
Proceedings of the 2015 Winter Simulation Conference
L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, eds.

FLEXIBLE JOB-SHOP SCHEDULING WITH OVERLAPPING MACHINE SETS

Tao Zhang
Shufang Xie
Oliver Rose

Universität der Bundeswehr München

Department of Computer Science
Neubiberg, 85577, GERMANY

ABSTRACT

In practice, the complexity of the flexible job-shop scheduling problem is quite large, i.e., it is often
impossible to find the optimal solution in a reasonable time. But for small problems the optimal solution
can be found in a very short time. In our study, a simulation-based segmentation procedure divides the
problem into several small subproblems, and then a branch and bound method is used to solve the
subproblems one after another. The solutions of the subproblems make up the solution of the whole
problem. A method to determine the size of the subproblem is provided. The heuristic for the branching is
developed from the machine overlapping features. The experimental results show that the approach
performs better than some decision rules.

1 INTRODUCTION

In the flexible job-shop scheduling problem (FJSP), an operation may be processed on several machines.
These machines form a machine set. Comparing to the job-shop scheduling problem, the raised issue is
the machine allocation, i.e., assigning each operation to a machine from the machine set. In this study, we
will consider a special case in which the machine sets can be overlapping. In other words, one machine
can process different types of operations. This adds some new features to the problem. The FJSP is one of
the most important combinatorial optimization problems. It has been proved to be a NP-hard problem.
Usually FJSP is formularized as a mixed binary integer linear programming problem (MBILP) (Demir
and Kürşat İşleyen 2013) in which the machine allocation variables are binary and the starting times of
the operations are continuous. The disjunctive constraint relaxation also generates some binary variables.
There are some exact methods to solve the MBILP problem, such as branch and bound (B&B) (Brucker,
Jurisch and Sievers 1994, Pan and Chen 2005), cutting-plane, branch and cut (Karimi-Nasab and
Seyedhoseini 2013), and so on. Most of these methods are based on the simplex algorithm which is not a
polynomial time algorithm for linear programming. They are also no polynomial time algorithms for
MBILP. Therefore, because the size of the practical FJSP can become very large, these methods are
unable to find an optimal solution in a reasonably short time. Thus, in order to shorten the computing
time, researchers are trying to find an approximate optimal solution instead of the exact solution. Hence, a
variety of heuristic procedures and meta-heuristic procedures have been used. Decision rules are typical
heuristic procedures (Holthaus and Rajendran 1997). The meta-heuristics procedures include local search
(Murovec and Šuhel 2004), tabu search (BoĪejko and Makuchowski 2009), simulated annealing (Satake
et al. 1999), genetic algorithms (Qing-dao-er-ji and Wang 2012), ant colony algorithms (Rossi and Dini
2007), particle swarm algorithms (Lin et al. 2010), and so on.

2307978-1-4673-9743-8/15/$31.00 ©2015 IEEE

Zhang, Xie, and Rose

In this study, we introduced a totally different approach. The reason that makes the exact methods
slow is the big size of the problem. As a consequence, our general idea is to divide the big problem into
several subproblems which are smaller and can be solved using exact methods in a short time. Using the
exact methods, the new features raised by the overlapping machine sets are used to generate a heuristic
for speeding up the solution procedure. We solve the subproblems one by one. The solutions to the
subproblems make up the solution to the whole problem. The paper is structured as follows. In Section 2,
the problem is described in detail. How to divide the big problem is illustrated in Section 3. Section 4
introduces the B&B and some heuristics to solve the subproblems. Experiments are carried out in Section
5. In the last section, we conclude our study.

2 PROBLEM DESCRIPTION

In this study, there are several types of jobs. Each type of job contains different operations. The
operations must be carried out in a fixed sequence. Each type of operation can be processed on one of
several machines and the processing times for the operations are different on different machines.
Overlapping machine sets are considered in the problem. Here we use an example to describe the
overlapping machine set problem. Let us assume that two operations A and B need to be processed. A can
be processed on either machine 1 or machine 2 while B can only be processed on machine 2. If we assign
machine 2 to A, operation B has to wait for operation A to finish. If we assign machine 1 to A, B won’t
wait. The decision influences the performance of the shop heavily. When the number of the operations
and the machines increases, this problem becomes more complicated. It is worth focusing on this special
case. There are often two types of objectives to an FJSP. One is related to the completion time of the jobs,
and another is about the due dates. Our objective is to minimize the average completion time of the jobs.
In addition, the FJSP contains two separate tasks: job sequencing and machine allocation. The job
sequencing decides which operation should be processed first on a machine when there are several
waiting jobs. The job sequencing will be done using the priority rules.

