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ABSTRACT 

Hardwood flooring mills transform rough wood into several boards of smaller dimensions. For each piece 
of raw material, the system tries to select the cutting pattern that will generate the greatest value, taking 
into account the characteristics of the raw material. However, it is often necessary to choose less 
profitable cutting patterns in order to respect market constraints. This reduces production value, but it is 
the price to pay in order to satisfy the market. We propose an approach to improve production value. We 
first use simulation on a training set of virtual boards in order to generate a database associating cutting 
patterns to expected production value. Then, we use an optimization model to generate a production 
schedule maximizing the expected production value while satisfying production constraints. The approach 
is evaluated using industrial data. This allows recovering approximately 30 % of the value lost when 
using the original system. 

1 INTRODUCTION 

Manufacturing hardwood flooring is a constant challenge. The process involves co-production (each piece 
of rough wood is cut to produce many pieces at the same time) and many different cutting patterns can be 
used. As each piece of raw material shows different physical characteristics (wood is a natural product) 
we need to carefully select the cutting pattern that will be applied to each piece of raw material in order to 
maximize production value.  

In industrial practice, these decisions are made in real time, one piece of raw material after another. 
However, other production constraints force the system to dynamically deactivate some cutting 
patterns/finished products when it detects that the quantities of a given product are too high or too low. 
Therefore, current production systems used by the industry are said to be reactive (they deactivate some 
cutting patterns when they detect that a constraint has been violated) instead of being proactive. 
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In this study, we used simulation and an optimization model to evaluate a proactive approach. Results 
show it would lead to considerable benefits for the industry. 

The remainder of this paper is organized as follows. Section 2 introduces some basic concepts 
concerning the hardwood flooring industry as well as the use of simulation and optimization in the forest-
products sector. Section 3 introduces our proactive approach, the methodology and the optimization 
model developed to support it. Finally, we apply the methodology to a case study in order to show the 
relevance of our approach (Section 4). 

2 PRELIMINARY CONCEPTS 

2.1 Hardwood Flooring Transformation Process 

Hardwood flooring mill transforms each rough-wood board (raw material) into several boards (finished 
products) of smaller dimensions with variable grade and length (it is a co-production process with 
divergent product flow). The process is detailed in Figure 1. For a given production shift, a batch of 
boards (1) showing similar characteristics (e.g. specie, thickness) is processed. The bundle is 
unstacked (2) and each individual board (3) is scanned using cameras and captors. Data is analyzed (4) in 
order to get a parametrical description (quality, measurement, position of the defects, etc…) of each 
board (5). Finally, the “optimizer” selects (6) the best cutting patterns (8) among a set of available 
standard cutting patterns (7) provided by the mill. The board is then cut accordingly (9). Similar products 
are packed (10) together. 

 

Figure 1: Current hardwood cutting process. 

  

2173



Wery, Marier, Gaudreault, Chabot, and Thomas 
 

The system always selects the cutting pattern that will generate the greatest value, taking into account 
the real dimensions of the boards as well as defects, their natures, their positions, their dimensions or even 
color seen on the board. However, in the hardwood flooring industry, companies must respect different 
sets of constraints. As a simple example, each box must contain boards showing an appropriate mix of 
lengths. Similar constraints exist for color variations and other characteristics, etc. Optimizing only the 
value of each individual board would not satisfy market and packaging constraints. 

Consequently, the “optimizer” is sometimes obliged to choose less profitable cutting patterns in order 
to respect production constraints (12) (e.g. if until now X% of the boards are “long”, then cutting patterns 
containing this product need to be deactivated for a while). Therefore, the set of available cutting patterns 
is dynamically and continuously modified (11) according to recent decisions statistics (8). 

2.2 Drawbacks 

Adjusting the production in real time each time a constraint has been violated has a big influence on 
value/profits. One explanation is that the system is totally blind about what to expect next.  

Here is a simplified case to picture this. Let’s suppose there are three different finished products that 
can be produced: A (highly profitable), B (profitable) and C (less profitable). Cutting patterns are defined 
such that for one given input board, we can produce either “A and C”, “ B and C” or “only C”. We also 
have some market constraints: there should be no more than 20% of A and 50% of B in the overall 
production. Thus, the system starts the production trying to produce only “A and C” till the first 
constraint is violated (no more than 20% of product A). As a consequence, the system will then start 
producing “B and C” till the next constraint is violated (no more than 50% of product B). The system is 
then obliged to produce “only C” till A or B is no longer constrained. However, knowing how the raw 
material looks, it would have been much more profitable to produce a mix of “A and C” and “B and C” 
from the beginning, rather than sometimes to have to produce “only C”.  

