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ABSTRACT

Optimal control of building’s HVAC (Heating Veifdtion and Air Conditioning) system as a demand
response may not only reduce energy cost in buildings, but also reduce energy production in grid,
stabilize energy grid and promote smart grid. tHis paper, we describe a model predictive control
(MPC) framework that optimally determines confpobfiles of the HVAC system as demand response. A
Nonlinear Autoregressive Neural Network (NARNEIB) used to model the thermal behavior of the
building zone and to simulate various HVAC control strategies. The optimal control problem is
formulated as a Mixed-Integer Non-Linear Programming (MINLP) problem and it is used to compute the
optimal control profile that minimizes the total energy costs of powering HVAC system considering
dynamic demand response signal, on-site energy storage system and energy generation system while
satisfying thermal comfort of building occupants witkhe physical limitation of HYAC equipment, on-

site energy storage and generation systems.

1 INTRODUCTION

In most countries, buildings (commercial and rediddnconsume more than 40% of the total energy,
and HVAC (Heating Ventilation and Air Conditioningystems consume 50% of the building energy
consumption. Therefore, 20% (i.e., 40% x 50%}re# total energy consumption in the world is for
HVAC operations. A recent study by Zavala, Célinand Dickinson (2011) indicates that optimal
control of HVAC system can achieve energy savingsimfto 45%. Therefore, 9% of overall energy
savings in the world can be achieved by optimal robrtf HVAC system. Optimal control of building
HVAC is also considered to be the biggest DathResponse (DR) opportunity that can reduce energy
consumption, grid energy production, stabilize energy grid and promote Smart grid.

In this paper, we describe a Model Predictivanttol (MPC) framework that optimally computes the
control profiles of the HVAC system as well as htve power (load) needed by the HVAC system is
optimally sourced through optimized combination gsfd purchased energy with DR, on-site stored
energy and on-site generated energy. The optooatrol profile then can be communicated to the
controller (i.e., Building Automation System) to canitHVAC system. The method can reduce energy
costs of HVAC operations proactively considering phige of grid purchased electricity, on-site stored
electricity and on-site generated energy. The reguttol can serve as an energy reduction and demand
response tool that not only optimizes the energysdagbuildings but also reduces energy production and
stabilize energy supply (grid).
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Traditional approach for optimized HVAC control in building is to compute optimal control profile
(e.g., set point profile of heatiragoling zone, or supply flow ratef air handling unit (AHU)) that
minimizes the total energy consumption while satisfying thermal comfort (e.g., zone temperature) and
physical limitation of HVYAC equipment (e.g., suppbmperature and supply flow rate of AHU). An
examples of this approach are shown by Brauontgomery and Chaturyedi (2001) and Braun (1990),
who developed optimal HVAC Control method usinglding thermal mass for energy load shaping and
peak reduction. The traditional approaches typicalygume that the electricity price is constant
throughout the day.

Ever since DR became an important means tanba energy demand and supply, there have been
new approaches to HVAC control, that compute optiprafiles while minimizing the total energy costs
subject to DR signal (dynamic electricity priceDhese approaches have been described by e.g. Zavala,
Celinski and Dickinson (2011) and Zavala, Zimmerraad Ott (2011). However, these approaches do
not decide how the load of HVAC system resulting from the optimized control is optimally sourced
through multiple energy supplies, e.g., grid electrigitigh DR, on-site stored electricity and on-site
generated electricity. There has been prior rebe@n management of energy generation, including the
work by Kusiak and Guanglin (2012), who develd@eMINLP for the optimal design and dispatch of
distributed generation systems. The MINLP by Kusiad Guanglin (2012) assumes that energy demand
is given and does not integrate the energy demanttat (e.g., HVAC control) with the energy storage
decision: the authors focus on optimized dispatghjoperational) decision on energy storage and
generation. The approach described in this pepeputes optimal HVAC control profile that minimizes
the total energy costs and GHG emission, considering (1) DR signal, (2) on-site energy storage system (3)
on-site energy generation system while satisfyirgrmtal comfort (e.g., zone temperature), physical
limitations of HVAC equipment, and physical limiion of energy storage system (ESS) and energy
generation system (EGS). Our apgech determines not only the optimal control profile but also how to
power the HVAC system from the optimal combinationgafl electricity, on-site stored electricity and
on-site generated electricity.

