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ABSTRACT

Clinical laboratory measurements are vital to the medical decision-making process, and specifically, mea-

surement of rheumatoid factor antibodies is part of the disease criteria for various autoimmune conditions.

Uncertainty estimates describe the quality of the measurement process, and uncertainty in calibration of the

instrument used in the measurement can be an important contributor to the net measurement uncertainty. In

this paper, we develop a physics-based mathematical model of the rheumatoid factor measurement process,

or assay, and then use the Monte Carlo method to investigate the effect of uncertainty in the calibration

process on the correlation structure of the parameters of the calibration function. We demonstrate numeri-

cally that a change in uncertainty of the calibration process can be quantified by one of two metrics: (1) the

1-norm condition number of the correlation matrix, or (2) the sum of the absolute values of the correlation

coefficients between the parameters of the calibration function.

1 INTRODUCTION

The need for providing estimates of uncertainty for clinical laboratory measurement results has been

recognized by the United States Congress by its passage of the Clinical Laboratory Improvement Amendments

(CLIA) Act in 1988, which mandates recording estimates of measurement uncertainty and establishing

validated quality control (QC) processes in the clinical laboratory. A robust calibration process is a critical

part of establishing a valid QC process, and uncertainty in the calibration process can be a significant

contributor to the inaccuracy and imprecision of the result of a measurement. In this study, we develop a

physics-based Monte Carlo simulation model that estimates the uncertainty associated with the measurement

of the rheumatoid factor (RF) group of antibodies in the clinical laboratory. This simulation model is then

used to investigate the effect of uncertainty in the calibration process on the correlation structure of the

parameters of the calibration function and identify metrics that quantify change in the uncertainty of the

calibration process of the RF assay without requiring the use of a benchmark measurement.

Measurement uncertainty is defined in the ISO-BIPM-OIML-IUPAC Guide to the Expression of Uncer-

tainty in Measurement (GUM) (BIPM et al. 1993, JCGM-100 2008) as “any parameter that characterizes
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the dispersion of the distribution of the values that can be attributed to the result of a measurement”. In this

work, we use the standard deviation as the measure of uncertainty since the distributions of the sources of

uncertainty within the measurement process are all characterized to be Gaussian, and the distribution of

the measurement result, or the measurand, is also found to be Gaussian.

A clinical laboratory measurement process, widely referred to as a clinical assay, consists of three

stages. The first, the preanalytical stage, comprises all activities performed prior to patient sample analysis

(Burtis et al. 2012). The second, the analytical stage, involves instrument calibration and subsequent

analysis of the patient sample on the calibrated instrument. The final post-analytical stage consists of

recording, reporting and interpreting the measurement. In this study, we model only the analytical stage,

since identifying and modeling the variation of the numerous sources of uncertainty associated with the

preanalytical stage merits a separate study in itself. Uncertainty in the postanalytical stage is typically

introduced due to human error in recording or reporting of the measurement result, and hence does not lie

within the scope of this study.

RF consists of a group of slightly different medically significant antibodies, and high levels in the blood

of these antibodies are commonly associated with various autoimmune diseases (Ferri 2012). Since RF is

not a single antibody, and consists of a group of antibodies, their units of measure are International Units

per milliliter, IU/mL, and not mass units such as milligrams per deciliter. They will henceforth collectively

be referred to as “antibody” to maintain economy in terminology.

The RF assay is performed on the Roche Diagnostics P-Modular Analytics measurement system. One

of the reactants (the antigen) for the assay chemical reaction is supplied by the reagents. The RF required

for the assay is supplied by the patient sample or a calibrator. The bioanalytical principle underpinning

the measurement process is immunoturbidimetry. The chemical reaction occurs between the antigen and

the antibody (RF), wherein the antigen and the antibody bind to form the antigen-antibody complex. This

antigen-antibody complex is insoluble in the reaction mixture, and hence is a visible product of the reaction,

known as the precipitate. The process of formation of the insoluble antigen-antibody complex is known as

agglutination and it increases the turbidity of the reaction mixture. The optical absorbance recorded as part

of the RF assay is directly proportional to the concentration of the antigen-antibody complex at that point

in time, and hence is a measure of turbidity of the reaction mixture. The measured optical absorbance is

converted into RF concentration by a nonlinear calibration function.