To overcome this, we will propose in Section 3 a proactive approach that exploits simulation in order 
to forecast production, thus allowing optimizing the use of the different cutting patterns in advance. Other 
authors have used simulation and optimization for other decision problems in the forest sector. The next 
section provides a quick overview of some of these contributions. 

2.3 Combining Simulation and Optimization in the Forest Products Industry 

In the forest products industry, simulation is often used to get information which is then used to feed 
decision-making models. Sinclair and Erasmus (1992) proposed an approach based on simulation and 
linear programming for operations planning in sawmills. They use simulation (SIMSAW software) to get 
data about different trees/logs cutting patterns. Using this data as input in their tool helps to realize 
operational planning. 

For a South African forest products supply chain, Wessels et al. (2006) developed a package called 
“Sawmill Production Planning System”. It combines linear and mixed integer programming techniques in 
order to make operational, tactical or strategic planning of forest harvesting and sawmilling operations 
using SIMSAW simulation results.  

Recently, Wery et al. (2014) proposed a decision-making framework for tactical planning of a 
sawmill. This framework is used to decide if a customer demand for a new product should be satisfied 
and if so, at what price. When introducing a new product to the normal mix of products, coproduction and 
divergent flow makes it really hard to know what the new proportion of each product should be in the 
new mix of products. The framework uses simulation (Optitek log breakdown simulator) to create data 
about the overall production when the new product is introduced. This data feeds a tactical planning 
optimization model which gives the mix of products that should be produced at each period. 
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However, these works concern the log breakdown decision problem (transforming trees into rough 
pieces of wood) whereas in our study we are interested in secondary transformation (transforming each 
rough piece of wood into many boards that can be used for flooring). 

Simulation is also used to compare several planning approaches. In Feng, D’Amours, and Beauregard 
(2010) simulation is carried on to compare different planning approaches for an Oriented Strand Board 
(OSB) company. Different mixed integer programs (MIP) are used to generate the plans and they are 
compared using simulation. 

Simulation can also be used to verify if a plan given by an optimization model is adequate or not. 
Jerbi et al. (2012) first make a tactical plan using an optimization model for a complex lumber supply 
chain. They then use simulation to verify the impacts of the tactical planning at the operational level. 
Marques et al. (2013) investigate the potential of combining optimization techniques with a discrete event 
simulator in order to realize the operational planning of forest harvesting and of raw material sawmill 
supplies. They generate optimized plans (scenarios) that are then simulated with a discrete event 
simulator in order to evaluate the dynamic behaviors of planned operations. They use performance 
indicators to compare scenarios.  

Other authors like Todoroki and Rönnqvist (1999) or Wessels (2009) use optimization combined with 
simulation in the forest products industry. As an example, (Todoroki and Rönnqvist 2002) use a 
simulation model with dynamic programming in order to choose, among a few strategies, the best one that 
will satisfy a certain demand with as little raw material as possible in order to limit overproduction of 
some less needed/profitable finished products.  

Combining multi-agent simulation with optimization methods in order to plan production has been 
tried in the forest products industry as well (Frayret et al. 2007, Santa-Eulalia, D'Amours, and Frayret 
2012, Gaudreault et al. 2010).  

Finally, others have used simulation results to train a neural network and use it afterward for decision 
making (e.g. Alifantis and Robinson 2001). In the approach proposed in the next section, simulation 
results are used to feed an optimization model that generates a production schedule. This is a classical 
approach to integrate simulation and optimization (see, for example, Liu and Takakuwa 2009). 

3 PROPOSED APPROACH BASED ON SIMULATION AND OPTIMIZATION  

In this section, we propose the use of simulation and an optimization model to develop a proactive 
approach for hardwood cutting decision-making. Simulating the cutting decision-making process by using 
the real system “offline” ( this was made easy as the manufacturer of the equipment - CRIQ, 
http://www.criq.qc.ca/en/ - gave us access to the source code of their machine), we train our system in 
order to be able to foresee the impact of deactivating/activating cutting patterns. With this information in 
hand, we then establish a production schedule using a linear optimization model we developed that is 
expected to process future boards in a manner that will maximize production value while satisfying 
production constraints.  

