit distance” arising from the sequence of changes by which the baseline schedule is
realized withinthe simulation Sq for example a schedule with slack inserteding thetechniquesof
Section 3.2 tends to absorb unexpected delays, resulting in fewer mission failures related to asset
unavailability. Since fewer missions would need to be modified or cancéfledcontent comparison
measure would tend to be lower, capturing the benefit of that particular robust scheduling approach.

6 CONCLUSIONS

We have presented an efftotdevelop prototype capabilities to enatfle Analysis of Mobility Platform

(AMP) to support the generation of schedules that are more robust and flexibleworléaxecution

events. Our approach leverages stochastic simulation as the basis for assessing the robustness/flexibility
of schedules, and applies several different oagtfor generating potentiallpbust candidate schedules,

as well as several methods for assessing that robustness/flexibility using the stochastic simulation results.
In our first year of effort, we have demonstrated the feasibility of the component capabilities of our
process. Our goal for our second year is to build out those capabilities and integrate them in a prototype
system that producesliableassessments of robustness and flexibility to support AT21 scheduling.
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