Several studies have previously attempted to estimate the uncertainty associated with specific clinical

laboratory measurement processes, and a few prominent studies are listed here (Kallner 1999, Borg et al.

2002, Suchanek and Robouch 2009, Rami and Canalias 2014). These studies use one of the following two

methods: (1) application of the analytical rules for the estimation of measurement uncertainty provided in the

GUM to combine the uncertainties of individual components of the measurement process; or (2) top-down

estimation of assay measurement uncertainty; that is, the uncertainty is estimated from experimental data

for the measurement result, represented by a parameter such as the standard deviation.

We identified very few studies that model the uncertainty associated with the turbidimetric determination

of immunoprotein concentration levels. We identified two studies that involved the analytical modeling and

estimation of the measurement uncertainty of immunoassays (Borg et al. 2002, Suchanek and Robouch 2009).

Borg and colleagues in 2002 applied the systematic approach for modeling the uncertainty of analytical

chemistry measurements described by Kristiansen in 2001 (Kristiansen 2001) to establish uncertainty

budgets for four sandwich enzyme-linked immunosorbent assays (ELISAs): interleukin-4, interleukin-5,

interferon-γ and tumor necrosis factor-α . This approach involves identifying and characterizing the sources

of uncertainty operating within the measurement process, and then applying the law of propagation of

uncertainty to estimate the assay uncertainty.

Suchanek and Robouch in 2009 (Suchanek and Robouch 2009) developed a model of measurement

uncertainty of the toxoplasma gondii antibody ELISA test kit. Their model was based on a nonlinear

relationship between analyte concentration and measured optical absorbance; however, the authors used a

linear bracketing method to convert the measured optical absorbance into the desired analyte concentration.
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The authors used the Kragten spreadsheet automation of the law of propagation of uncertainty to estimate

the net assay uncertainty (Kragten 1994).

Both studies discussed above develop models that apply multiplicative factors that describe the uncertainty

of the sources of variation to the measured quantities, and then utilize the law of propagation of uncertainty to

estimate the combined measurement uncertainty of the assay. In this study, we apply a systems engineering

perspective to develop a physics-based mathematical model of the measurement process, and then use

the Monte Carlo method to estimate the net measurement uncertainty. The use of a systems engineering

approach to model clinical assays and estimate their associated uncertainty was first suggested by Aronsson

et al. in 1974 (Aronsson, de Verdier, and Groth 1974), and later by Krouwer (Krouwer 2002).

In this work, we apply a similar systems engineering perspective to model measurement uncertainty.

This involves developing a mathematical model of the RF immunoassay that describes its biochemistry as

well as the operational aspects of the measurement process (calibration protocols, patient sample analysis

protocols, etc.). The Monte Carlo method is then used to estimate the uncertainty associated with model,

and also to quantify the contributions of each measurement system of the measurement system to the

net measurement uncertainty. The use of the Monte Carlo method to estimate measurement uncertainty

is indicated if at least one of the following conditions are applicable to the model of the measurement

process: a.) the measurement system model is required to be non-linear; b.) estimation of the degrees of

freedom of the sources of uncertainty operating within the measurement system is not possible, which is

the case when their variation is characterized by a non-statistical ad-hoc method; and c.) the distribution of

the measurement result or any of the sources of uncertainty is not Gaussian (JCGM-101 2008). The first

two conditions apply in the case of our model. The Monte Carlo method enables conducting simulation

experiments with the model, and therefore facilitates extraction of information about the measurement

system that would otherwise require performing laboratory experiments. This is demonstrated by using

the simulation model to quantify the effect of uncertainty in the calibration process on the correlation

matrix associated with the parameters of the calibration function, and consequently the use of the 1-norm

condition number and the sum of the absolute values of the correlation coefficients between the calibration

parameters as metrics that quantify the change in uncertainty in the calibration process.

This study was carried out jointly with the Roche Diagnostics Corporation in Indianapolis, IN (USA).

