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ABSTRACT 

This paper presents a methodology to estimate donations for non-profit hunger relief organizations. These 
organizations  are committed to alleviating hunger around the world and depend mainly on the 
benevolence of donors to achieve their goals. However, the quantity and frequency of donations they 
receive varies considerably over time which presents a challenge in their fight to end hunger. We develop 
a simulation model to determine the expected quantity of food donations received per month in a multi-
warehouse distribution network.  The simulation model is based on a state-space model for exponential 
smoothing. A numerical study is performed using data from a non-profit hunger relief organization. The 
results show that good estimation accuracies can be achieved with this approach. Furthermore, non-profit 
hunger relief organizations can use the approach discussed in this paper to predict donations for proactive 
planning. 

1 INTRODUCTION 

1.1 Background 

Proper nutrition is an essential part of living a healthy lifestyle. Whenever the availability of nutritionally 
adequate and safe foods or the ability to obtain acceptable food by socially conventional means is limited 
or uncertain for an individual, they are considered food insecure (Haering 2009). Studies have shown that 
unemployment and poverty can be strong indicators of those at risk of becoming food insecure. Most food 
insecurity is associated with chronic poverty and temporary unemployment (Barrett 2010). Fortunately, 
there exists non-profit hunger relief organizations (NPHROs) that are actively fighting to end the war 
against hunger. One such organization is Feeding America.   
Feeding America, formerly known as America’s Second Harvest, is the nation’s largest hunger-relief 
charity engaged in the fight to end hunger. Its mission is to feed hungry Americans through a network of 
associated food banks. The Feeding America organization assists local food banks in acquiring and 
dispensing food, raising funds and acquiring more donors, sharing best practices amongst food banks and 
other agencies, as well as advocating and inspiring individuals and the government to take action in 
ending hunger (Feeding America 2012).  

The quantity and frequency of donations received by food banks vary considerably over time which 
presents a challenge in their fight to end hunger. The operational efficiency of food banks depend on 
effectively estimating donations to determine additional food purchases required to satisfy the nutritional 
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needs of the population they serve. Their inability to determine additional  food purchases due to 
inaccurate donation estimation poses a challenge as they strive to balance supply with demand. This 
research proposes an approach to estimate donation supplies. Our study consists of a food bank 
distribution network consisting of multiple branch warehouses. Using data provided by a local food bank, 
we simulate future donation supplies for five branches using the state space model for simple exponential 
smoothing (SSMFSES) via simulation. The SSMFSES resulted in good estimation accuracies in all five 
branches. 

1.2 Related Literature 

There is an extensive amount of literature related to forecasting. Forecasts for donated items has been 
done for cash (Britto and Oliver 1986) or blood (Drackley et al. 2012, Pereira 2003) donations. There has 
also been some work related to forecasting sales for fresh food items in the retail sector (Doganis et al. 
2006, Chen and Ou 2009). The literature for forecasting food donations is sparse.  Neural network models 
were used to forecast in-kind donations  from retail donors for a local food bank (Brock and Davis 2015).  
Time series models have also been explored in the context of food donations for a NPHRO that has 
multiple warehouses (Davis et al. 2015). However, in both of these studies, only point forecasts were 
generated.   
There are numerous publications of state space model based forecasting in various sectors. There are 
publications in inventory management, sports, energy, traffic management, financial and biological 
sectors. 

In the energy sector, Dong et al. (2013) used an exponential smoothing state space (ESSS) model to  
forecast high-resolution solar irradiance time series. They compared the ESSS model to other time series 
models. The simulation results showed that the ESSS model has generally better performance than other 
time series forecasting models. 

In inventory management, Yelland (2009) compared the forecast performance of three simple state-
space models  using demand data obtained from Sun’s inventory management records. He compared the 
accuracy of these probabilistic forecasts using techniques borrowed from the field of meteorology, 
allowing the assessment of the suitability of the candidate models for this type of application. 

In the biological sector, Rueda and Rodríguez (2010) introduced multivariate state space models for 
estimating and forecasting fertility rates. Their model besides providing very satisfactory short-and 
medium-term forecasts, provides practitioners with several suitable interpretative tools, and the 
application here is an interesting example of the usefulness of the state space representation in modelling 
real multivariate processes. 

