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ABSTRACT 

In practice, the complexity of the flexible job-shop scheduling problem is quite large, i.e., it is often 
impossible to find the optimal solution in a reasonable time. But for small problems the optimal solution 
can be found in a very short time. In our study, a simulation-based segmentation procedure divides the 
problem into several small subproblems, and then a branch and bound method is used to solve the 
subproblems one after another. The solutions of the subproblems make up the solution of the whole 
problem. A method to determine the size of the subproblem is provided. The heuristic for the branching is 
developed from the machine overlapping features. The experimental results show that the approach 
performs better than some decision rules. 

1 INTRODUCTION 

In the flexible job-shop scheduling problem (FJSP), an operation may be processed on several machines. 
These machines form a machine set. Comparing to the job-shop scheduling problem, the raised issue is 
the machine allocation, i.e., assigning each operation to a machine from the machine set. In this study, we 
will consider a special case in which the machine sets can be overlapping. In other words, one machine 
can process different types of operations. This adds some new features to the problem. The FJSP is one of 
the most important combinatorial optimization problems. It has been proved to be a NP-hard problem. 
Usually FJSP is formularized as a mixed binary integer linear programming problem (MBILP) (Demir 
and Kürşat İşleyen 2013) in which the machine allocation variables are binary and the starting times of 
the operations are continuous. The disjunctive constraint relaxation also generates some binary variables. 
There are some exact methods to solve the MBILP problem, such as branch and bound (B&B) (Brucker, 
Jurisch and Sievers 1994, Pan and Chen 2005), cutting-plane, branch and cut (Karimi-Nasab and 
Seyedhoseini 2013), and so on. Most of these methods are based on the simplex algorithm which is not a 
polynomial time algorithm for linear programming. They are also no polynomial time algorithms for 
MBILP. Therefore, because the size of the practical FJSP can become very large, these methods are 
unable to find an optimal solution in a reasonably short time. Thus, in order to shorten the computing 
time, researchers are trying to find an approximate optimal solution instead of the exact solution. Hence, a 
variety of heuristic procedures and meta-heuristic procedures have been used. Decision rules are typical 
heuristic procedures (Holthaus and Rajendran 1997). The meta-heuristics procedures include local search 
(Murovec and Šuhel 2004), tabu search (BoĪejko and Makuchowski 2009), simulated annealing (Satake 
et al. 1999), genetic algorithms (Qing-dao-er-ji and Wang 2012), ant colony algorithms (Rossi and Dini 
2007), particle swarm algorithms (Lin et al. 2010), and so on.  
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In this study, we introduced a totally different approach. The reason that makes the exact methods 
slow is the big size of the problem. As a consequence, our general idea is to divide the big problem into 
several subproblems which are smaller and can be solved using exact methods in a short time. Using the 
exact methods, the new features raised by the overlapping machine sets are used to generate a heuristic 
for speeding up the solution procedure. We solve the subproblems one by one. The solutions to the 
subproblems make up the solution to the whole problem. The paper is structured as follows. In Section 2, 
the problem is described in detail. How to divide the big problem is illustrated in Section 3. Section 4 
introduces the B&B and some heuristics to solve the subproblems. Experiments are carried out in Section 
5. In the last section, we conclude our study. 

2 PROBLEM DESCRIPTION 

In this study, there are several types of jobs. Each type of job contains different operations. The 
operations must be carried out in a fixed sequence. Each type of operation can be processed on one of 
several machines and the processing times for the operations are different on different machines. 
Overlapping machine sets are considered in the problem. Here we use an example to describe the 
overlapping machine set problem. Let us assume that two operations A and B need to be processed. A can 
be processed on either machine 1 or machine 2 while B can only be processed on machine 2. If we assign 
machine 2 to A, operation B has to wait for operation A to finish. If we assign machine 1 to A, B won’t 
wait. The decision influences the performance of the shop heavily. When the number of the operations 
and the machines increases, this problem becomes more complicated. It is worth focusing on this special 
case. There are often two types of objectives to an FJSP. One is related to the completion time of the jobs, 
and another is about the due dates. Our objective is to minimize the average completion time of the jobs. 
In addition, the FJSP contains two separate tasks: job sequencing and machine allocation. The job 
sequencing decides which operation should be processed first on a machine when there are several 
waiting jobs. The job sequencing will be done using the priority rules.  