2 MODEL DEVELOPMENT

For the RF assay, the quantity to be measured or the measurand is the concentration of RF antibodies in the

patient sample. The RF assay is an immunoassay, and the physical principle underlying its measurement is

immunoturbidimetry, which involves the determination of the turbidity of the reaction mixture. The turbidity

of the reaction mixture increases due to the increase in concentration of the insoluble antigen-antibody

complex that is formed as a result of the binding that occurs between the antibody and the antigen. This

binding process is expressed as a chemical reaction below:

Ag+Ab
k1−−⇀↽−−

k−1

AgAb (1)

Here Ag and Ab represent the antibody (RF antibodies) and antigen (latex-particle coated human

antigens) respectively, and AgAb is the antigen-antibody complex. The terms k1 and k−1 are the rate

constants of the forward and backward reactions, respectively. Two reagents, R1 and R2, and the patient

sample S are pipetted into the reaction cell where the binding occurs. R1 provided the metal ion buffer

and the preservatives necessary for the chemical reaction, and R2 supplies the antigen that binds to the

RF antibodies in the patient sample. Two optical absorbance measurements are recorded during the assay

analysis process. The first measurement, denoted by Ax(0), is made at time t = 0 prior to the addition of

R2 to the reaction mixture, and the second measurement, denoted by Ax is made 5.4 minutes after the first

measurement is made. Since the first measurement is made at t = 0 before R2 is added, the absorbance of
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the reaction mixture at that point can be considered to be zero for all practical purposes. This assumption

was made after consulting with the instrument manufacturer.

The volumes of the reagents are represented by Vr1 and Vr2. The volume of the calibrator or patient

sample is denoted by Vs.

The difference between optical absorbance measurements Ax and A0 is converted into the RF concentration

in the patient sample, denoted by Cx, by a nonlinear calibration function given below. Since we assume

Ax(0) to be zero, only the term Ax appears hereafter, and in the expression below.

Cx =

[

(a− (Ax −B))

b (Ax −B)

]1/c

(2)

This is the inverse log-logit function. Here, a, b, c and B are the parameters of the calibration function.

Equation 2 has four parameters of unknown value, and therefore a minimum of four calibrators are required

to characterize the calibration function. We refer to these calibrators as Ab1, Ab2, Ab3, and Ab4.

The analytical stage of the assay analysis process can be considered as consisting of two phases: the

calibration phase, wherein the instrument is calibrated using standard solutions (solutions with known RF

concentrations) and the values of the calibration function parameters are estimated; and the sample analysis

phase, wherein the sample with unknown RF concentration is analyzed by the calibrated instrument. We

now describe the development of the calibration phase component of the model.

2.1 Calibration Phase

The values of the calibration parameters a, b, c, and B are estimated in this phase. These parameters

are estimated by using four calibrators - solutions with known RF concentration - and measuring their

corresponding optical absorbance values. These four known RF concentration and their optical absorbance

measurements are used to solve for the values of the four calibration parameters. Prior to describing how

we model the uncertainty in the calibration process, we must mention the use of a reference function to

generate absorbance values corresponding to different RF concentrations for the purposes of the simulation.

This reference function is established using QC data provided by the manufacturer, and its parameters are

assumed to be error-free. The values of absorbance (corresponding to known RF concentration) generated

by this reference function are also therefore treated as ‘true/reference’ values.

We now describe the process by which uncertainty is introduced into a single calibrator measurement.

Let [Ab] represent the desired RF concentration in a calibrator sample. Three sources of calibrator uncertainty

were identified to be associated the calibrator: calibrator set-point uncertainty (uc1), vial to vial variability

(uc2) and calibrator reconstituted stability (uc3(t)). Calibrator set-point uncertainty is the uncertainty in the

RF concentration of the calibrator introduced during manufacturing and prior to its use in the laboratory.

Vial-to-vial variability refers to the uncertainty introduced in the RF concentration while preparing different

vials of the calibrator supplied by the manufacturer. Finally, calibrator reconstituted stability quantifies the

deterioration (percentage decrease in RF concentration per day) of the sample when the calibrator vial is

stored and reconstituted after use each day, for up to, say, N days.

