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ABSTRACT

This paper presents a methodology to estimate dwrsator non-profit hunger relief organizations. These
organizations are committed to alleviating hunger around the world and depend mainly on the
benevolence of donors to achieve their goals. However, the quantity and frequency of donations they
receive varies considerably over time which presectga#ienge in their fight tend hunger. We develop

a simulation model to determine the expected quaafifood donations received per month in a multi-
warehouse distribution network. The simulationd®l is based on a state-space model for exponential
smoothing. A numerical study is performed usintadeom a non-profit hunger relief organization. The
results show that good estimation accuracies can hevachwith this approach. Furthermore, non-profit
hunger relief organizations can use the approach discus#ieid paper to predict donations for proactive
planning.

1 INTRODUCTION

1.1  Background

Proper nutrition is an essential part of living a haalifestyle. Whenever the availability of nutritionally
adequate and safe foods or the ability to obtain acceptable food by socially conventional means is limited
or uncertain for an individual, they are considered food insecure (Haering 2009). Studies have shown that
unemployment and poverty can be strong indicatorsase at risk of becoming food insecure. Most food
insecurity is associated with chronic povertyddamporary unemployment (Barrett 2010). Fortunately,
there exists non-profit hunger relief organization®KNROs) that are actively fighting to end the war
against hunger. One such organization is Feeding America.
Feeding America, formerly known as America’'s @at Harvest, is the nam’s largest hunger-relief
charity engaged in the fight to end hunger. Its mission is to feed hungry Americans through a network of
associated food banks. The Feeding America org#on assists local food banks in acquiring and
dispensing food, raising funds and acquiring more dgrsdraring best practices amongst food banks and
other agencies, as well as advocating and inspiring individuals and the government to take action in
ending hunger (Feeding America 2012).

The quantity and frequency of donations receivedolwg banks vary considerably over time which
presents a challenge in their fight to end hungée operational efficiency of food banks depend on
effectively estimating donations tietermine additional food purchagesjuired to satisfy the nutritional
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needs of the population they serve. Their inability to determine additional food purchases due to
inaccurate donation estimation poses a challenge assthigg to balance supply with demand. This
research proposes an approach to estimate donstipplies. Our study consists of a food bank
distribution network consisting of multiple branchrefaouses. Using data provided by a local food bank,
we simulate future donation supplies for five branalag the state space de for simple exponential
smoothing (SSMFSES) via simulation. The SSMFSESItextin good estimation accuracies in all five
branches.

1.2 Related Literature

There is an extensive amount of literature reldtefbrecasting. Forecasts for donated items has been
done for cash (Britto and Oliver 1986) or blooddEkley et al. 2012, Pereira 2003) donations. There has
also been some work relatedftoecasting sales for fresh food iteinsthe retail sector (Doganis et al.
2006, Chen and Ou 2009). The literature for forecasting flonations is sparsé&eural network models

were used to forecast in-kind donations from retail donors for a local food bank (Brock and Davis 2015).
Time series models have also been explorethéncontext of food donations for a NPHRO that has
multiple warehouses (Davis et al. 2015). Howeverbath of these studies, only point forecasts were
generated.

There are numerous publications of state space model based forecasting in various sectors. There are
publications in inventory management, sports, energy, traffic management, financial and biological
sectors.

In the energy sector, Dong et al. (2013) used an exponential smoothing state space (ESSS) model to
forecast high-resolution solar irradiance time sefiébgy compared the ESSS model to other time series
models. The simulation results showed that the ESSS model has generally better performance than other
time series forecasting models.

In inventory management, Yelland (2009) compadtexiforecast performance of three simple state-
space models using demand data obtained from Sun’s inventory management records. He compared the
accuracy of these probabilistic forecasts using techniques borrowed from the field of meteorology,
allowing the assessment of the suitability of thedidate models for thiype of application.