In this MPC framework, the thermal behavior o thuilding zone described above is modeled by a
NARNET and the optimal control problem is farlated as a MINLP model. We used a U.S.
Department of Energy (DOE) reference building dimmulate several HVAC control strategies and
generated the data to be used for developinghimenal behavior model using EnergyPlus (EnergyPlus
2015). The reference building is a three story, omadbffice building in Baltimore MD, USA, Climate
Zone 4A, and TMY (typical meteorological year)t@l§NREL 2008) was used. We simulated several
different HVAC control strategies including niglsetup, demand limiting and pre-cooling strategy
(Braun, Montgomery and Chaturyedi 2001; Lee and Braun 2004), with zone set point as the control
variables. The data was simulated for one yweiéln 10 minutes interval, and used for analysis and
modeling.

2 APPROACH, SSIMULATION AND DATA

A simplified view of heat transfer in a building thaé are developing a model for is shown in Figure 1.
Building occupants can have influence on comfugeaclimate condition decision, such as temperature
and humidity inside the building. However, becausédimgs are neither perfectly insulated nor blocked
from sunlight, warm and humid climate conditionssidé a building influence the building’s indoor

climate during the summer season, and cold andaitrgnters the building during the winter season,
making the inside climate uncomfortable for the ocaotgaln order to compensate for the influence of
the outside climate, HVAC system and plant equipn(er., chillers and boilers) are operated to provide
thermal energy into the Bding to maintain occupants’ thermabmfort. Typically, heat transfer from

outdoor conditions into the indoor space involves haasfer through a building component like external
or internal walls, windows, the roof, and theogmd (foundation). The heat transfer includes heat
conduction (e.g., heat flows through wall materialegttconvection (e.g., heat flows through the air from
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interior walls into the space), solediation (e.g., solar energy on teeterior wall or through openings
such as a window onto an interior wall), air infiltration trough space through cracks around windows,
doors, and opened windows and doors, and internalgagatrom light, equipment, and occupants. The
plant and its systems produce thermal energy sourchsasusteam, hot water, or chilled water, which is
then transferred to the internalesie of the building through the systemuipment. In the case of an all-
air—based system, heat exchangers convert the sow@yento warm and cold air with a certain supply
temperature, humidity, and flow rate, and blow theneach zone of the building using AHUs and other
fan systems.
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Figure 1: Schematic view of heat transfer in a building.

In this model predictive control (MPC) framework, the thermal behavior of the building zone
described above is modeled by a Nonlinear Autoregressive Neural Network (NARNET) and the optimal
control problem is formulated as a Mixed-Intetm-Linear Programming (MINLP) model. We used a
U.S. Department of Energy (DOE) reference builgliin EnergyPlus (EnergyPlus 2015) and simulated
several HVAC control strategies and generated the fdatdeveloping the thermal behavior model. In
addition, we simulated data for 1 year period inributes interval, that was used for analysis and
modeling. The simulation results for different cohtstrategies clearly indicate that different control
strategies make significant impact on energy consiemppeak energy consumption, time of the peak
load and energy costs and a good optima control tool can identify opportunities for significant energy cost
savings opportunities. Our optimal control method in the subsequent section below dynamically
computes the control profile that minimizkg energy costs in various situations.