When these are introduced into the model, the value of [Ab] changes according to the following equation:

[Ab]′ = [Ab] (1+uc1) (1+uc2)
N

∏
t=1

(1+uc3(t)) (3)

The variation of the sources of calibrator uncertainty, along with the others identified as associated with

the measurement process, is characterized by fitting appropriate probability distributions to the specifications

provided by the instrument manufacturer for each source of uncertainty. This method of characterizing

the variation of the sources of uncertainty was used because experimental data was not available for the

sources of uncertainty. As an example, specifications for calibrator set-point uncertainty were provided by

the instrument manufacturer in the form of a coefficient of variation (CV) of 0.1%. After discussion with
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the manufacturer, a Gaussian distribution with a mean of 0% and a standard deviation of 0.1% was assumed

to quantify the variation in the calibrator RF concentration due to set-point uncertainty. The mean of the

Gaussian distribution was assumed to be 0% based on the manufacturer’s judgment that systematic errors

in the calibrator manufacturing process were negligible. Therefore, at a desired calibrator RF concentration

of 100 IU/mL, the actual concentration would be described by a Gaussian distribution with a mean of 100

IU/mL and a standard deviation of 0.1 IU/mL.

The measured RF concentration in the calibrator is also changed by the sources of uncertainty operating

within the instrument. Three key sources of uncertainty are associated with the instrument: sample

pipetting uncertainty, reagent pipetting uncertainty and photometer uncertainty. Sample and reagent pipetting

uncertainty describe the uncertainty in the volumes of the sample and reagents pipetted into the reaction

cell, and hence yield a change in the total volume of the reaction mixture and the number of molecules

of the antigen and antibody in the reaction mixture prior to the beginning of the reaction. In other words,

their effect on the measurement process occurs at time t = 0. However, photometer uncertainty changes

the absorbance measurement recorded at t = 5.4 minutes. The variation of these sources of uncertainty are

also characterized in a manner similar to that of the sources of calibrator uncertainty, and hence are also

described by Gaussian distributions. The parameters of the distributions of all the sources of uncertainty

operating within the measurement process are provided in Table 1. An assumption of zero bias was made

based on the manufacturer’s observation of negligible bias associated with all sources of uncertainty except

reconstituted stability.

Table 1: Sources of uncertainty associated with the RF assay

Source of uncertainty Distribution Mean (%) SD (%) Notes

Calibrator set-point uncertainty Gaussian 0.00 0.10

Vial-to-vial variability Gaussian 0.00 1.50

Reconstituted stability Gaussian -1.25 0.42 Daily decrease in RF concentration

Sample pipetting uncertainty Gaussian 0.00 1.50

Reagent pipetting uncertainty Gaussian 0.00 4.00

Photometer uncertainty Gaussian 0.00 0.15

We now describe the derivation of the effect of sample and reagent pipetting uncertainty on the optical

absorbance measurements recorded during the assay.

We begin with the assumption that the optical absorbance at time t, denoted by A, is proportional to

the concentration of the antigen-antibody complex in the reaction mixture at time t (denoted by [AgAb]).
That is:

A = k [AgAb]+A0 (4)

Here k is the molar extinction coefficient, A0 denotes the value of the absorbance when the AgAb

concentration is zero. Reaction 1 can be thought of as a first order reaction with the rate of the forward

reaction dependent only on the concentration of the antibody (in IU/mL)), since the antigen is present in

an amount that is significantly in excess of the antibody. The rate of the reaction can also be expressed in

terms of the formation of the product, as in the equation below:

d[AgAb]

dt
= k1 [Ab] (5)

Here [Ab] represents the RF concentration in IU/mL in the reaction mixture at time t. Now the rate of

the reaction can also be expressed as the rate of decrease in concentration of RF. This is expressed in the

equation below:

−
d[Ab]

dt
= k1 [Ab] (6)
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Integrating the above rate equation results in the following:

−
∫ [Ab]

[Ab0]

d[Ab]

[Ab]
=− k1

∫ t

0
dt

ln

(

[Ab]

[Ab0]

)

=−k1 t

Exponentiating both sides, we have:

[Ab] = [Ab0] e−k1 t (7)

Using the above expression to substitute for [Ab] in Equation 5, we have:

d[AgAb]

dt
= k1 [Ab0] e−k1 t (8)

We integrate the above equation to obtain the relationship between the antigen-antibody complex

concentration at time t, the initial amount of the antibody and time.