In the financial sector, Forbes et al. (2013) produced non-parametric maximum likelihood estimates 
of forecast distributions in a general non-gausssian, non-linear state space setting. They applied their 
method  to produce sequential estimates of the forecast distribution of realized volatility on the S&P500 
stock index during the recent financial crisis. 

In traffic management, Dong, et al. (2014) developed a multivariate state space model for network 
flow rate and time mean speed predictions using historical time series. They compared their model to the 
ARIMA models and deduced that the benefit is much more evident in the proposed models for all cases, 
and the accuracy can be improved by 5.62% on average. They concluded besides accuracy improvement, 
their proposed models are more robust and the predictions can retain a smoother pattern. 

In sports, Glickman and Stern (1998) developed a state-space predictive model for National Football 
League (NFL) game scores using data from the period 1988-1993. Their model accounts for team strength 
variability by assuming team strength parameters follow a first-order autoregressive process. Their model 
outperformed the Las Vegas “betting line” on a small test set consisting of the last 110 games of the 1993 
NFL season. 

Hyndman et al. (2002) applied random simulation from the underlying state space model to the 1001 
series of the  M-competition data, (Makridakis et al. 1982) and M3-competition data, (Makridakis & 
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Hibon, 2000).Their method provides forecast accuracy comparable to the best methods in the 
competitions and it is particularly good for short forecast horizons with seasonal data. 

1.3 Research Contribution 

To the best of our knowledge, the application of SSMFSES to predict the quantity of food donations in 
food banks  has not been addressed in the open literature. We present strategies to apply SSMFSES to 
predict food related donations. Future donation quantities for five different branches were simulated using 
the SSMFSES. The specific research question we seek to address is as follows. Given the underlying 
structure of the donations data, how best can donation quantities be estimated?  

The remainder of this paper is outlined as follows. Section 2 summarizes our approach to applying the 
SSMFSES to predict food related donations. The results of the study are summarized in Section 3. 
Section 4 provides some concluding remarks about the implication of our results on operational efficiency 
and service delivery. 

2 METHODOLOGY  

Before describing the simulation model, we first describe the general form of simple exponential 
smoothing and the state space model. 

2.1 Simple Exponential Smoothing  

Suppose we have an observed data of time series,	ݕ௧ǡ and we wish to forecast the next value of our time 
series, ݕො௧ , the forecast error will be equal to ݕ௧ െ ො௧ݕ  when an observation ݕ௧  becomes available. 
According to (Brown, 1959), the forecast for the next period is simply the old forecast plus an adjustment 
for the error that occurred in the last forecast. Equation (1) shows the forecast for the next period. ݕො௧ାଵ ൌ ො௧ݕ ൅ ௧ݕሺߙ െ  ሺͳሻ																																																																										ො௧ሻݕ

Where ߙ is a constant between 0 and 1. Another way to represent equation (1) is as shown in equation 
(1a). ݕො௧ାଵ ൌ ௧ݕߙ ൅ ሺͳ െ  ሺͳܽሻ																																																																									ො௧ݕሻߙ

It is assumed that the forecast function is “flat” for longer range forecasts that is ݕො௧ା௛ȁ௧ ൌ ݄								ො௧ାଵǡݕ ൌ ʹǡ͵ǡ ǥ																																																																ሺʹሻ 
Suppose the level of the series, κ௧	 ൌ ො௧ା௛ȁ௧ݕ  ො௧ାଵ, equation (2) can be rewritten asݕ ൌ κ௧	ǡ											κ௧	 ൌ 	 ௧ݕߙ ൅ ሺͳ െ  ሺ͵ሻ																																											ො௧ݕሻߙ

2.2 State Space Models 

All state-space models have three elements namely the forecast function, the observation equation, and 
one or more state equations (Polasek, 2013). There are two main forms of state space models namely the 
conventional state space model and innovations state space model. The main difference between the two 
is that the conventional state space model has multiple sources of error while the innovations state space 
model has a single source of error. In this paper, we will only discuss innovations state space model. 