The size of FJSP depends on the operation number and the alternative machine number. For instance, 
if there are 100 operations and each operation has 3 alternative machines, the search space (number of the 

feasible solutions) for the machine allocation will reach 1003 5.15 47E  . It is impossible to use 
exhaustive search methods. To use branch and bound, we have to be lucky enough because the worst case 

is the exhaustive search. As we all know, 10 10010 3 3  . Therefore if we can divide the 100 operations 
into 10 groups each group includes 10 operations, i.e. there are 10 subproblems now. Because the size of 
the subproblems is really small, even the exhaustive search is capable of solving them. In our study, we 
will use simulation and a special roll-back technique to divide the operations. The subproblems will be 
solved by B&B with a particular branching heuristic. 

3 PROBLEM SEGMENTATION BASED ON SIMULATION 

3.1 Size of Subproblems   

The first question addressed for the problem segmentation is to determine the size of the subproblems. As 
we mentioned before, the size of the subproblem will increase dramatically while the operation number 
just has a very tiny change. Figure 1 illustrates this tendency. In order to deal with this situation, a 
measurement called AT+1 (additional computing time caused by increasing one operation) is introduced 
to our study. In Figure 1, we can see that if we change the operation number from 13 to 14, the value of 

the AT+1 is about 63.2 10r   , where r is the computing time for evaluating one feasible solution. If we 

change the operation number from 20 to 21, the value of the AT+1 is about 96.5 10r   . It is about 2000 
times as much as the first case. Obviously, if we need, for instance, one more hour to solve the 
subproblem just because we add one more operation, this will be unreasonable. Thus we assign a maximal 
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value to AT+1.  Increasing the number of operations one by one, the first appeared number whose AT+1 
is bigger than the maximal AT+1 is the maximal operation number in the subproblem.  
 On the other hand, the subproblem should include as many operations as possible so as to ensure that 
a better solution to the whole problem is achieved. Therefore, we also assign a minimal value to the AT+1. 
The first appeared number whose AT+1 is smaller than the minimal AT+1 is the minimal operation 
number. By using the minimal and maximal AT+1 we obtain a range for the operation numbers in the 
subproblems. 
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Figure 1: Relationship between search space and operation amount. 

According to the application fields, there is always one restriction on the maximal computing time of 
the whole problem. So the restriction can be used to narrow the range we obtained before. Assuming that 
each subproblem contains the same number of operations and the average number of the alternative 
machines for the operations is m, the following simultaneous inequalities can be used to determine the 
range of the subproblems’ size. In the equalities n denotes the size of the subproblems, i.e., the operation 
number in the subproblems. N is the total number of the operations. T is the maximal computing time of 
solving the whole problem. min and max are the minimal and the maximal value of the AT+1. Generally 

the number in the center of the range is adopted. It is possible that there is no solution for the inequalities. 
In this case we have to either decrease min or increase T. Decreasing min  leads to the reduction of the 

operation number in the subproblems. So it will lower the quality of the solution for the whole problem. 
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3.2 Simulation-based Segmentation 

According to the rough estimates for the starting times of the operations, the operations can be simply 
divided into several groups. The rough starting times are usually calculated without consideration of the 
waiting times or by using waiting time estimates. However, very often delaying one operation may 
improve the whole performance. Moreover, with this simple segmentation we will have to compute the 
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initial state for each subproblem. Thus, in our study we use simulation to divide the operations. The 
segmentation procedure is shown in Figure 2. 

 
simulation

roll back
decision point

 

Figure 2: Simulation-based segmentation of the operations. 