∫ [AgAb]

[AgAb0]
d[AgAb] = k1 [Ab0]

∫ t

0
e−k1 t dt

Evaluating the above integral yields:

[AgAb] = [Ab0] (1− e−k1 t) (9)

Substituting the expression for [AgAb] in equation 4, we obtain the relationship between optical

absorbance, concentrate of antibody at time t = 0 and time.

A = k [Ab0] (1− e−k1 t)+A0 (10)

Now, at t = 0, the antibody concentration in the reaction mixture can be written as the ratio of the

number of units of the antibody NAb(0) to the volume of the reaction mixture V . That is, the above equation

can be written as:

A = k

(

NAb(0)

V

)

(1− e−k1 t)+A0 (11)

Further, the number of units of the antibody NAb(0) can also be written as the product of the antibody

concentration (in IU/mL) [Abs] in the sample S and its volume Vs. The distinction between the terms [Ab0]
and [Abs] must be emphasized here: the former refers to the desired RF concentration in the reaction mixture

at time t = 0, and the latter to the desired RF concentration in the patient sample S after it is pipetted out

and before it is added to the reaction mixture. Therefore, the above equation can be written as:

A = k

(

[Abs]Vs

V

)

(1− e−k1 t)+A0 (12)

The total volume of the reaction mixture V is the sum of the sample and reagent volumes Vs, Vr1 and

Vr2. We now introduce pipetting uncertainty into the model. We denote the fractional change in sample

volume due to sample pipetting uncertainty as x, the fractional change in reagent volumes due to reagent

pipetting uncertainty as y1 and y2, and the fractional change in total reaction mixture volume as z. Then,

Vs +δVs =Vs (1+ x) (13a)

Vr1 +δVr1 =Vr1 (1+ y1) (13b)
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Vr2 +δVr2 =Vr2 (1+ y2) (13c)

V +δV =V (1+ z) (13d)

Now, using the fact that V = Vs + Vr1 + Vr2, we have the following:

V +δV =Vs (1+ x)+Vr1 (1+ y1)+Vr2 (1+ y2) (14a)

That is,

V +δV =Vs +Vr1 +Vr2 + x Vs + y1 Vr1 + y2 Vr2 (14b)

and

δV = x Vs + y1 Vr1 + y2 Vr2 (14c)

Uncertainty in the instrument may also occur as an error in the time at which the absorbance measurement

is recorded. This will change the extent to which the reaction has occurred, and in turn the optical absorbance

measured ostensibly at time t. We refer to this uncertainty in the time of measurement as clock uncertainty.

We denote this change (error) in time of measurement as δ t and the fractional change in the desired time

of measurement t as ut . If we denote the change in optical absorbance measured at time t as δAt , then the

optical absorbance after the incorporation of reagent and sample pipetting uncertainty is written as:

A+δA = k

[

[Abs](Vs +δVs)

V +δV

]

(1− e−k1(t+δ t))+A0 (15)

Using Equations 13a through 13d, the above expression is rewritten as:

A+δA = k [Abs]
Vs

V

[

1+ x

1+ z

]

(1− e−k1(t+δ t))+A0 (16)

Subtracting Equation 12 from Equation 16, we derive the change in optical absorbance due to pipetting

uncertainty and clock uncertainty:

δA = k [Abs]
Vs

V

[

(1+ x)(1− e−k1 (t+δ t))

1+ z
− (1− e−k1 t)

]

(17)

We denote the above fractional change in optical absorbance at time t due to pipetting and clock

uncertainty, δA/A, by the term upc. Now, equation 17 denotes the change in absorbance at time t from

the desired value that occurs prior to recording the absorbance measurement. When the measurement is

recorded, the uncertainty due to the photometer changes the absorbance further by the fractional amount

up. Therefore, the final expression for optical absorbance after incorporating instrument uncertainty into

the model is given below:

A
′
= A (1+upc) (1+up) (18)