There are two forms of the innovations state space model namely the linear and non-linear 
innovations state space model. We will only discuss linear innovations state space model in this paper and 
equations (4-5) show its general form. Equation (4), the observation equation, describes the relationship 
between the unobserved states ݔ௧ିଵ and the observation ݕ௧Ǥ The state vector ሺݔ௧ሻ contains unobserved 
components that describe the series level at time t ሺκ௧ሻ, the slope at time t ሺ ௧ܾሻ and seasonality of the 
series at time t ሺݏ௧ሻ. Equation (5), the state equation, describes the evolution of the states over time. F, w 
and g are coefficient matrices.  ߝ௧  is the white noise series at time t. The use of identical errors in 
equations (4-5) makes it an innovations state space model.  ݕ௧ ൌ ௧ିଵݔ࢝ ൅  ሺͶሻ																																																																																								௧ߝ
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௧ݔ  ൌ ௧ିଵݔࡲ ൅  ሺͷሻ																																																																																							௧ߝࢍ
In this paper, we applied the local level model of the linear innovations state space model which has only 
one single state,	κ௧ and the resulting state space model is defined by the equations (6-7). In the equations 
below , ࢍ ൌ ǡߙ ࡲ ൌ ሾͳሿǡ ࢝ ൌ ሾͳሿǤ ݕ௧ ൌ κ௧ିଵ	 ൅  ሺ͸ሻ																																																																																													௧ߝ

 κ௧	 ൌ κ௧ିଵ	 ൅  ሺ͹ሻ																																																																																										௧ߝߙ
From the above model, we seek to determine the expected value of future observation conditioned on 

the value of the state vector ݔ௧Ǥ		This is formally defined as ܧሺݕ௧ା௛ȁݔ௧ሻ  and can be determined by 
simulating many future sample paths conditional on the last estimate of the state vector.  Prediction 
intervals can also be obtained from the percentiles of the simulated sample path.  Point forecasts can be 
obtained by taking the average of the simulated values in each future time period. 

In order to completely specify the model, the initial state values must be specified ሺκ଴ሻ , the 
smoothing constants must be estimated, and  the properties of the random error term must be specified. 
Below are the assumptions of the model: 

1. The expected value of each error term is zero. 
2. The errors for different time periods are independent of (or  at least uncorrelated with) one 

another and also independent of past states. 
3. The variance of the errors is constant. 
4. The errors are drawn from a normal distribution. 

2.3 Forecasting-simulation Model for monthly donations 

Table 1 summarizes the model notation within the context of the donations forecasting problem. The 
objective is to predict the expected food donations (in lbs.)  received per month. We assume that initial 
model parameters (κ଴ǡ ǡߙ ሻݏ  are estimated from  prior observations (ܳ௧ሻ	defined in a test data set, 
consisting of  ܰ ் observations.  The simulation approach is described first, followed by the initialization 
procedure. 

Table 1: Forecasting-simulation model notation. 

Variable Description ݕ௧ Observed gross weight of food donations in period t determined 
from the observation equation   κ௧ The state at time t (level of the series)  ߝ௧ The error term in period t ߙ The smoothing constant ߤ෤௧ Simulated mean gross weight in period t ܷܮ௧  Upper limit of the 95th percentile prediction interval in period t ܮܮ௧	  Lower limit of the 95th percentile prediction interval in period t ܴ  The number of replications ܳ௧ The actual donation quantity received in period t ܤ௧ The smoothed estimate for level in period t ෠ܳ௧  The forecast  of the donation quantity in period t  ݏ  Standard deviation of the forecast error ்ܰ	  The total number of periods  in the test data set ௏ܰ		  The total number of periods in the validation data set 
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2.3.1 Simulation Approach 

The Monte-Carlo simulation approach is outlined in the steps in Table 2. The initial model parameters are 
determined from an optimization procedure described in section (2.3.2).   Future monthly donations are 
determined for each period in the validation data set (line 13). For each period, the error terms are 
generated according to a normal distribution (line 7).  The error terms are used to determine the simulated 
donation values (observation ݕ௧ሻ and state values according to the corresponding equations (lines 8-9). 
For each period, the observation and state equations are simulated for a total of ܴ iterations. The 95th 
percentile prediction interval for the R observations (ݕ௧ሻ for each period is computed according to the 
corresponding equations (lines 9-10). The mean value for the R observations (ݕ௧) for each period is then 
recorded (line 13).  The simulation model is implemented in Matlab. 