In the biological sector, Rueda and Rodriguez (20it®dduced multivariate state space models for
estimating and forecasting fertility rates. Their model besides providing very satisfactory short-and
medium-term forecasts, provides practitioners wilveral suitable interpretative tools, and the
application here is an interesting example ofubefulness of the state sgarepresentation in modelling
real multivariate processes.

In the financial sector, Forbes et al. (2013)do@ed non-parametric maximum likelihood estimates
of forecast distributions in a general non-gaussgiam;linear state space setting. They applied their
method to produce sequential estimates of the forecast distribution of realized volatility on the S&P500
stock index during the recent financial crisis.

In traffic management, Dong, et al. (2014) depeld a multivariate state space model for network
flow rate and time mean speed predictions using listictime series. They compared their model to the
ARIMA models and deduced that the benefit is maare evident in the proposed models for all cases,
and the accuracy can be improved by 5.62% on agefldtey concluded besides accuracy improvement,
their proposed models are more robust aedtiedictions can retain a smoother pattern.

In sports, Glickman and Sterh998) developed a state-space predictive model for National Football
League (NFL) game scores using data from thimgd 988-1993. Their model accounts for team strength
variability by assuming team strength parameters folldst-order autoregressive process. Their model
outperformed the Las Vegas “betting line” on a small test set consisting of the last 110 games of the 1993
NFL season.

Hyndman et al. (2002) applied random simulation from the underlying state space model to the 1001
series of the M-competition data, (Makridakis al. 1982) and M3-competition data, (Makridakis &
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Hibon, 2000).Their method provides forecast aacyr comparable to the best methods in the
competitions and it is particularly good fehort forecast horizons with seasonal data.

1.3 Research Contribution

To the best of our knowledge, the application of SSMFSES to predict the quantity of food donations in
food banks has not been addressed in the opeatlite. We present strategies to apply SSMFSES to
predict food related donations. Futwlenation quantities for five diffené branches were simulated using

the SSMFSES. The specific research question we seek to address is as follows. Given the underlying
structure of the donations data, how best can donation quantities be estimated?

The remainder of this paper is outlined as follows. Section 2 summarizes our approach to applying the
SSMFSES to predict food related @tions. The results of the study are summarized in Section 3.
Section 4 provides some concluding remarks abounthkcation of our results on operational efficiency
and service delivery.

2 METHODOLOGY

Before describing the simulation model, we first describe the general form of simple exponential
smoothing and the state space model.

21  Simple Exponential Smoothing

Suppose we have an observed data of time sgfiemd we wish to forecast the next value of our time
series,y;, the forecast error will be equal 3¢ — J; when an observatiop, becomes available.
According to (Brown, 1959), the forecast for the next period is simply the old forecast plus an adjustment
for the error that occurred in the last forecast. Equation (1) shows the forecast for the next period.
Ves1 =V +a(ye — J¢) 1)
Wherea is a constant between 0 and 1. Another wagpoesent equation (1) is as shown in equation
(1a).

Jes1 =aye + (1 — )P, (1a)
It is assumed that the forecast function is “flat” for longer range forecasts that is
JA’t+h|t = Vs h=23,.. (2)
Suppose the level of the seriés,= ¥;,,, equation (2) can be rewritten as
Verne = es e = ay; + (1 —a)P; 3)

2.2  State Space Models

All state-space models have three elements namely the forecast function, the observation equation, and
one or more state equations (Polasek, 2013). There are two main forms of state space models namely the
conventional state space model and innovations state space model. The main difference between the two
is that the conventional state space model has multiple sources of error while the innovations state space
model has a single source of error. In this paperwill only discuss innovations state space model.

There are two forms of the innovations state space model namely the linear and non-linear
innovations state space model. We will only discuss limeavations state space model in this paper and
equations (4-5) show its general form. Equation (4), the observation equation, describes the relationship
between the unobserved statgs, and the observatiop.. The state vectofx;) contains unobserved
components that describe the series level at tife), the slope at time (b,) and seasonality of the
series at time (s;). Equation (5), the state equation, describes the evolution of the states ovér, time.
and g are coefficient matricese; is the white noise series at timheThe use of identical errors in
eqguations (4-5) makes it an innovations state space model.