The size of FJSP depends on the operation number and the alternative machine number. For instance,
if there are 100 operations and each operation has 3 alternative machines, the search space (number of the

feasible solutions) for the machine allocation will reach 1003 5.15 47E  . It is impossible to use
exhaustive search methods. To use branch and bound, we have to be lucky enough because the worst case

is the exhaustive search. As we all know, 10 10010 3 3  . Therefore if we can divide the 100 operations
into 10 groups each group includes 10 operations, i.e. there are 10 subproblems now. Because the size of
the subproblems is really small, even the exhaustive search is capable of solving them. In our study, we
will use simulation and a special roll-back technique to divide the operations. The subproblems will be
solved by B&B with a particular branching heuristic.

3 PROBLEM SEGMENTATION BASED ON SIMULATION

3.1 Size of Subproblems

The first question addressed for the problem segmentation is to determine the size of the subproblems. As
we mentioned before, the size of the subproblem will increase dramatically while the operation number
just has a very tiny change. Figure 1 illustrates this tendency. In order to deal with this situation, a
measurement called AT+1 (additional computing time caused by increasing one operation) is introduced
to our study. In Figure 1, we can see that if we change the operation number from 13 to 14, the value of

the AT+1 is about 63.2 10r   , where r is the computing time for evaluating one feasible solution. If we

change the operation number from 20 to 21, the value of the AT+1 is about 96.5 10r   . It is about 2000
times as much as the first case. Obviously, if we need, for instance, one more hour to solve the
subproblem just because we add one more operation, this will be unreasonable. Thus we assign a maximal

2308

Zhang, Xie, and Rose

value to AT+1. Increasing the number of operations one by one, the first appeared number whose AT+1
is bigger than the maximal AT+1 is the maximal operation number in the subproblem.
 On the other hand, the subproblem should include as many operations as possible so as to ensure that
a better solution to the whole problem is achieved. Therefore, we also assign a minimal value to the AT+1.
The first appeared number whose AT+1 is smaller than the minimal AT+1 is the minimal operation
number. By using the minimal and maximal AT+1 we obtain a range for the operation numbers in the
subproblems.

19.9019.9219.9419.9619.9820.0220.0420.0620.0820.1011 12 13 14 20 21 22
0.0E+00
1.0E+06
2.0E+06
3.0E+06
4.0E+06

3.2E+09
3.3E+09
3.4E+09
3.5E+09
3.6E+09
3.7E+09
3.8E+09

1.0E+10

1.2E+10

1.4E+10

1.6E+10

1.8E+10

1.6E+06

4.8E+06

3.5E+09

1.0E+10

2.0E+10

S
ea

rc
h

S
pa

ce

Operation Amount

assuming that the average number
of the alternative machines is 3

Figure 1: Relationship between search space and operation amount.

According to the application fields, there is always one restriction on the maximal computing time of
the whole problem. So the restriction can be used to narrow the range we obtained before. Assuming that
each subproblem contains the same number of operations and the average number of the alternative
machines for the operations is m, the following simultaneous inequalities can be used to determine the
range of the subproblems’ size. In the equalities n denotes the size of the subproblems, i.e., the operation
number in the subproblems. N is the total number of the operations. T is the maximal computing time of
solving the whole problem. min and max are the minimal and the maximal value of the AT+1. Generally

the number in the center of the range is adopted. It is possible that there is no solution for the inequalities.
In this case we have to either decrease min or increase T. Decreasing min leads to the reduction of the

operation number in the subproblems. So it will lower the quality of the solution for the whole problem.