Table 2: Simulation procedure. 

Steps 
1: GetInitialValues (כߙǡ ǡכݏ ෠ܳே೅ሻ 
ߙ :2 ՚ 	  כߙ
3: κ଴ሺ݅ሻ ՚ ෠ܳே೅ ݎ݋݂ ݅ ൌ ͳǤ Ǥ ܴ 
ݏ :4 ՚ 	  כݏ
5: For ݐ ൌ ͳ to ௏ܰ  
6:      For ݅ ൌ ͳ to ܴ 
௧ሺ݅ሻߝ           :7 ՚ ሺͲǡ݀݊ݎ݉ݎ݋݊  ሻݏ
௧ሺ݅ሻݕ           :8 ՚ κ௧ିଵሺ݅ሻ൅ߝ௧ሺ݅ሻ 
9:           κ௧ሺ݅ሻ ՚ κ௧ିଵሺ݅ሻ ൅  ௧ሺ݅ሻߝߙ
10:     End For ࢏ 
௧ܮܮ     :11 ՚ ௧ǡ࢟ሺ݈݁݅ݐܿݎ݌ ʹǤͷሻ 
12:     ܷ ௧ܮ ՚ ௧ǡ࢟ሺ݈݁݅ݐܿݎ݌ ͻ͹Ǥͷሻ 
෤௧ߤ   :13 	 ՚ σ ௧ሺ݅ሻȀܴோ௜ୀଵݕ  
14: End For ݐ 

 

2.3.2 Model Initialization  

To improve the forecast accuracy, we determine value of ߙ using the optimization model below: 
݁ݖ݅݉݅݊݅ܯ  σ ሾே೅௧ୀଶ ෠ܳ௧ െ ܳ௧ሻሿଶ																																																																ሺͺሻ   
଴ܤ 																																																																																																				ǣ݋ݐ	ݐ݆ܾܿ݁ݑܵ  ൌ ଵଵଶ σ ܳ௧ଵଶ௧ୀଵ 																																																																																							(9) 

௧ܤ  ൌ ௧ܳߙ ൅ ሺͳ െ ݐ׊			௧ିଵܤሻߙ ൌ ͳ ǥ ்ܰ െ ͳ																																ሺͳͲሻ                          
 ෠ܳ௧ ൌ ݐ׊  	௧ିଵܤ ൌ ʹ ǥ ்ܰ																																																																			ሺͳͳሻ 
ߙ  ൑ ͳ																																																																																																					ሺͳʹሻ      
ߙ  ൐ ͲǤͳ																																																																																																		ሺͳ͵ሻ 
 ෠ܳ௧ ൒ Ͳ																	ݐ׊ ൌ ʹ ǥ ்ܰ																																																											ሺͳͶሻ   
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௧ܤ   ൒ Ͳ										ݐ׊ ൌ ͳ ǥ ்ܰ െ ͳ																																																											ሺͳͷሻ   
The objective function minimizes the sum of the squared forecast error according to equation (8). 

Constraint (9) determines the initial smoothed estimate for level.  Constraints (10) determine the 
smoothed estimate for the level in each period.  Constraints (11) determine the forecast  in period ݐǤ 
Equations (12-15) define the bounds on the decision variables. This model is applied to the data in test 
data set to determine the optimal smoothing constant כߙ. Once the optimal smoothing constant is known, 
the standard deviation is determined according to equation (16).  ݏ ൌ ඨσ ሾே೅௧ୀଵ ෠ܳ௧ െ ܳ௧ሻሿଶ்ܰ െ ͳ 																																																																				ሺͳ͸ሻ 

The initial state κ଴ is assumed to be the final smoothed estimate for the level (ܤே೅ିଵ ൌ ෠ܳே೅).   