Ve = WX T & 4)
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Xe = Fx¢q + g€ (5)
In this paper, we applied the local level model of the linear innovations state space model which has only
one single state, and the resulting state space model is defined by the equations (6-7). In the equations
below ,g = a,F = [1],w = [1].

Ve =41 T & (6)

by =44 tag (7)

From the above model, we seek to determine tpeated value of future observation conditioned on
the value of the state vectoy. This is formally defined a&(y;,,|x;) and can be determined by
simulating many future sample paths conditional onl#s¢ estimate of the state vector. Prediction
intervals can also be obtained from the percentildbekimulated sample path. Point forecasts can be
obtained by taking the average of the simulated values in each future time period.

In order to completely specify the modehe initial state values must be specifidd), the
smoothing constants must be estimated, and the properties of the random error term must be specified.
Below are the assumptions of the model:

1. The expected value of each error term is zero.

2. The errors for different time periods are independent of (or at least uncorrelated with) one

another and also independent of past states.

3. The variance of the errors is constant.

4. The errors are drawn from a normal distribution.

2.3  Forecasting-simulation Model for monthly donations

Table 1 summarizes the model notation within tbhatext of the donations forecasting problem. The
objective is to predict the expected food donations (in Ibs.) received per month. We assume that initial
model parameters?(, a,s) are estimated from prior observation@;) defined in a test data set,
consisting of N observations. The simulation approachésatibed first, followed by the initialization
procedure.

Table 1: Forecasting-simulation model notation.

Variable Description

Ve Observed gross weight of food donations in petiagtermined
from the observation equation

£, The state at time(level of the series)

& The error term in periotd

a The smoothing constant

i Simulated mean gross weight in pertod

UL; Upper limit of the 98 percentile prediction interval in periaod

LL; Lower limit of the 98' percentile prediction interval in period

R The number of replications

Q: The actual donation quantity received in petiod

B; The smoothed estimate for level in pertod

0, The forecast of the donation quantity in petiod

s Standard deviation of the forecast error

Ny The total number of periods in the test data set

Ny The total number of periods in the validation data set
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231  Simulation Approach

The Monte-Carlo simulation approach is outlined indteps in Table 2. The initial model parameters are
determined from an optimization procedure described in section (2.3.2). Future monthly donations are
determined for each period in the validation dsga (line 13). For each period, the error terms are
generated according to a normal distribution (lineThe error terms are used to determine the simulated
donation values (observatign) and state values according to the corresponding equations (lines 8-9).

For each period, the observation and stjeations are simulated for a totalRoiterations. The 9%

percentile prediction interval for the observationsy;) for each period is computed according to the

corresponding equations (lines 9-10). The mean value fdR thieservationsy(;) for each period is then

recorded (line 13). The simulatiomodel is implemented in Matlab.

Table 2: Simulation procedure.

Steps

1: GetInitialValues ¢*, s*, Q)
22a« a*

3:45(0i) « QNT fori=1..R
4:s < s*

5:Fort=1toNy,

6 Fori=1toR

7: & (i) « normrnd(0,s)
8: Ye (@) < Lr_q (D) +ec (D)
9: (@) « e (D) + ag (D)
10: EndFor i

11: LL; « prctile(y;, 2.5)
12: UL; « prctile(y,, 97.5)
13: iy < X, y:(@)/R
14:End For t

232 Modd Initialization
To improve the forecast accuracy, we determine valueusfing the optimization model below:
Minimize $,;7,[ Q¢ — Qo))

Subject to:

1
B, = 52%51 t
Bt = aQt + (1 - (X)Bt_l vVt = 1 NT - 1

Qt = Bt—l vVt = 2 NT

1884

(8)

9)
(10)
(1D
(12)
(13)

(14)



Nuamah, Davis, Jiang, and Lane

B, >0 Vt=1..N;—1 (15)

The objective function minimizes the sum of the squared forecast error according to equation (8).
Constraint (9) determines the initial smoothed emtimfor level. Constraints (10) determine the
smoothed estimate for the level inchaperiod. Constraints (11) determine the forecast in period
Equations (12-15) define the bounds on the decisiormmas. This model is applied to the data in test
data set to determine the optimal smoothing congtanDnce the optimal smoothing constant is known,
the standard deviation is determéhaccording to equation (16).