1

min max

/

()

n

n n

m rN n T

m m r
      (1)

3.2 Simulation-based Segmentation

According to the rough estimates for the starting times of the operations, the operations can be simply
divided into several groups. The rough starting times are usually calculated without consideration of the
waiting times or by using waiting time estimates. However, very often delaying one operation may
improve the whole performance. Moreover, with this simple segmentation we will have to compute the

2309

Zhang, Xie, and Rose

initial state for each subproblem. Thus, in our study we use simulation to divide the operations. The
segmentation procedure is shown in Figure 2.

simulation

roll back
decision point

Figure 2: Simulation-based segmentation of the operations.

A list is created for storing the operations we selected. After the simulation starts, once an operation
needs to be assigned to a machine from several alternatives, the operation will be put into the list. In the
simulation, the decision is made according to an allocation rule. The simulation will pause if the number
of operations in the list reaches the target number which has been determined in Section 3.1. The
operations in the list make up a subproblem which will then be solved by the B&B algorithm. The
solution of the subproblem indicates the machine allocation results for the operations. After that the
simulation will roll back to the first decision point in the list and continue from that point. In the
simulation the operations in the list will follow the machine allocation decision made by the B&B
algorithm. Once a new operation appears and the operation has to make the machine allocation decision,
we empty the list and put the new operation into the list. The decision in the simulation is still made by
the rule. Meanwhile we save the current state of the simulation model. The state will be treated as the
initial state of the new subproblem. When the number of the operations in the list reaches the target
number, the simulation pauses and the new subproblem is solved by the B&B algorithm. The simulation
rolls back to the first decision point in the list and continues. The remaining operations can be treated in
the same manner. The procedure will stop if all operations have been assigned to a machine.

In the simulation, the lowest request (LR) is introduced as the allocation rule. The machine with the
lowest request will be selected. For example, if one operation can be processed on machine 1 and 3 other
machines, we assign a request value of ¼ to each machine. If machine 1 is also requested by another
operation which has 3 alternative machines in total machine 1 is given another request value of 1/3.
Finally, we add these values together for each machine and the results indicate the request amount of the
machines. If there are several jobs waiting in front of the machines, we add the number of the waiting
jobs to the request amount. The machines which have the smallest request amount will be selected.

3.3 Enhanced Segmentation Procedure

From Figure 2 we can easily find that a new decision point may occur before the operations, which have
already been assigned to machines, are all finished. This will influence the performance of the whole
solution directly. In order to avoid this situation, we improved the procedure. Another list is added to the
procedure. To distinguish from the list mentioned above, we call this list the decision execution list (DEL)
and call the list above as the decision making list (DML). In the simulation, while a decision made by the
B&B is executed, the related operation will be put into the DEL. When a new decision point appears, we
will check the DEL. If the number of the operations in the DEL is less than a given number S, we will

2310

Zhang, Xie, and Rose

empty the DML and put all operations from the DEL into the DML. Then we clear the DEL. In the
subsequent simulation, once a decision needs to be made, no matter if the decision has been made by the
B&B or the decision has to be made by the rule, the related operations will all be put into the DML. If the
operation number in the DML reaches the target number n, the subproblem will be solved. At that time,
the simulation will roll back to the first decision point in the DML. We have to mention that this point is
not the newly appeared decision point but the point where we have made the decision before by the B&B.
Only while a new decision point occurs and the number of operations in the DEL is greater than the given
number, we will empty the DML and the DEL, and put the new operation only to the DML. After the
subproblem is solved, the simulation will roll back to the first new decision point. So in this way we can
make sure that the number of the executed decisions before a new decision point occurs is greater than the
given number S. The improved procedure after the first roll back is given here. The given number S
describes the distance between two successive subproblems.