The above equation denotes the value of absorbance after all sources of uncertainty affecting the optical

absorbance measurement have been incorporated into the model. This process is repeated for each of the

four calibrators, which yields four values of RF concentrations (in IU/mL) [Ab1]
′, [Ab2]

′, [Ab3]
′ and [Ab4]

′

and four corresponding optical absorbance measurements [A1]
′, [A2]

′, [A3]
′ and [A4]

′. The [Abi]
′(i = 1−4)

are a function of the sources of calibrator uncertainty, and can therefore be represented by the left-hand side

of equation 3. Similarly, the [Ai]
′(i = 1−4) represent the optical absorbance values after all the sources

of uncertainty operating within the calibration phase are incorporated into the model, and can therefore be

represented by the left-hand side of equation 18.

These four values of RF concentrations and their corresponding optical absorbance values are used to

solve for the values of the calibration parameters a′,b′,c′ and B′. The dashed symbols for the calibration
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parameters represent the incorporation of calibration uncertainty incorporated into their values. Since these

form a set of nonlinear simultaneous equations, they are solved numerically using the Levenberg-Marquardt

nonlinear least-squares algorithm. The calibration function with the uncertainty of the calibration phase

now becomes:

C =

[

(a′ − (Ax −B′))

b′ (Ax −B′)

]1/c′

(19)

The values of a′,b′,c′ and B′ are estimated as 42479.6, 86.1, -1.5 and 13063.7. In comparison, the

corresponding parameters of the average reference function are 25100.1, 118.4, -1.6 and 12818.0.

2.2 Sample Analysis Phase

The key components of uncertainty associated with the sample analysis phase are patient sample uncertainty

and instrument uncertainty. Patient sample uncertainty is generally associated with the preanalytical stage

of the clinical measurement process, and is therefore out of the scope of this study. We have described the

effect of instrument uncertainty in the previous section, and therefore we denote the fractional change in

optical absorbance at time t due to pipetting uncertainty and clock uncertainty in the sample analysis phase

as upc(m). If we denote the true RF concentration in the sample as [Agx], and the corresponding absorbance at

time t as Ax, the absorbance obtained after the incorporating sample and instrument uncertainty is expressed

as:

A′
x = Ax (1+ux) (1+upc(m)) (1+up) (20)

Here A
′

x represents the absorbance after the uncertainty of the sample analysis phase is introduced into

the process, and ux represents a placeholder term for the fractional change in RF concentration due to

preanalytical uncertainty. The term up represents photometer uncertainty - we emphasize here that this

term represents the random variable characterizing photometer uncertainty, and therefore its value might

be different each time it is sampled in the calibration and sample analysis phase. This value of the optical

absorbance is then converted into the RF concentration in the patient sample by equation 19, as shown by

the expression below:

C′
x =

[

(a′ − (A
′

x −B′))

b′ (A
′

x −B′)

]1/c′

(21)

The uncertainty associated with this model is estimated by generating patient sample RF concentrations

(in the current implementation, 100, since it corresponds to the average number of RF tests conducted on

the P-modular analytics platform in a day in a clinical laboratory) for different sets of realizations of the

sources of uncertainty, and then estimating the standard deviation of these 100 recorded measurements of RF

concentrations. Clock uncertainty is not included in the model implementation upon the recommendation

of the manufacturer as it is negligible in practice.

Estimates of measurement uncertainty obtained from the model were compared with intermediate

imprecision estimates provided by the assay manufacturer. In the absence of direct experimental validation,

we elected to validate the model in such a manner because the distributional parameters of the simulation

model were estimated based on the specifications provided by the assay manufacturer, which in turn

were estimated from experimental data collected for each source of uncertainty. It therefore followed that

model estimates of uncertainty should also be compared against the estimates of uncertainty observed

experimentally by the assay manufacturer.

Estimates of uncertainty for the RF assay were provided as coefficients of variation (CVs) of 4.7% and

2.5% at RF concentrations of 17.5 IU/mL and 57.7 IU/mL, respectively. At these RF concentrations, model

estimates of uncertainty were 4.14% and 2.17%, respectively - that is, the model seems to underestimate
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the RF assay uncertainty. However, these comparisons are not a substitution for validation via controlled

experimentation, and do not support making definitive conclusions regarding the validity of the model. In

the absence of experimental validation, these comparisons provide a qualitative indication that the model

provides estimates of uncertainty that are reasonable when compared to those seen in the laboratory.