2.3.3 Model Validation 

Two performance measures are used to investigate the performance of the forecast-simulation model: the 
mean absolute percentage error and the coefficient of variation. The mean absolute  percentage error 
(MAPE) for both the point estimate and interval estimate (17a-17c), provide a measure of forecast 
accuracy. 
ܧܲܣܯ  ൌ ቌ ͳܰ௏ ෍ ܳ௧ିߤ෤௧ȁܳ௧

ேೇ
௧ୀଵ ቍ ൈ ͳͲͲ																																													ሺͳ͹ܽሻ 

ܧܲܣܯ  ൌ ቌ ͳܰ௏ ෍ ȁܳ௧ െ ௧ȁܳ௧ܮܷ
ேೇ
௧ୀଵ ቍ ൈ ͳͲͲ																																						ሺͳ͹ܾሻ 

ܧܲܣܯ  ൌ ቌ ͳܰ௏ ෍ ȁܳ௧ െ ௧ȁܳ௧ܮܮ
ேೇ
௧ୀଵ ቍ ൈ ͳͲͲ																																							ሺͳ͹ܿሻ 

The coefficient of variation (CV) is a measure of dispersion and is computed according to equation (18), 
where ܳത is the sample mean. 

ܸܥ ൌ തܳିଵ ۇۉ
ටσ ሺܳ௏ െ തܳሻଶேೇ௧ୀଵܰ௏ െ ͳ  ሺͳͺሻ																																																				ۊی

3 RESULTS AND DISCUSSIONS 

3.1 Data 

Four fiscal years of data (48 records from July 2008 to June 2012) was obtained from The Food Bank of 
Central and Eastern North Carolina (FBCENC). A fiscal year runs from July until June of the subsequent 
year. The quantity (in pounds) of food received per transaction is captured in the gross weight field which 
represents the dependent variable in the forecasting models. Historical data is summarized by month and 
year. The data is analyzed and aggregated based on the branch where the donations were received. Each 
data set is partitioned into two sets. The first 36 records represent the test data set (July, 2008-June, 2011) 
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and the next 12 records represent the validation data set (July, 2011-June, 2012). The test data set is used 
to estimate the forecasting model parameters as well as the simulation model. The validation data set is 
used to estimate the accuracy of the model for a future time series. Figures (1-5) are the time series plots 
demonstrating the trend analysis for the data series for all 5 branches. There was neither increasing or 
decreasing trend in all 5 branches. Moreover, the augmented dickey-fuller (ADF) test was used to test for 
stationarity of the series in all 5 branches using the hypothesis test below: 

 ଵ: The series is stationaryܪ ଴: The series is not stationaryܪ .1
2. Significance level: 0.05 
 ଴ is rejected when the absolute value of the test statistic is greater than the absoluteܪ .3

value of the critical value as noted in (Sjö 2008). 
The test statistics are show in Table 3. The single mean ADF was used for all 5 branches since all 
their series exhibited a constant and no trend as shown in Figure (1-5). 

4. At a 0.05 significance level, all the series for all branches were stationary since their absolute test 
statistics were greater than the absolute critical value (2.93). 

 
Hence the SES model is deployed for the model initialization and the local level model of the linear 
innovations state space model for the simulation part of the model. 

 

Figure 1: Durham time series plot. 

 

Figure 2: Raleigh time series plot. 

 

Figure 3: Greenville time series plot. 
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Figure 4: Wilmington time series plot. 

 

Figure 5: Sandhills time series plot. 

 

Table 3: Test statistics for stationarity test. 