3 MATHEMATICAL MODEL FOR THERMAL BEHAVIOR IN BUILDING
The thermal behavior in a building can be represented by:

Xe = f(Xpo1, Xpogy ooy Uy Up—q, Up—, wov, €1, €41, €L, -or ) (1)

wherex; is the state variable at tinteu, is the control variable at tinteande are the external inputs at

time t. As shown in Equation 1, the state variablecatrent step depends on the state variables in
previous steps, as well as control variables and extempals at current and previous time steps. State,
control and external inputs could be vectors txatount for multiple componés. Examples of state
variables include the zone temperature of zoaetime { T7,™°. Examples of external inputs include the
day of the week (DOW) indicator, the time of the day (TOD) indicator and the ambient temperature,
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TAmP . Examples of control variables inclum*,éf, the set point for zone at timet, the supply
temperature of AHU at zone and the supply flow rate of AHU at zome For the example of state

variable 777™¢ and control variabld‘tff , the state variable equation (1) becomes:

TE"e = f(TE0S, TERS, oo By K1, Kpmgy o, Ten TPy 1 Tt 0 ) (2)
where X are external inputs such as DOW, TOD and ambient temperafiite, TEquation 1 and 2 are
referred to as equations of system state.

The thermal phenomena of zones in a building can also be described by means of the system output.
An example of system output variablePf§/4¢, power consumption of HVAC system for zonatzimet
as shown in Equation 3.

HVAC _ HVAC pHVAC zone qzone zone = = = Sp pSp sp
Pt,z - h(Pt—l,z ) Pt—Z,Z [ Tt,z ’ Tt—l,z' t—2,z7 Xty Xe—1) Xg—2) ee) Tt,z ’ Tt—1,Z' Tt—z,zr ) (3)

s(9 = [u(v),
e(t)]

Figure 2: NARX model for thermal behavior of building.

Artificial neural networks (AIN) (Anderson 1995) are a well-known method for modeling the
thermal behavior (Equation 2 and 3) of the buildioge. As HVAC system behavior is usually dynamic
and non-linear, one can employ a non-linear autessire data driven model with external input
(NARX) in order to capture its properties and states. The neural network model is also called Nonlinear
Autoregressive Neural Network (NARNET). NARX is a feed-forward time delay neural network, which
maps input data to an output, using additionalrezieénput (see Figure 2). The NARX network includes
three layers: input layer, hidden layer and outpygriddeep NARX networks with multiple hidden layers
can also be considered). The control problemasleled by means of Mathematical Programming (MP),
a formal language to describe optimization peoks. The decision variables are control and state
variables; the constraints describe system behawiod the objective function minimizes costs. MP
requires all functions appearing in constraints andaiives to be expressed in closed form, which is not
the case for Equation 1-3. However, ANN dynamicse assentially linear, followed by a usually
nonlinear activation function. We therefore replace Equation 1-3 by the closed form equations of the
ANN dynamics, yielding, in general, a Mixed-Integer Nonlinear Program (MINLP). The choice of the
activation function influences the extent to whicks tMINLP involves integer variables and nonlinear
terms. Various types of activation functions such as hyperbolic tangent sigmoid transfer function (tansig),
symmetric saturated liner transfer function (satliasyl hard-limit transfer function (hardlims) can be
used. Choosing the discrete approximations sa#ims$ hardlims results in a Mixed-Integer Linear
Programming (MILP) problem, which is easier to solve. The ANN is trained on historic time-series data
(e.g., few weeks’ time series data). The entireagkztt for neural network training may be randomly
divided into three contiguous bk training, validation and testing.
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Figure 3: NARX model prediction: (a) zone temperature (b) zone power.

This network described in Figure 1 results in the following algebraic equation:
x(t) = FZ [W3 " Fl{Wl " (S(t), S(t - 1), ...,S(t - dl)) + WZ " (x(t - 1), ...x(t - dz)) + bl} + bz] (4)

whereW,, W,, W5 are weight matriced;, b, are biasesd,,d, are network time delays ari, F, are
transfer functions, of whick, is usually chosen to be lineas(t) is the network input (array of input
that include both the control and external variables) at tiavedx(t) is the network output (e.g., zone
temperature or power).