After the first roll back
Continue simulation
Set repeat to false
If a decision made by the B&B is executed and the repeat is not true Then
 Put the related operation into the DEL
End If
If the first new decision point appears And the repeat is not true Then
 If size of the DEL > S Then
 Clear DEL
 Put the related operation into the DML
 Else
 Put the operations in the DEL into the DML
 Clear DEL
 Put the related operation into the DML
 Set repeat to true
 End If
End If
If a new decision point appears And it is not the first one Then
 Put the related operation into the DML
End if
If an old decision point appears And the repeat is true Then
 Put the related operation into the DML
End if
If size of the DML = n then
 Pause simulation
 Solve the subproblem represented in the DML by the B&B
 Clear the DML
 If all operations have been assigned machines Then
 Go to Exit Procedure
 End If
 Roll back the simulation to the first decision point in DML
 Go to Continue Simulation
End if
Exit Procedure

4 SUBPROBLEM SOLVER USING BRANCHING AND BOUNDING

4.1 Formulism of Subproblems

The objective of the subproblems must coincide with the objective of the whole problem. Thus the
objective is set to minimize the average completion time of the selected operations. The difference to the
general FJSP is that the initial state of the shop is not empty in the subproblems except the first one and
the machines have the overlapping characteristic. Some machines may be processing the operations or

2311

Zhang, Xie, and Rose

their queues may still have waiting operations. In the subproblems we calculate for each machine an
available time which is the point of time that all the waiting operations are finished. The operations in the
subproblems can start on a machine only after its available time.
 The mathematical programming model of the subproblems is as follows. (,)o j i is the i-th operation

of job j. O is the set of the operations in the subproblems. n is the size of O. (,)o j iC is the completion time

of the operation (,)o j i . (,)o j i is the starting time of the operation. (,),o j i mp is the processing time of the

operation on machine m. (,)o j iM is the alternative machine set for the operation. (,),o j i m is the allocation

variable. If the allocation variable is 1, it means the machine m is assigned to the operation (,)o j i ;

otherwise, the machine m is not assigned to the operation. m is the available time of the machine m.

(,)

(,)

(,)
(,)

(,) (,) (,), (,),

(,), (,),

(,) (, 1)

(,) (,) (,) (,)

(,), (,)

min : 1 /

:

(,) 1 {0,1}

(,), (,)

o j i

o j i

o j i
o j i O

o j i o j i o j i m o j i mm M

o j i m o j i mm M

o j i o j i

o j i o k l o k l o j i

o j i m o k l

n C

subject C p

o j i O

C

C C

o j i o k l

 
 


 

 








 
    


  

 





(,)

, (,) (,)

(,) (,),
o j i

m o j i o k l

o j i o j i m mm M

m M M

  

  


 (2)

The last constraint says that the operations in the subproblems can start on a machine only after the

machine becomes available. The second from the last constraint means that one machine can process only
one operation at a time. It is a disjunctive constraint. The third from the last constraint is the consequence
constraint which means that one operation can start only when its predecessive operation has finished.

4.2 Branching Tree

If the size of the subproblem is quite big, there is no efficient exact algorithm to solve the above model. In
our study the size of the subproblems obtained from the simulation is relatively small. So it is possible to
use the exact algorithm to solve them. The B&B algorithm is a simple and intuitive exact method to solve
the small machine allocation problems. We adopt it in the study. The branching tree is structured as in
Figure 3. The tree has several levels and each level represents one operation. Every branch at one level
means the selection of one alternative machine for the corresponding operation. One path from the root to
any of the leaves is one solution. The operations are in the same sequence as they are collected. The
highest level corresponds to the first collected operation.

In addition, while branching one node we use some heuristics to remove some of the node’s branches.
In other words, we remove some machines from the operation’s alternative machine set according to the
state of the job shop. The following three heuristic rules were used.

Rule 1 Comparing with two machines which are only be used by the concerned operation, the
machine which can finish the operation earlier will be kept and another machine will be removed from
the machine set.

Comparing with two machines in which one machine (exclusive machine) is used only by the
concerned operation and another machines (shared machine) is shared by other operations, we calculate

2312

Zhang, Xie, and Rose

the latest completion time and the earliest completion time for the concerned operation on the shared
machine.

Rule 2 If the completion time on the exclusive machine is later than the latest completion time on the
shared machine, we will keep the shared machine and remove the exclusive machine.

Rule 3 If the completion time on the exclusive machine is earlier than the earliest completion time on
the shared machine, we will keep the exclusive machine and remove the shared machine.

O
1

O
2

O
n

Figure 3: Branching tree of the machine allocation problem.