3 RESULTS AND ANALYSIS

The model was programmed in the Matlab computing environment. Estimates of the rate constant k1 (2

X 10-4 per second) and the molar absorption coefficient (14000 per IU/mL per centimeter) were based on

a published experimental investigation of the kinetics of a comparable immunoassay (Nagel and Gibson

1967). In order to estimate the measurement uncertainty for patient samples whose RF concentration

levels are unknown, the simulation model was used to construct an empirical function, referred to as the

uncertainty profile, that generates an estimate of measurement uncertainty at a given RF concentration level.

The uncertainty profile is constructed by generating uncertainty estimates at different RF concentrations

in the range of possible patient sample RF concentration levels, and then finding the function that best fits

the simulated data. The sample RF concentration (in IU/mL) is the independent variable, and the standard

deviation (in U/L) of the distribution of the measurement result is the dependent variable. The uncertainty

profile for the RF assay is shown in Figure 1, and a sample RF concentration range of 10 IU/mL - 135

IU/mL, traversed in increments of 5 IU/mL, was used in constructing the uncertainty profile.

Figure 1: Uncertainty profile for the RF immunoassay.

A key use of such a model is to estimate the contributions of the sources of uncertainty operating

within the measurement process. This is accomplished by setting the relevant parameters to zero (mean and

standard deviation of its distribution to zero), and then re-estimating the mean and standard deviation of the

measurand. The difference between the mean and the standard deviation of the measurand estimated without

the source under consideration and the measurand mean and standard deviation estimated with all sources

of uncertainty operating within the process represents its contribution to the inaccuracy and imprecision

of the measurement process. We estimate the contributions of the sources of uncertainty operating within

the sample analysis phase since these are the sources that primarily contribute to the imprecision of the

measurement result, whereas the sources operating within the calibration phase contribute to the inaccuracy

(bias) associated with the measurement result. The contributions of the sources of instrument uncertainty

to the net assay uncertainty are summarized in Table 2.

It is clear that the reagent pipette and the sample pipette are the largest contributors to the net measurement

uncertainty, and that reducing the imprecision in their operation would lead to substantial decreases in net

measurement uncertainty.

We now introduce a method by which a change in uncertainty of the calibration process can be quantified

without using a standard sample with an RF concentration that is established with a very high degree of
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Table 2: Contribution of the sources of instrument uncertainty to net measurement uncertainty

Source

Net uncertainty with all

sources operating (CV,

%)

Net uncertainty with

source removed (CV,

%)

% Contribution to net

uncertainty

Sample pipette 1.91 1.73 9.42

Reagent pipettes 1.91 0.85 55.50

Photometer 1.91 1.88 1.57

precision. We investigate the effect of increasing or decreasing uncertainty in the calibration process on the

correlation structure between the parameters of the calibration function; that is, we investigate the effect

of changes in calibration uncertainty on the correlation matrix of the calibration function parameters.

The parameters of the calibration function are estimated by solving a set of four nonlinear simultaneous

equations that are in turn generated by four optical absorbance measurements A
′

i (i = 1-4) recorded by

analyzing four corresponding calibrators Ab
′

i (i = 1-4). We simulate the calibration process by generating

values of A
′

i and the Ab
′

i (i = 1-4) and then solving the corresponding set of nonlinear equations to generate

the values of the four calibration parameters. This process is repeated 300 times and the correlation matrix

between the parameters of the calibration function is generated from these simulated values of the calibration

parameters.

We model the ith pair of measurements (A
′

i, Ab
′

i) as jointly distributed random variables because each

A
′

i is correlated with its corresponding Ab
′

i, with ρi being the correlation between the ith pair. In order

to estimate the marginal distributions of the A
′

i and the Ab
′

i (i = 1-4), the calibration process is simulated

with all sources of uncertainty operating to generate 300 sets of values of A
′

i and Ab
′

i (i = 1-4). We first

establish from these datasets that the A
′

i and the Ab
′

i are all normally distributed. The means and standard

deviations of the marginal distributions of the A
′

i and the Ab
′

i as well as values of ρi are then also estimated

from these simulated datasets.