Yol [0 — Q)12
S =
Nr—1
The initial state ¢ is assumed to be the final smoothed estimate for the IEMell( = @NT).

(16)

2.3.3 Model Validation

Two performance measures are usethtestigate the performance of the forecast-simulation model: the
mean absolute percentage error and the coefficienbigtion. The mean absolute percentage error
(MAPE) for both the point estimate and interval estimate (17a-17c), provide a measure of forecast
accuracy.

Ny
. r
mapre = [ 25 2Pl 100 (17a)
Ny L G
1 &
— UL
MAPE = —ZM X 100 (17b)
Ny £ Q¢
t=1
1 & LL
MAPE = —ZM x 100 (17¢)
N4

The coefficient of variation (CV) is a measure of dispersion and is comaatedding to equation (18),
whereQ is the sample mean.

) >V (Qy — Q)2
cv = g1 T (18)

3 RESULTSAND DISCUSSIONS

3.1 Data

Four fiscal years of data (48 records from JU@&to June 2012) was obiad from The Food Bank of

Central and Eastern North Carolina (FBCENC). A figesdr runs from July until June of the subsequent

year. The quantity (in pounds) of food received perstration is captured in the gross weight field which
represents the dependent variable in the forecastiugls Historical data is summarized by month and

year. The data is analyzed and aggregated bast#tdiwmanch where the donations were received. Each

data set is partitioned into two sets. The first 36 records represent the test data set (July, 2008-June, 2011)
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and the next 12 records represent the validation dafdwdet 2011-June, 2012). The test data set is used
to estimate the forecasting model parameters as well as the simulation model. The validation data set is
used to estimate the accuracy & thodel for a future time seriesghbires (1-5) are the time series plots
demonstrating the trend analysis for the data sdde all 5 branches. There was neither increasing or
decreasing trend in all 5 branches. Moreover, thenaated dickey-fuller (ADF) testas used to test for
stationarity of the series in all 5 branches using the hypothesis test below:
1. H,: The series is not stationary
H;: The series is stationary
2. Significance level: 0.05
3. H,is rejected when the absolute value of tst statistic is greater than the absolute
value of the critical vake as noted in (Sj6 2008).
The test statistics are show in Table 3. The simgtéan ADF was used for all 5 branches since all
their series exhibited a constant and no trend as shown in Figure (1-5).
4. At a 0.05 significance level, all the series for alifmhes were stationarynse their absolute test
statistics were greater than iesolute critical value (2.93).

Hence the SES model is deployed for the model initialization and the local level model of the linear
innovations state space model for the simulation part of the model.
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Figure 1: Durham time series plot.
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Figure 2: Raleigh time series plot.
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Figure 3: Greenville time series plot.
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Figure 4: Wilmington time series plot.
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Figure 5: Sandhills time series plot.

Table 3: Test statistics for stationarity test.

Branch

Durham Raleigh Greenville Wilmington Sandhills
Mean 203889.39 1769374.60  401422.89 239236.36 206751.68
Standard Deviation 55659.34 209341.42 70048.59 58198.95 48065.22
N 36.00 36.00 36.00 36.00 36.00
Zero Mean ADF -0.95 -0.55 -1.0 -0.65 -0.70
Single Mean ADF -4.50 -5.13 -6.8 -4.97 -5.17
Trend ADF -4.46 -5.03 -6.9 -6.23 -5.14

3.2  Forecasting-simulation Model
3.21 Modd Initialization Results

The optimization model describedsection (2.3.2) was applied to the first 36 periods (test data set) from
July 2008 to June 2011 for 5 branches separately. Figure 6 shows the optimized alpha values, the standard
deviations and smoothed estimate fevel for periods 36 for each branch. With the exception of the
Wilmington branch with an alpha value of 0.2, the alpha values for the rest of the branches was 0.1. The
Raleigh branch donation data had the most varigbdiid the highest predicted quantity. This was
expected since the Raleigh branch is the maamdir and receives the most donations from various
sources.