A list is created for storing the operations we selected. After the simulation starts, once an operation 
needs to be assigned to a machine from several alternatives, the operation will be put into the list. In the 
simulation, the decision is made according to an allocation rule. The simulation will pause if the number 
of operations in the list reaches the target number which has been determined in Section 3.1. The 
operations in the list make up a subproblem which will then be solved by the B&B algorithm. The 
solution of the subproblem indicates the machine allocation results for the operations. After that the 
simulation will roll back to the first decision point in the list and continue from that point. In the 
simulation the operations in the list will follow the machine allocation decision made by the B&B 
algorithm. Once a new operation appears and the operation has to make the machine allocation decision, 
we empty the list and put the new operation into the list. The decision in the simulation is still made by 
the rule. Meanwhile we save the current state of the simulation model. The state will be treated as the 
initial state of the new subproblem. When the number of the operations in the list reaches the target 
number, the simulation pauses and the new subproblem is solved by the B&B algorithm. The simulation 
rolls back to the first decision point in the list and continues. The remaining operations can be treated in 
the same manner. The procedure will stop if all operations have been assigned to a machine. 

In the simulation, the lowest request (LR) is introduced as the allocation rule. The machine with the 
lowest request will be selected. For example, if one operation can be processed on machine 1 and 3 other 
machines, we assign a request value of ¼ to each machine. If machine 1 is also requested by another 
operation which has 3 alternative machines in total machine 1 is given another request value of 1/3. 
Finally, we add these values together for each machine and the results indicate the request amount of the 
machines. If there are several jobs waiting in front of the machines, we add the number of the waiting 
jobs to the request amount. The machines which have the smallest request amount will be selected. 

3.3 Enhanced Segmentation Procedure 

From Figure 2 we can easily find that a new decision point may occur before the operations, which have 
already been assigned to machines, are all finished. This will influence the performance of the whole 
solution directly. In order to avoid this situation, we improved the procedure. Another list is added to the 
procedure. To distinguish from the list mentioned above, we call this list the decision execution list (DEL) 
and call the list above as the decision making list (DML).  In the simulation, while a decision made by the 
B&B is executed, the related operation will be put into the DEL. When a new decision point appears, we 
will check the DEL. If the number of the operations in the DEL is less than a given number S, we will 
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empty the DML and put all operations from the DEL into the DML. Then we clear the DEL. In the 
subsequent simulation, once a decision needs to be made, no matter if the decision has been made by the 
B&B or the decision has to be made by the rule, the related operations will all be put into the DML. If the 
operation number in the DML reaches the target number n, the subproblem will be solved. At that time, 
the simulation will roll back to the first decision point in the DML. We have to mention that this point is 
not the newly appeared decision point but the point where we have made the decision before by the B&B. 
Only while a new decision point occurs and the number of operations in the DEL is greater than the given 
number, we will empty the DML and the DEL, and put the new operation only to the DML. After the 
subproblem is solved, the simulation will roll back to the first new decision point. So in this way we can 
make sure that the number of the executed decisions before a new decision point occurs is greater than the 
given number S. The improved procedure after the first roll back is given here. The given number S 
describes the distance between two successive subproblems. 
 

After the first roll back 
Continue simulation 
Set repeat to false 
If a decision made by the B&B is executed and the repeat is not true Then 
 Put the related operation into the DEL 
End If 
If the first new decision point appears And the repeat is not true Then 
 If size of the DEL > S Then 
  Clear DEL 
  Put the related operation into the DML 
 Else 
  Put the operations in the DEL into the DML 
  Clear DEL 
  Put the related operation into the DML 
  Set repeat to true 
 End If 
End If 
If a new decision point appears And it is not the first one Then 
 Put the related operation into the DML 
End if 
If an old decision point appears And the repeat is true Then 
 Put the related operation into the DML 
End if  
If size of the DML = n then 
 Pause simulation 
 Solve the subproblem represented in the DML by the B&B 
 Clear the DML 
 If all operations have been assigned machines Then  
  Go to Exit Procedure 
 End If 
 Roll back the simulation to the first decision point in DML 
 Go to Continue Simulation 
End if  
Exit Procedure 

