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ABSTRACT 

This paper describes a highly scalable multi-modal traffic simulation platform and its case study in 

Dublin city. By leveraging various sources of open and administrative data for the Greater Dublin Region, 

we have built a city operating system like platform that simulates not only private cars but also public 

buses and trains. Our performance study demonstrates that our simulator is highly scalable by achieving 

15.5 times faster than real-world time with 12 parallel threads. This is the first effort that has provided a 

high-performance and high-scalability traffic simulation on a distributed-memory environment and 

demonstrated the validity of the approach using real data sets. 

1 INTRODUCTION 

Traffic congestion is one of the most common problems facing city authorities. Reducing traffic jams 

brings higher efficiency of human mobility – which eventually leads to better quality of life and an 

improved economic environment. To reduce traffic jams, many solutions have been proposed, such as 

reducing private cars as much as possible by introducing new policies (higher toll rates, car pools, park & 

ride, incentives for using public transport or bicycles), optimizing signal controls and expanding road 

capacity by introducing additional roads and lanes. Each city in the world has different problems and 

constraints. For example, public transport in the capital city of Ireland, Dublin is dominated by buses. 

Thus optimizing bus routes, schedules, and fares are important. Although most roads leading to the city 

centre have dedicated bus lanes, some public bus routes consistently have delays mainly affected by roads 

which do not have bus lanes. Given some constraints (time, space, and financial cost), realistic solutions 

are required. Unpredictable events such as natural disasters, car accidents and flooding add to traffic 

congestion problems. Additionally, these unpredictable and sudden events give tremendous impacts to the 

society, so disaster management is also important. By producing accurate simulations of current 
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conditions, the effects of such adverse conditions and the introduction of interventions can be forecast and 

studied.  The challenge is to rapidly produce reliable models which can accommodate the dynamic 

conditions of cities and urban areas . 

Several efforts provide a microscopic traffic simulation to tackle the previously mentioned problems, 

but there are few simulation platforms that incorporate multi-modal transportation entities such as public 

buses, trains, pedestrians, etc., as well as making the simulation platform runnable in a high-performance 

manner.  Little research has examined performance optimization of such simulations using a real data set. 

Since time-step based traffic simulations run in a synchronous manner, it is important to minimize the 

elapsed time of each step. Also if more threads and nodes are involved in processing, the overhead of 

synchronizing all the threads is a critical component of the simulation process.  To demonstrate any 

improvements to the efficiency of such simulations, it is important to use real-world data. 

To date, performing optimization tests with such real-world data has been a challenge because access 

to good quality and reliable information regarding individual mobility has not been widely available. 

While quality road network data from the crowd sourced Open Street Map project, and public transport 

data from transit operators are now typically accessible, data relating to individual movements is not 

widely available. For this research, we obtained a set of Origin-Destination (OD) data derived from the 

National Census for Ireland.  The data set contains OD data for over 2 million individuals which 

improves significantly on our previous work which relied on grid-like traffic demand. 

The contribution of this paper is to apply our high performance multi-modal traffic simulator in the 

context of a real city, Dublin in Ireland, and to show the validity of the high performance platform by 

validating the results of the simulation.  

This paper is organized in 6 sections. Section 2 is a system overview of our scalable multi-modal 

traffic simulation platform. Section 3 describes the case study with Dublin city and how we can apply our 

simulator to the real city. Then Section 4 shows the evaluation of the simulation results. Section 5 reviews 

relevant work, mainly focusing on multi-modal traffic simulations, and finally Section 6 describes 

possible future directions for the research with some concluding remarks. 

2 HIGH PERFORMANCE MULTI-MODAL TRAFFIC SIMULATOR 

In our prior work, we proposed the preliminary design and implementation of a high-performance multi-

modal traffic simulation platform for parallel and distributed systems (Suzumura et al. 2014). Using this 

approach we can simulate a wide variety of transportation modes including public buses, trains, or private 

cars on a municipal or national scale.  