1887



Nuamabh, Davis, Jiang, and Lane

2,000,000.00 0.25

1,800,000.00
< 1,600,000.00 0.2 0.2
= 1,400,000.00
%n 1,200,000.00 0.15
‘S 1,000,000.00 3  mmmB36
2 800,000.00 2 0.1 0.1 01| 01
7] I S
& 600,000.00
G 400,000.00 0.05 —o—a

200,000.00

Durham Raleigh Greenville  Wilmington Sandhills
Branch

Figure 6: A graph of simulation model parameters.

321 Model Validation Results

The estimates in the optimization modBL{, ) and the estimate for the standard deviat®nwere
used in the simulation model to simulate donations estimates for the nextddspedlidation data set)
from July, 2011 to June, 2012 for 5 branches separately. The simulation wasRuaX0r000 iterations
for each branch. Their correspondjitg and 95 percentile prediction interval for each of the 12 periods
were computed. The validation MAPE (point estimatte iaterval estimate) and validation CV were also
computed for all branches.

Figure 7 shows the validation MAPE (point estimate) as well as the CV for the forecasting-simulation
model for each branch. Greenville had the higlestimation accuracy (12.40%) and Sandhills had the
lowest estimation accuracy (29.98%). Figurevalidated our forecasting-simulation model as it
demonstrated an increasing trend as MAPE increases with increasing CV. That is the estimation accuracy
decreases with increasing dispersion in the data. HoywineeRaleigh branch did not follow that pattern
and it was expected due to its high standard dewats shown in Figure 6. Moreover, the Shapiro-Wilk
test was conducted for the error terms from periodh8ugh 48 for all branches and the results are as
shown in Table 4. The error terms for all branches were normal.
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Figure 7: A graph of Validation MAPE VGV for forecasting-simulation model.
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Table 4: Shapiro-Wilk test for the random errors.

Hqo: The series is normal.
Hi: The series is not normal
Significance level: 0.05

Branch P-value Conclusion
Durham 0.36 Normal
Raleigh 0.95 Normal
Greenville 0.78 Normal
Wilmington 0.29 Normal
Sandhills 0.79 Normal

Figure 8 shows the validation MAPE (interval estimagsults for all 5 branches. It is interesting to
know that Raleigh had the best estimation accuracy and the upper limit estimation accuracy ( 13.67) was
better than that of the point estimate (15.22%).
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Figure 8: Validation MAPE of the $5percentile prediction.

4  CONCLUSION AND RECOMMENDATION

The data used in this study was providedttey FBCENC. Although the FBCENC receives food from
various sources, a majority of them are from donationer 79% of the food received by the food bank

is dependent upon damans. Since the donations constitute such a large portion of the food received, the
management at the FBCENC need to be able to atygpdan its distribution osupplies to ensure food
shortages are avoided. In order to properly manage the distributimmations, some form of forecasting
should be employed. In this case the desired varialflirecast and analyze would be the amount of food
donations received. Several forecasting techniques$ amis can be investigated in predicting the food
donations. However, certain characteristics of fdmhk donations make the forecasting problem
challenging. First, the amount of mtions and the type of food received varies with each donation.
Second, the donations are received at varying frequencies over the year and in uncertain quantities. This
increases the difficulty in choosing a forecasting mémhe and evaluating the behavior of the donations.

In this paper, a forecasting-simulation model was used to predict donations for the five FBCENC
branches which generated good forecasting accuracies.advantage of this approach is that point
estimates as well as interval estimates can be computed which aids the decision maker in making
insightful decisions. NPHROs can used the forgssimulation model to estimate future donations
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which will enable them to be proactive in planning ddstribution and future purchases in order to meet
their demand.
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