4 SUBPROBLEM SOLVER USING BRANCHING AND BOUNDING 

4.1 Formulism of Subproblems 

The objective of the subproblems must coincide with the objective of the whole problem. Thus the 
objective is set to minimize the average completion time of the selected operations. The difference to the 
general FJSP is that the initial state of the shop is not empty in the subproblems except the first one and 
the machines have the overlapping characteristic. Some machines may be processing the operations or 
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their queues may still have waiting operations. In the subproblems we calculate for each machine an 
available time which is the point of time that all the waiting operations are finished. The operations in the 
subproblems can start on a machine only after its available time.  
 The mathematical programming model of the subproblems is as follows. ( , )o j i is the i-th operation 

of job j. O is the set of the operations in the subproblems. n is the size of O. ( , )o j iC is the completion time 

of the operation ( , )o j i . ( , )o j i is the starting time of the operation. ( , ),o j i mp is the processing time of the 

operation on machine m. ( , )o j iM is the alternative machine set for the operation. ( , ),o j i m is the allocation 

variable. If the allocation variable is 1, it means the machine m is assigned to the operation ( , )o j i ; 

otherwise, the machine m is not assigned to the operation. m is the available time of the machine m. 
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The last constraint says that the operations in the subproblems can start on a machine only after the 

machine becomes available. The second from the last constraint means that one machine can process only 
one operation at a time. It is a disjunctive constraint. The third from the last constraint is the consequence 
constraint which means that one operation can start only when its predecessive operation has finished. 

4.2 Branching Tree 

If the size of the subproblem is quite big, there is no efficient exact algorithm to solve the above model. In 
our study the size of the subproblems obtained from the simulation is relatively small. So it is possible to 
use the exact algorithm to solve them. The B&B algorithm is a simple and intuitive exact method to solve 
the small machine allocation problems. We adopt it in the study. The branching tree is structured as in 
Figure 3. The tree has several levels and each level represents one operation. Every branch at one level 
means the selection of one alternative machine for the corresponding operation. One path from the root to 
any of the leaves is one solution. The operations are in the same sequence as they are collected. The 
highest level corresponds to the first collected operation. 

In addition, while branching one node we use some heuristics to remove some of the node’s branches. 
In other words, we remove some machines from the operation’s alternative machine set according to the 
state of the job shop. The following three heuristic rules were used. 

Rule 1 Comparing with two machines which are only be used by the concerned operation, the 
machine which can finish the operation earlier will be kept and another machine will be removed from 
the machine set. 

Comparing with two machines in which one machine (exclusive machine) is used only by the 
concerned operation and another machines (shared machine) is shared by other operations, we calculate 
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the latest completion time and the earliest completion time for the concerned operation on the shared 
machine.  

Rule 2 If the completion time on the exclusive machine is later than the latest completion time on the 
shared machine, we will keep the shared machine and remove the exclusive machine.  

Rule 3 If the completion time on the exclusive machine is earlier than the earliest completion time on 
the shared machine, we will keep the exclusive machine and remove the shared machine. 

 

O
1

O
2

O
n

 

Figure 3: Branching tree of the machine allocation problem. 

4.3 Lower Bound and Upper Bound 

The key idea of the B&B algorithm is to determine the lower bound and upper bound for the tree node. If 
the lower bound for some node A is greater than the upper bound for some other node B, then A may be 
safely discarded from the search. This step is called pruning, and we carry it out by maintaining a global 
variable (shared among all nodes of the tree) that records the minimum upper bound found so far. Any 
node whose lower bound is greater than the minimum upper bound can be discarded. 
 The lower bound for the concerned node is computed in the following way. First, each of the 
remaining operations is assigned to a machine which can process the operation earliest. Then, if several 
operations will use the machine, we assume that the machine can start them together at the same time. At 
last we calculate the average completion time involving both the remaining operations and the assigned 
operations. It is obvious that the average completion time is the lower bound. For some assigned 
operations which are assigned to the same machine, FIFO rule is applied. The first assigned operation will 
be processed first. The remaining operations (if there are successive operations) won’t start together. The 
successors have to be processed after their predecessors. 
 For the upper bound calculation, each of the remaining operations is assigned to a machine which can 
process the operation last. If several operations will use the machine, we assume that the machine will 
sequence them using the longest processing time (LPT) rule and process them one by one in the sequence. 
The LPT rule will result in the maximal average completion time on the single machine. 