3.1 Description of the Proposed Approach 

Figure 2 describes the simulation/training process. We assume we dispose of a database of board 
images (17) previously processed within the real production system. Then, while offline, the system is 
used to process the boards from the database (the system has no idea it is not processing real boards). 
Then, we process all the boards another time, this time deactivating production constraints (i.e. allowing 
all cutting patterns at any time). This allows measuring the value that is lost when one needs to satisfy 
production constraints. Furthermore, we can process the database again and again, each time allowing the 
system to use a different set of cutting patterns. This allows us to measure the impact of deactivating 
some specific products (that is, the expected production to be obtained when a given set of cutting 
patterns is available). These expected productions are recorded into a database (13). 
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Figure 2: Using the system offline to create an expected production database. 

With this information learned from the training database, we then try to establish a production 
schedule that is expected to process new boards (boards in a testing database) in a manner that will 
maximize production value while satisfying production constraints. This production schedule will specify 
the percentage of production time during which each set of cutting patterns should be activated.  

Figure 3 illustrates this process. Solving a linear optimization problem (14), we can make a 
production schedule (15) which maximizes the expected production value according to the expected 
production (13) and production constraints (12). The production schedule (15) considers the production 
shift as separated in time slots. For each time slot, the schedule specifies the set of cutting patterns (7) that 
should be activated (16). If the production constraints database (12) is empty, the generated schedule will 
contain only one time slot for which all cutting patterns are activated at all times. If some production 
constraints need to be satisfied (actually, that is always the case) the schedule specifies how much time 
we should produce with all cutting patterns activated, as the following cutting patterns 
activations/deactivations temporal sequence. 

 

Figure 3: Executing the production schedule established using information learned during the 
training/simulation phase. 
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3.2 Optimization Model 

The model (14) used to generate the schedule is presented in this section. 
 
Sets: 

A Set of available cutting patterns a 

cP  Set of products p to which constraint c apply 
base

cP  Set of products p used as a base for the computation of proportion in constraint c 

unitC  Set of constraints c which are based on number of produced units 
lengthC  Set of constraints c which are based on length of produced units 
%unitC  Set of constraints c which are based on proportion (in units) of production 
%lengthC  Set of constraints c which are based on proportion (in length) of production 

 
Parameters: 

n  Number of boards available as raw material input 
lp  Length of product p 
vp  Price of product p 

min
cg  Minimal value for constraint c 
max
cg  Maximal value for constraint c 

qp,a Quantity of product p produced when applying cutting pattern a to one board of raw material 
 
Variables: 

Ea  Number of times cutting pattern a is used 
 
Objective function: 

Maximize ,a p a p
a A p P

E q v
∈ ∈∑∑  

 
Constraints: 

Constraint on raw material availability: 
 

a
a A

E n
∈

≤∑
 

 
Constraint on the produced quantities if the constraint type is based on number of produced units: 
 

min max
,

c

unit
c a p a c

a A p P

g E q g c C
∈ ∈

≤ ≤ ∀ ∈∑∑  
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Constraint on the produced length if the constraint type is based on length produced: 
 

min max
,

c

length
c a p a p c

a A p P

g E q l g c C
∈ ∈

≤ ≤ ∀ ∈∑∑  

 
Constraint on the produced quantities if the constraint type is based on proportion of produced units: 
 

min max %
, , ,

base base
cc c

unit
c a p a a p a c a p a

a A a A p P a Ap P p P

g E q E q g E q c C
∈ ∈ ∈ ∈∈ ∈

   ≤ ≤ ∀ ∈         ∑ ∑ ∑∑ ∑ ∑  

 
Constraint on the produced length if the constraint type is based on proportion of length produced: 
 

min max %
, , ,

base base
cc c

length
c a p a p a p a p c a p a p

a A a A p P a Ap P p P

g E q l E q l g E q l c C
∈ ∈ ∈ ∈∈ ∈

   ≤ ≤ ∀ ∈         ∑ ∑ ∑∑ ∑ ∑  

 

4 EXPERIMENTS 

We had access to a database containing 389 boards. We divided the database into two sets: a training set 
(1/3 of the boards) and a testing set (2/3 of the boards). The training set was used to feed our simulation 
setup described in Section 3 and Figure 2.  

Each board of the training set was processed using each of the 39 different sets of cutting patterns we 
were provided with. This allowed us to generate the expected production database (see 13 on Figure 2). 

We used this database to feed the mathematical programming model. We ran the model using Cplex 
in order to generate a schedule that was expected to meet production constraints of the company while 
maximizing the expected production value. We then simulated the execution of this schedule (see Figure 
3). Boards from the testing set are used as raw material by the system which activates/deactivates cutting 
patterns according to the schedule. 