The overall system architecture of our simulator is divided into 3 components, the simulation input 

dataset, the simulation platform itself, and the simulation output. For the simulation input, a series of trips 

or individual travel trajectories are provided or generated by a modular external component called a 

journey planner. The input for the journey planner could be coarse-grained traffic flows from certain parts 

of the city to other parts that are often provided by census data. If the OD (Origin-Destination) data 

includes home and work locations, then our journey planner computes the path or trajectory from the 

origin to the destination. Our current implementation uses basic functions to compute the routes that 

minimize the total distance or total time with specified transportation modes such as only using public 

transportation systems or only using private cars. For the input data, we need networks for multi-modal 

simulations, such as public buses, trains, and private cars. The timetables for public transportation are also 

crucial data. The simulation platform reads the input data including the routes, networks, and timetables 

for public transportation, and then moves all the agents representing the people, private cars, and public 

transportation vehicles according to their behavior models and the underlying transport network. 

 The simulation platform outputs low-level data for each simulation step, which includes all of each 

agents’ properties such as location, status, speed, and number of passengers for public transportation. By 

analyzing the low-level data, it is be possible to obtain higher-level results such as the length of each 

traffic jam, the average travel time, CO2 emissions and cost.  
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3 THE CASE STUDY WITH THE DUBLIN CITY 

In this section we describe the input data used to create the multi-modal traffic simulation for Dublin.  

The data is used with the traffic simulator to produce estimates of the morning peak traffic volumes and 

travel times. 

The road network for Dublin, along with the major roads in the rest of Ireland were extracted from 

Open Street Map (OSM) and converted into a comma separated format for processing by our multi-modal 

traffic simulator.  This created 61341 links and 19261 cross points. The road network is shown in Figure 

1. Dublin consists of 3 main modes of public transport: commuter rail, light rail and bus. The bus network 

consists of approximately 4700 bus stops and 121 routes.  The light rail network consists of 2 routes and 

54 stations while the train network has approximately 16 routes and approximately 50 stations.  The data 

for each of these modes were extracted from a General Transport Feed Specification (GTFS) file provided 

by the National Transport Authority in Ireland. Bus routes were merged with the road network, respecting 

situations where the bus has its own traffic lane, while new networks were created for the light and 

commuter rail systems. Further detail on the preparation of these data for use in the simulation platform 

along with details of OD data are provided in the sections below.  

3.1 Road Network 

A road network was extracted from Open Street Map, and converted to the network data format required 

by the multi-modal traffic simulator. It is critical to obtain a high-quality road network to construct a 

simulated road network structure that is equivalent to the real city. For instance, the number of lanes and 

varying speed limits are important factors that affect the simulated agents’ behavior.  Fortunately, the 

quality of the road network obtained for Dublin is high, which is the case for most capital cities in Europe. 

Crowd sourced data can commonly contain some errors and anomalies.  For the Dublin network, several 

issues, such as missing segments and inaccurate speed limits were discovered using geovisual analysis.  

These issues were rectified prior to running the simulation. 

3.2 Public Transport Network 

A bus network was obtained from the GTFS (General Transit Feed Specification) for Dublin. The GTFS 

provides the unique id and location of each bus stop in the city.  Using the spatial coordinate information 

for each stop, we developed a component that locate the nearest cross point (road intersection) in the 

above road network.  The GTFS also provides details of the routes which operate in the city.  Route 

information contains a unique route identifier and details the roads which are associated with the route.  

These data were also merged with the road network for Dublin.  

In Dublin, public transportation is dominated by buses, and Dublin city have introduced a number of 

bus lanes to provide priority for public buses and taxis. This policy has been introduced to reduce private 

car use by promoting faster travel times for public bus users.  Despite this, there are cases were a 

dedicated bus lane is not possible and so busses face the same delay and congestion problems as other 

road uses.   