 Branch 
 Durham Raleigh Greenville Wilmington Sandhills 
Mean 203889.39 1769374.60 401422.89 239236.36 206751.68 
Standard Deviation 55659.34 209341.42 70048.59 58198.95 48065.22 
N 36.00 36.00 36.00 36.00 36.00 
Zero Mean ADF -0.95 -0.55 -1.01 -0.65 -0.70 
Single Mean ADF -4.50 -5.13 -6.89 -4.97 -5.17 

Trend ADF -4.46 -5.03 -6.92 -6.23 -5.14 
 

3.2 Forecasting-simulation Model 

3.2.1 Model Initialization Results 

The optimization model described in section (2.3.2) was applied to the first 36 periods (test data set) from 
July 2008 to June 2011 for 5 branches separately. Figure 6 shows the optimized alpha values, the standard 
deviations and smoothed estimate for level for periods 36 for each branch. With the exception of the 
Wilmington branch with an alpha value of 0.2, the alpha values for the rest of the branches was 0.1. The 
Raleigh branch donation data had the most variability and the highest predicted quantity. This was 
expected since the Raleigh branch is the main branch and receives the most donations from various 
sources.  
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Figure 6: A graph of simulation model parameters. 

3.2.1 Model Validation Results 

The estimates in the optimization model (ܤଷହǡ  ሻ and the estimate for the standard deviation (s) wereߙ
used in the simulation model to simulate donations estimates for the next 12 periods (validation data set) 
from July, 2011 to June, 2012 for 5 branches separately. The simulation was run for ܴ ൌ10,000 iterations 
for each branch. Their corresponding ߤ෤௧	  and 95th percentile prediction interval for each of the 12 periods 
were computed.  The validation MAPE (point estimate and interval estimate) and validation CV were also 
computed for all branches.  

Figure 7 shows the validation MAPE (point estimate) as well as the CV for the forecasting-simulation 
model for each branch. Greenville had the highest estimation accuracy (12.40%) and Sandhills had the 
lowest estimation accuracy (29.98%). Figure 2 validated our forecasting-simulation model as it 
demonstrated an increasing trend as MAPE increases with increasing CV. That is the estimation accuracy 
decreases with increasing dispersion in the data. However, the Raleigh branch did not follow that pattern 
and it was expected due to its high standard deviation as shown in Figure 6. Moreover, the Shapiro-Wilk 
test was conducted for the error terms from period 37 through 48 for all branches and the results are as 
shown in Table 4. The error terms for all branches were normal. 

 

 

Figure 7: A graph of Validation MAPE vs CV for forecasting-simulation model. 
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Table 4: Shapiro-Wilk test for the random errors. 

H0: The series is normal.                 
H1: The series is not normal              

Significance level: 0.05         
Branch P-value Conclusion 
Durham 0.36 Normal 
Raleigh 0.95 Normal 
Greenville 0.78 Normal 
Wilmington 0.29 Normal 
Sandhills 0.79 Normal 

 

Figure 8 shows the validation MAPE (interval estimate) results for all 5 branches. It is interesting to 
know that Raleigh had the best estimation accuracy and the upper limit estimation accuracy ( 13.67) was 
better than that of the point estimate (15.22%). 

 

Figure 8: Validation MAPE of the 95th percentile prediction. 

4 CONCLUSION AND RECOMMENDATION 

The data used in this study was provided by the FBCENC. Although the FBCENC receives food from 
various sources, a majority of them are from donations. Over 79% of the food received by the food bank 
is dependent upon donations. Since the donations constitute such a large portion of the food received, the 
management at the FBCENC need to be able to adequately plan its distribution of supplies to ensure food 
shortages are avoided. In order to properly manage the distribution of donations, some form of forecasting 
should be employed. In this case the desired variable to forecast and analyze would be the amount of food 
donations received. Several forecasting techniques exist and can be investigated in predicting the food 
donations. However, certain characteristics of food bank donations make the forecasting problem 
challenging. First, the amount of donations and the type of food received varies with each donation. 
Second, the donations are received at varying frequencies over the year and in uncertain quantities. This 
increases the difficulty in choosing a forecasting technique and evaluating the behavior of the donations. 

In this paper, a forecasting-simulation model was used to predict donations for the five FBCENC 
branches which generated good forecasting accuracies. The advantage of this approach is that point 
estimates as well as interval estimates can be computed which aids the decision maker in making 
insightful decisions. NPHROs can used the forecasting-simulation model to estimate future donations 
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which will enable them to be proactive in planning for distribution and future purchases in order to meet 
their demand. 
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