Since calibrator preparation occurs prior to analysis of the calibrator on the instrument and the

measurement of optical absorbance, the calibration process is simulated by first sampling from the marginal

distributions of the Ab
′

i, which are distributed as N(µAb(i),σ
2
Ab(i)) for each i = 1-4. Then the corresponding

values of the A
′

i are generated by sampling from the distributions of the A
′

i, conditional on the sampled

value of the Ab
′

i. This is expressed in the following equation.

A
′

i | Ab
′

i ∼ N

(

µA(i) +ρi

σA(i)

σAb(i)
(Ab

′

i −µAb(i)), (1−ρ2
i ) σ 2

A(i)

)

∀ i = 1−4 (22)

A change in the uncertainty of the calibration process is modeled as an increase or decrease in the

standard deviations of the marginal distributions of the Ab
′

i and/or the A
′

i. This can be considered as an

increase or decrease in the precision in the calibration process. We increased or decreased the estimates of

the σAb(i) and the σA(i) by factors of two and studied the effect of these changes on the correlation matrix

of the parameters of the calibration function. While it was difficult to discern an easily apparent consistent

change in the individual correlation coefficients between the calibration function parameters, we identified

the 1-norm condition number of the correlation matrix and the sum of the absolute values of the correlation

coefficients between the parameters of the calibration function as decreasing (increasing) with an increase

(decrease) in calibration uncertainty. We denote the 1-norm condition number of the correlation matrix A

as κ1(A), and the sum of the absolute values of the correlation coefficients between the parameters of the

calibration function as fA. fA is formally defined as follows:

fA =
1

2
∑∑

i6= j

|ρi j| (23)
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Here ρi j represents the element in the ith row and jth column of A. We found that an increase or

decrease in σAb(i) does not affect the values of κ1(A) and fA; therefore, we present here the effect of

simultaneously increasing or decreasing the values of the σA(i) on κ1(A) and fA. Plots between κ1(A) and

fA versus the factors of two by which the σA(i) are multiplied are shown in Figures 2a and 2b.

(a) κ1(A) (b) fA

Figure 2: κ1(A) and fA versus change in uncertainty of absorbance measurements.

We envision that the primary utility of measures such as κ1(A) and fA is that they can be used to quantify

changes in calibration uncertainty without the need for analysis of a high-precision standard sample. Their

values can be estimated from calibration function parameter estimates obtained from routine calibrations.

While κ1(A) exhibits greater sensitivity to change in calibration uncertainty when compared to fA, the

latter is an intuitively more easily understood quantity.

4 CONCLUSIONS

The primary aim of our study is to illustrate the development of models of measurement uncertainty of

immunoassays, and their use in informing laboratory practice and instrument design. We also show how

the model can be used to quantify the effect of uncertainty in the sample analysis phase on the measurand

distribution, and introduce κ1(A) and fA as potential measures to quantify the change in uncertainty in the

calibration phase of a measurement process. Future research will involve mathematical formalization of

the use of κ1(A) and fA to quantify change in calibration uncertainty for nonlinear measurement systems

in general.

It should be mentioned here that because the purpose of this study is to describe in detail the development

of an uncertainty model of an existing RF immunoassay and not to redesign the entire calibration process,

we do not address the statistical considerations involved in nonlinear univariate calibration in this paper

(see Forkman (2008) and Osborne (1991) for relevant discussions). Specifically, the issues associated with

nonlinear inverse regression, and the choice of the inverse log-logit calibration function are beyond the

scope of this paper. Further, while the identification of optimal calibrator concentrations that minimize net

assay uncertainty has been explored previously in the context of linearly calibrated assays (Ramamohan

et al. 2014), we do not address this issue in this study because the primary aim of this paper is to describe

the development of an uncertainty model for an immunoassay with predetermined calibrator concentrations.

We plan to address this issue in a future study, building upon previous work by Forkman (2008).
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