4.3 Lower Bound and Upper Bound

The key idea of the B&B algorithm is to determine the lower bound and upper bound for the tree node. If
the lower bound for some node A is greater than the upper bound for some other node B, then A may be
safely discarded from the search. This step is called pruning, and we carry it out by maintaining a global
variable (shared among all nodes of the tree) that records the minimum upper bound found so far. Any
node whose lower bound is greater than the minimum upper bound can be discarded.
 The lower bound for the concerned node is computed in the following way. First, each of the
remaining operations is assigned to a machine which can process the operation earliest. Then, if several
operations will use the machine, we assume that the machine can start them together at the same time. At
last we calculate the average completion time involving both the remaining operations and the assigned
operations. It is obvious that the average completion time is the lower bound. For some assigned
operations which are assigned to the same machine, FIFO rule is applied. The first assigned operation will
be processed first. The remaining operations (if there are successive operations) won’t start together. The
successors have to be processed after their predecessors.
 For the upper bound calculation, each of the remaining operations is assigned to a machine which can
process the operation last. If several operations will use the machine, we assume that the machine will
sequence them using the longest processing time (LPT) rule and process them one by one in the sequence.
The LPT rule will result in the maximal average completion time on the single machine.

5 EXPERIMENTS

A job shop model is created to evaluate the proposed approach. In the model there are 8 machines and
2 types of jobs, type A and B. Type A contains 3 operations while type B contains 4 operations. Each
operation has 1 to 4 alternative machines. The operations need different amounts of time if they are
processed on the different machines. The machine sets for the operations are heavily overlapping. The
shop plans to produce 13 jobs of type A and 15 jobs of type B. So there are in total 99 operations. The
average number of the alternative machine for the operations is 3. So the size of the search space is about
1.7E+47. According to the tests, the computing time of dealing with one feasible solution in the search

2313

Zhang, Xie, and Rose

space is 4.2E-6 seconds. The time needed to evaluate all feasible solutions will be 2.3E+34 years.
Therefore, we have to divide the problem into several subproblems.

Table 1: Machine sets for the operations.

Job Type A Job Type B
O1 O2 O3 O1 O2 O3 O4

M1,M3,M4 M2,M4 M3,M5,M6 M1,M7,M8 M3,M5,M6,M8 M3,M6,M7 M4

We use the inequalities in Section 3.1 to calculate the ranges of the subproblems’ sizes. The maximal

time we can bear to solve the whole problem is 60 minutes; max is 20 minutes; min is 20 seconds. We

determine that the range of the operation number n in the subproblems ranges from 14 to 17. We assume
0.65S n  . For instance, if we adopt 17n  , we have to divide the problem into 6 subproblems. The

sum of the search spaces of these subproblems is 7.8E+8 which is far smaller than the search space of the
whole problem.

We carry out the experiments for every n from 14 to 17 using both the exhaustive search and B&B to
solve the subproblem. The allocation rule LR is also used to solve the whole problem. The results are
compared in Table 2. Because of the enhanced segmentation procedure, some subproblems may be
regrouped and solved many times. So the computing time using the exhaustive search when 17n  is
longer than our expected maximal time. The time using the exhaustive search is the worst case of the time
using the B&B.

Table 2: Experiment results.

Approach Computing Time /minutes Objective /hours

Heuristic Rule LR 0.14 2.52

Subproblems

+
Exhaustive

search

n=14 4.69 2.08

n=15 15.01 2.10

n=16 46.32 2.01

 n=17 123.71 1.92

Subproblems
+

B&B

n=14 0.32 2.08

n=15 1.48 2.10

n=16 6.71 2.01

n=17 4.80 1.92

From Table 2 we can see that the heuristic rule uses only several seconds. That is because the

heuristic rule is just a one-time simulation. However our subproblem approach can always achieve the
better objective than the heuristic rule does. And the trend is that the bigger n results in the better solution.

6 CONCLUSIONS

The proposed approach is inspired by an obvious fact that / , 2, 2N N nm nm m n   while N is big
enough. In practice the number of operations N is often greater than 50. So the sum of the computing time

2314

Zhang, Xie, and Rose

of the subproblems is far shorter than the whole problem. The simulation-based segmentation procedure
divided the operations into several groups. The procedure can ensure that the operations in the same
group are the only operations in the related time period while the final machine allocation decisions are
followed. The size of the subproblems we determined can guarantee that we obtain the solution within the
maximal computing time, even if the B&B works in the worst case. We obtained the optimal solution to
each subproblem. Even though the sum of the sub solutions does not mean the optimal solution to the
whole problem, comparing to the decision rule, the approach performs considerably better.