The NARX model predictions (with satlins transfenétion) are compared with simulated data in
Figure 3 for a day in August, and the prediction aacy is reasonably good. The zone temperature
model (Equation 2) prediction has mean absolute error (MAE) of 0.147, mean squared error (MSE) of
0.038, root mean squared error (RMSE) of 0.t@gfficient of variation (CV) of RMSE of 0.007868 and
mean bias error of 0.00283. The power model (Eqna) prediction for the day is MAE of 1.017, MSE
of 1.811, RMSE of 1.345, CV(RMSE) of 0.114 and MBE of 0.00758.

4 MODEL PREDICTIVE CONTROL OF HVAC SYSTEM

The model predictive control of HVAC system igrfaulated as a MINLP with the following objective
function (Equation 5), and constraints (Equation 6@0Ir solution is also subject to other physical
constraints of the HVAC system, the energy storage system (ESS), and the energy generation system
(EGS), not shown here for lack of space.

. Si It Sin It
CE(pe + =)+ CIt + ay {GE (pe + == ) + 69 =
pesispibgeTS? tETZ:EZ[“l (ce (e +58) + €755 + (62 (pe+ 35) + 69 35)
+as ZteT,zeZ'thone* - th;ne |] %)

The objective function is subject to the ANN closed form which approxinfiaadh in Equations
6,7 and to Equations 8,9 below:

one _ one one = = Sp mSp sp
TE™e = f(TEL s T s o X1, Xy oo Te 50 Te 21 50 Temg g o0 ), VteT,z€Z (6)
HVAC _ HVAC pHVAC zone g zone zone = = Sp mSp sp
PHYAC = h(PHVAL, PRVAS, . TEe, TERE TERS, o X1, Xy s T Tty o Tibg o o),
vteT,zeZ @)
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Yizez PL!:IZVAC =p:+ S?utld + g¢ » vVteT (8)
TZZone,L < ngne < thzone,H ’ vVt € {tL <t< tH} (9)

The decision variables and input parameters are described in Table 1.

Table 1: Decision variables and parameters.

Decision Variables Description
Dt Power (electricity) (for HVYAC) purchased from grid at tibj&W]
It Power (electricity) generated by generator at tifk&\V]
s Power charged by ESS at timnxW]
sput Power discharged from ESS at tit{&W]
T} Zone set point at time[°C]
Parameters Description
Ct,C9 Cost of grid purchased electricity, natural gas purchased [$/kWh]
G, GY Cost related to GHG emission rate of electricity and natural gas [$/kWh]
A5, 24,29 Efficiency of energy charge, discharge to/from ESS and on-site generation
aq,Qy, A3 Weight of cost, GHG emission cost and occupant comfort deviation
TFomer Target temperature of zone
TZZ""E'L, TZZ""Q'H Lower and upper bounds for zonenggerature at time t for zone z

Our optimal control method determines a profileaotontrol variable, e.g., set point of zanand
timet for a future time horizon (e.giext 24 hours) that minimizes total energy costs of operating HVAC
system subject to zone thermal behavior (Equationd67a in a building, energy balance (Equation 8) in
a zone, comfort bounds for zone temperature (Equation 9) and physical limitations of the equipment, i.e.
HVAC system, ESS and EGS. Our optimization mddkés into consideration demand response signal
(dynamic pricing profile of grid electricity for ne24 hours), capacity and costs of on-site ESS, and on-
site EGS, and attempts to satisfy the thermal oon(é.g., zone temperature and humidity). The objective
(Equation 5) is to minimize the total cost. This in@adbut is not limited to) the costs related to energy
usage, greenhouse gas emission, and deviation from comfort temperature range for building occupants.
The details of the physical constraints for ES8 &GS are omitted here. Our approach optimally
computes how much electricity to purchase from grid, how much to generate on-site and how much to
store on-site, and how much of the stored or gead electricity to use for the operations of HVAC
system. The approach simultaneously computes the optimal control profile of HVAC system and the
optimal way to power the HVAC system from the multiple sources.

In this paper, we simplify the MINLP by using dar transfer functions (hardlims or satlins), which
results in MILP. This MILP can be solved using @@ty of methods, depending on its size. One way to
solve the MILP problem is with the M-ILOG CPLEX solver (IBM-ILOG CPLEX 2014).