 Similar information, such as commuter train and light rail station locations and the routes of the train 

tracks in the city are also available from the GTFS for Dublin.  The train network operates independently 

of the road network and so there is little interaction between the two modes.  Therefore, for the purpose of 

simulation, the commuter and light rail train services can operate in a deterministic manner according to 

their timetable. 
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Figure 1: A section of the road network used for the Dublin Scenario. 

3.3 Population 

The focus of this study was to simulate multi-modal transport for the morning commute in Dublin.  The 

section of the population of interest is individuals that use the transport network of Dublin to travel to 

work.  The Irish Central Statistics Office produces a subset of the census results which describe 

commuting data. The dataset, called Place of Work, School Census of Anonymised Records 

(POWSCAR), consists of a home location, work, school or college location, departure times, transport 

mode preference as well as other socio-economic data about individuals in Ireland.  The home and work 

locations are described by an aggregated statistical unit which consists of a polygon containing 100-150 

households. The departure times are described by 30 minute discrete units and the mode choice includes 

car, passenger in car, bus, pedestrian, bike, motor cycle and train. 

POWSCAR provides data for individuals in Ireland while our simulation is for the Dublin region, we 

therefore those individuals whose place of work or home is in Dublin were extracted.  Next, only those 

who drive, or use public transport were selected.  This produced a population of 384,167, with 242,740 

car drivers and 141,427 public transport users.  Finally, a high resolution OD matrix was generated by 

translating the home and work locations from a polygon to randomly selected point within that polygon to 

represent the home (Figure 2) and work/school places (Figure 3) of individuals.  Furthermore, to create a 

realistic departure time series, a random departure time within a 30 minute window centered at the time 

declared in POWSCAR was used. 
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Figure 2: The distribution of home locations in the Greater Dublin Region derived from POWSCAR. 

Figure 3: The distribution of work  locations in the Greater Dublin Region derived from POWSCAR. 
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Figure 4: The density of a sample of trajectories using the road network in Dublin. 

3.4 Travel Demand 

The high resolution OD matrix which contains the mode choice, departure time and home and work 

locations was used as an input to a journey planning module of our multi-modal traffic simulator to 

produce the travel demand on the transport network.  The journey planner computes a trajectory through 

the transport network for individuals based on their origin, destination and preferred transport mode.  In 

the case of private cars, the Dijkstra method (Dijkstra 1959) is used to determine a route which minimizes 

total travel time from the home to work location.  The generated route consists of a series of cross points 

through the road network. Figure 4 shows the density trajectories created for a sample of 1000 agents in 

the Dublin scenario. The trajectories are overlaid, so a darker color indicates more individuals using that 

route. 

 To generate the public transport demand, our approach relies on an external public transport routing 

tool called Dynamic Optimization for City Intermodal Transportation (DOCIT) (Botea et al. 2014).  

DOCIT uses public transit information extracted from General Transit Feed Specification (GTFS) files to 

generate a multi-modal path, via public transport, from an origin to a destination at a given time. The high 

resolution OD plans with public transport as the modal preference are passed to the DOCIT service for 

processing.  DOCIT produces routes which are then translated into cross points of the road of our multi-

modal traffic simulator, bus and rail networks.  The travel demand is used to simulate the movements of 

individuals through the transport network of Dublin. 

4 EVALUATION WITH THE DUBLIN CASE 

This section describes the evaluation of the validation framework as well as the performance evaluation 

by using  the real data set described in the previous section with the simulator described in Section 2. 

The validation includes the accuracy of the simulation. We have mainly conducted the validation on 

travel time of private cars and also the Dublin buses. 

4.1 Dublin Simulation Setting 

Since the census data only details the time that individuals leave their home location to travel to their 

work location in the morning,  we conducted a 4-hours simulation starting at 6 am and finishing at 10 am.  
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Furthermore, for the purpose of simulation we assume that the data represent the travel patterns in Dublin 

on a typical Monday morning. The simulation consists of 14400 steps. 