REFERENCES

BoĪejko, W., and M. Makuchowski. 2009. "A Fast Hybrid Tabu Search Algorithm for the No-Wait Job
Shop Problem." Computers & Industrial Engineering 56: 1502-1509.

Brucker, P., B. Jurisch, and B. Sievers. 1994. "A Branch and Bound Algorithm for the Job-Shop
Scheduling Problem." Discrete Applied Mathematics 49: 107-127.

Demir, Y., and S. Kürşat İşleyen. 2013. "Evaluation of Mathematical Models for Flexible Job-Shop
Scheduling Problems." Applied Mathematical Modelling 37: 977-988.

Holthaus, O., and C. Rajendran. 1997. "Efficient Dispatching Rules for Scheduling in a Job Shop."
International Journal of Production Economics 48: 87-105.

Karimi-Nasab, M., and S. M. Seyedhoseini. 2013. "Multi-Level Lot Sizing and Job Shop Scheduling with
Compressible Process Times: A Cutting Plane Approach." European Journal of Operational
Research 231: 598-616.

Lin, T.-L., S.-J. Horng, T.-W. Kao, Y.-H. Chen, R.-S. Run, R.-J. Chen, J.-L. Lai, and I. H. Kuo. 2010.
"An Efficient Job-Shop Scheduling Algorithm Based on Particle Swarm Optimization." Expert
Systems with Applications 37: 2629-2636.

Murovec, B., and P. Šuhel. 2004. "A Repairing Technique for the Local Search of the Job-Shop
Problem." European Journal of Operational Research 153: 220-238.

Pan, J. C.-H., and J.-S. Chen. 2005. "Mixed Binary Integer Programming Formulations for the Reentrant
Job Shop Scheduling Problem." Computers & Operations Research 32: 1197-1212.

Qing-dao-er-ji, R., and Y. Wang. 2012. "A New Hybrid Genetic Algorithm for Job Shop Scheduling
Problem." Computers & Operations Research 39: 2291-2299.

Rossi, A., and G. Dini. 2007. "Flexible Job-Shop Scheduling with Routing Flexibility and Separable
Setup Times Using Ant Colony Optimisation Method." Robotics and Computer-Integrated
Manufacturing 23: 503-516.

Satake, T., K. Morikawa, K. Takahashi, and N. Nakamura. 1999. "Simulated Annealing Approach for
Minimizing the Makespan of the General Job-Shop." International Journal of Production Economics
60–61: 515-522.

AUTHOR BIOGRAPHIES

TAO ZHANG is a Ph.D. student working on production planning and scheduling at the Department of
Computer Science of the Universität der Bundeswehr München, Germany. From 2007 to 2009 he
received his Master degree in metallurgical engineering with the subject of production planning and
scheduling in iron and steel industry from Chongqing University, China. He is involved in modeling and
simulation of complex system and intelligent optimization algorithms. His email address is
tao.zhang@unibw.de .

SHUFANG XIE is a research assistant at the Department of Computer Science of the Universität der
Bundeswehr München, Germany since 2013. She obtained her Master degree in metallurgical engineering

2315

Zhang, Xie, and Rose

from Chongqing University, China in 2010. Her study is mainly about the project scheduling. Her email
address is shufang.xie@unibw.de .

OLIVER ROSE holds the Chair for Modeling and Simulation at the Department of Computer Science of
the Universität der Bundeswehr, Germany. He received a M.S. degree in applied mathematics (1992) and
a Ph.D. degree in computer science (1997) from Würzburg University, Germany. His research focuses on
the operational modeling, analysis and material flow control of complex manufacturing facilities, in
particular, semiconductor factories and assembly systems. He is a member of INFORMS Simulation
Society, ASIM (German Simulation Society), and GI (German Computer Science Society). In 2012, he
served as General Chair of the WSC. Currently, he is member of the board of the ASIM and the ASIM
representative at the Board of Directors of the WSC.

2316