5 INITIAL RESULTSAND DISCUSSION

Here we present a preliminary optimal solution for a Zone day in August, shown in figure 5, 6 and 8.
We then compare the energy cost and savingiseobptimal solution with two traditional HVAC control
strategies: a night setup and demand limiting stra@ggun, Montgomery and Chaturyedi 2001; Lee and
Braun 2004). For the night setup strategy, theperature set point profile is prescribed a%2during
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5AM — 9PM and 26.°C during 9PM — 5AM. For the demand limiting strategy, the set point profile is
22.5C during 5AM — 1PM, 25% during 1PM — 9PM, and 26Q during 9PM — 5PM. The CPLEX
solver was stopped prior to termination: thigeans that we cannot guarantee global optimality.
Empirically, this is a reasonably good, feasible sotuti We are evaluating various formulations of the
optimization problem and solution methods to obtaibust and good solution, this work is still in
progress. For this scenario, we used satlins as the transfer function of A&, and 48 time steps
for 24 hours period (i.e., 30 minutes interval).

The scenario is for a day in August; therefore, the energy consumption here is only for cooling.

Zone Temp and Set Point Demand response signal
28 0.6
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Figure 3: Optimal set point and zone temperature. Figure 4: Demand response signal.
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Figure 5: Charge, discharge, storage of ESS. Figure 6: Energy for powering HVAC.

Table 2: Energy cost and saving for optimal corprofile with respect to other control strategies.

Night setup Demand Optimal without Optimal with

(Base) Limiting ESS and EGS ESS and EGS
Cost $98.11 $83.14 $84.13 $67.74
Saving --- 15.26% 14.25% 30.95%

Figure 3 shows the optimal control profile (i.e. set point temperature of a zone) and corresponding
zone temperature in 24 hours period in 30 minutes time intervals. The set point during the night period
(9PM — 5AM) was kept at 26.C by the model by assuming that free cooling can be obtained through
ventilation during the night time. The DR signag.idynamic grid energy price is assumed to be
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available in hourly resolution for next 24 hoursdda updated in every hour. The demand response
signal profile for this scenario is presented in Figure 4, where the price is ranged from $0.08/kWh to
$0.5/kWh during a day. Figure 3 illustrates that theps@nt is relatively low in morning hour when the
electricity price is low, and high when the price igh@r. Figure 6 shows the total electricity required to
power the HVAC system (in this case, cooling) andrsing of the total energy to the grid purchase
electricity (blue line), on-site generated energy (yelliow) and on-site stored energy (red line). In this
simplified scenario, it is assumed that the maxingeneration rate for a zone is 3kW, maximum charge
rate/discharge rate is 3kW, and the efficiency of charging and discharging are 85% and 80% respectively.
The charge rate, discharge rate and the accumuésted)y of ESS is shown in Figure 5. Note that
electricity is charged to ESS when the BiBnal is low and discharged when it is high.

The total cost for powering the HVAC system foe tenario is $67.74, which is a saving of 30.95%
with respect to the night setup (base case) control strategy (also simulated with the same NARX model).
Even when it is assumed that all the electricity edeid sourced from grid purchased electricity (i.e.
without ESS and EGS), the cost is $84.13, which is 14.25% savings with respect to the base case and
similar to the cost for demand limiting strategy (but with different zone temperature profiles) as
summarized in table 2.

6 CONCLUSION

We developed a method for computing the optimal control of building’'s HVAC system as demand
response tool by taking into consideration dyrmamiémand response signal, on-site energy storage
system and on-site energy generation systsing NARNET and MINLP. The NARNET accurately
predicts the thermal behavior of the building/HVA§stem, and is used for simulating various HVAC
control strategies. The MINLP is hard to solaed we are developing a novel approach to reduce the
problem size and find the global optimal solution in reasonable computation time. We are working
towards being able to compute the optimal HVA&hteol profile for multi-zones, for day ahead in 10
minutes intervals and communicate the control pradilbuilding automation system (BAS) in real time.
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