5 EXPERIMENTS 

A job shop model is created to evaluate the proposed approach. In the model there are 8 machines and 
2 types of jobs, type A and B. Type A contains 3 operations while type B contains 4 operations. Each 
operation has 1 to 4 alternative machines. The operations need different amounts of time if they are 
processed on the different machines. The machine sets for the operations are heavily overlapping. The 
shop plans to produce 13 jobs of type A and 15 jobs of type B. So there are in total 99 operations. The 
average number of the alternative machine for the operations is 3. So the size of the search space is about 
1.7E+47. According to the tests, the computing time of dealing with one feasible solution in the search 
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space is 4.2E-6 seconds. The time needed to evaluate all feasible solutions will be 2.3E+34 years. 
Therefore, we have to divide the problem into several subproblems. 

Table 1: Machine sets for the operations. 

Job Type A Job Type B 
O1 O2 O3 O1 O2 O3 O4 

M1,M3,M4 M2,M4 M3,M5,M6 M1,M7,M8 M3,M5,M6,M8 M3,M6,M7 M4 

 
We use the inequalities in Section 3.1 to calculate the ranges of the subproblems’ sizes. The maximal 

time we can bear to solve the whole problem is 60 minutes; max is 20 minutes; min is 20 seconds. We 

determine that the range of the operation number n in the subproblems ranges from 14 to 17. We assume
0.65S n  . For instance, if we adopt 17n  , we have to divide the problem into 6 subproblems. The 

sum of the search spaces of these subproblems is 7.8E+8 which is far smaller than the search space of the 
whole problem. 

We carry out the experiments for every n from 14 to 17 using both the exhaustive search and B&B to 
solve the subproblem. The allocation rule LR is also used to solve the whole problem. The results are 
compared in Table 2. Because of the enhanced segmentation procedure, some subproblems may be 
regrouped and solved many times. So the computing time using the exhaustive search when 17n   is 
longer than our expected maximal time. The time using the exhaustive search is the worst case of the time 
using the B&B.  

Table 2: Experiment results. 

Approach Computing Time /minutes Objective /hours 

Heuristic Rule LR 0.14 2.52 

    
Subproblems 

+ 
Exhaustive 

search 

n=14 4.69 2.08 

n=15 15.01 2.10 

n=16 46.32 2.01 

 n=17 123.71 1.92 
    

Subproblems 
+ 

B&B 

n=14 0.32 2.08 

n=15 1.48 2.10 

n=16 6.71 2.01 

n=17 4.80 1.92 
 
From Table 2 we can see that the heuristic rule uses only several seconds. That is because the 

heuristic rule is just a one-time simulation. However our subproblem approach can always achieve the 
better objective than the heuristic rule does. And the trend is that the bigger n results in the better solution. 

6 CONCLUSIONS 

The proposed approach is inspired by an obvious fact that / , 2, 2N N nm nm m n   while N is big 
enough. In practice the number of operations N is often greater than 50. So the sum of the computing time 
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of the subproblems is far shorter than the whole problem. The simulation-based segmentation procedure 
divided the operations into several groups. The procedure can ensure that the operations in the same 
group are the only operations in the related time period while the final machine allocation decisions are 
followed. The size of the subproblems we determined can guarantee that we obtain the solution within the 
maximal computing time, even if the B&B works in the worst case. We obtained the optimal solution to 
each subproblem. Even though the sum of the sub solutions does not mean the optimal solution to the 
whole problem, comparing to the decision rule, the approach performs considerably better. 
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