We performed 10 different replications, each time testing the approaches using different training and 
testing sets of boards. Table 1 presents the results. All numerical results are scaled to present yearly 
results (supposing an average mill having an annual capacity of 60 million linear feet).  

In order to provide a base case, we also processed the boards from each test set using the original 
reactive system. We can see in Table 1 that our approach increases value by $ 116 805 ± 82 213 (95% 
confidence interval) in comparison with the base case (the design of our case study conforms with the 
criteria of Common Random Numbers). 

We also processed the boards of each testing set in a setup where all the cutting patterns were always 
available (i.e. without having to respect production constraints). Thus, we were able to establish that 
meeting production costs $ 235 630 ± 54 497 per year (compared to the base case). This puts in 
perspective the performance of our proposed approach: it allows capturing around 32 % of the maximum 
theoretical gain (Improvement / [Maximum theoretical gain – generated value of original reactive 
system]). 

The relative gain (Improvement/Original system) can seem to be modest (0,3%) but one needs to 
consider that profit margin in this industry may be quite small (less than 4 %), so achieving such an 
improvement without investment in new machines or reorganization of the plant is a significant 
improvement.  
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Table 1: Results of the experiments. 

Dataset # 

Not 
mandatory to 

meet 
production 
constraints, 
generated 

value  
($ / year) 

Mandatory to meeting production constraints 

Original 
reactive 
system, 

generated 
value  

($ / year) 

Proposed approach 

Generated 
value  

($ / year) 

Improvement 
($ / year) 

Percentage 
of 

maximum 
theoretical 

gain 
captured 

1 40 622 620 40 293 681 40 524 459 230 777 70 % 
2 40 179 358 39 967 074 40 064 673 97 599 46 % 
3 41 084 440 40 868 634 40 984 682 116 048 54 % 
4 40 114 124 39 922 665 40 080 639 157 974 83 % 
5 41 332 189 41 107 996 41 259 215 151 220 67 % 
6 40 887 980 40 569 717 40 753 353 183 635 58 % 
7 41 087 800 40 858 004 40 967 532 109 528 48 % 
8 41 390 447 41 321 092 41 197 421 -123 670 -178 % 
9 40 098 913 39 788 523 40 052 801 264 279 85 % 
10 41 114 095 40 858 276 40 838 934 -19 342 -8 % 

Average 40 791 197 40 555 566 40 672 371 116 805 32 % 
Half width 360 041 382 740 334 192 82 213  

 
When we looked at the production schedule generated by the mathematical model, we noted that the 

expected values (anticipated by the mathematical model) are quite similar to the results obtained when 
executing the schedule (a difference of more or less 3% on average). This leads us to believe that the size 
of our training set is sufficient to anticipate what the production will be with another set of boards (the 
test sets). However, for two datasets (#8 and #10), the value generated by the original reactive system was 
better than for the proposed approach. This is explained by the fact that, for these replications, the original 
system applied to the test sets some cutting patterns that were not available to us when we processed the 
training set (we trained using only 39 sets of cutting patterns). Therefore, we believe that training with 
more than 39 sets of cutting patterns (e.g. by extracting cutting patterns from historical data of the 
company) could improve the results. 

Finally, although experimenting with the 389-board database allowed reaching significant 
improvements, the extrapolation to estimate an annual value should be interpreted carefully. We cannot 
be sure those 389 boards are really representative of the real raw material supply of the company. An 
evaluation of the system with a larger database would be needed. 
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5 CONCLUSION AND FUTURE WORK 

Cutting decisions for processes involving co-production are almost always done in real time, one piece of 
raw material after another. Some cutting patterns need to be activated/deactivated in real time to meet 
market/production constraints. This reduces production value, but it is the price the industry is willing to 
pay in order to satisfy market/production constraints. 

Our case study showed that making use of simulation to gain a better knowledge of the raw 
material/cutting pattern production yield, and using that information in production scheduling may lead to 
an improvement (in produced value) in the order of $ 116 805 ± 82 213 /year for an average hardwood 
flooring factory. This represents approximately 32 % of maximum theoretical gain. 

In order to further improve the performance of our scheduler, we would like to increase the number of 
cutting patterns considered in the training phase. However, the number of such potential sets of cutting 
patterns is very large and it is numerically impossible to consider them all. Our future work will provide a 
methodology to find the sets of cutting patterns that should best meet the production constraints without 
having to simulate all of the possible sets. 

Other experiments with larger board databases will be conducted as well. 
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