The total number of private vehicles is 242,740, and 241,196 of them can reach to their destination 

during the simulation period. There are 16,777 public buses in total during the day. 

4.2 Travel Time for Private Cars 

In addition to the departure time, the census data also contains a self declared travel time for each 

individual. We compared this data with the results produced by the simulation platform for private 

vehicles.  There are approximately 240k private vehicles, so the Figure 5 shows the distribution of the 

absolute travel time. The fitness confirmation here is defined as (Actual travel time – simulated travel 

time) / (Actual travel time), so it means that if the value of the fitness confirmation is closer to zero, the 

simulation accuracy is better. The Figure 6 shows the histogram of the fitness confirmation for all private 

vehicles.  The average value is 0.49, and the median value is 0.61. 

 

 

Figure 5: Absolute journey time of private cars. 

Figure 6: Fitness confirmation on journey time of private cars. 
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The results indicate  that the travel times of the simulated vehicles is faster than the actual time. 

There are various factors that affect this precision, but at first, since the travel time described in the census 

is estimated by individuals to the nearest 5 minute, its granularity is not as fine-grained as the simulation 

output. Furthermore, since the census only provides OD information, our simulator computes a trajectory 

that minimizes the travel time, which is not necessarily how individuals make route decisions. Finally, 

although the data is rich, it only contains private vehicles of people commuting to work.  Other travelers 

on the road such as retirees or unemployed are not included.  Similarly, commercial traffic such as taxis, 

vans and trucks is also missing. Including these modes in the simulation would obviously increase tavel 

time for all travelers. At this moment, no calibration model is included in the simulation, so the 

calibration could help improve the precision.. 

4.3 Travel Time for Dublin Buses 

Since a sample of fine-grained GPS data for Dublin buses are available as open data from a web site of 

dublinked.ie, it was possible to compute the real-world average travel time of buses on all routes and 

compare this to the data produced by the simulation.   Figure 7 shows the histogram of accuracy in the 

same metric used for private cars in Section 4.2, which is the fitness confirmation. There are 

approximately 2000 buses that complete their routes during the simulation interval of 6 am to 10 am on a 

weekday morning. The average value is 0.21 and the medium value is 0.31.  The validation results show 

that the precision was better than private cars. This can be attributed to the simulation program ensuring 

that buses wait at bus stops according to the timetable and the simulated buses follow the precise route of 

their real-work counterpart.. The faster travel time can be caused by the missing traffic on the road 

network( commercial vehicles and non-worker trips). 

Figure 7: Fitness confirmation on journey time of Dublin buses. 

4.4 Performance Evaluation for the Dublin City 

Given the complexity of routing the population of city, There has been little research evaluating the 

performance of multi-modal traffic simulation using real-world city data in a distributed-memory 

environment. 

We firstly show the result on 1 node of shared-memory and multi-thread environment. Figure 8 

shows the performance speed-ups by varying the number of threads from 1 to 12. The Y-axis on the left 

shows the elapsed time for running the 14400 simulation steps that corresponds to 4 hours. The Y-axis on 
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the right shows the speed-up ratio of multiple threads versus a single thread.  In terms of the absolute time, 

it takes 3886 seconds for 4 hours simulation. The speed-up is saturated with 10 threads, reaching up to 

4.18 times faster than 1 thread, and the absolute time is 929 seconds for 4 hours simulation. It means that 

the Dublin simulation can complete 15.5 times faster than the real-world clock. 

 

Figure 8: Performance improvements by the number of threads. 

5 RELATED WORK 

As the population in urban areas increases rapidly (Heilig, 2012), cities are seeking to improve the 

efficiency and sustainability of their infrastructure.  Practitioners generally use traffic modelling and 

traffic assignment techniques to simulate current conditions, forecast urban mobility and investigate the 

impact of interventions, such as road closures and new modal choices, on the transport network.  Traffic 

forecasting is an established research field with well defined theories and models for simulating traffic 

flow. 

Traditional Trip-Based Models (TBM), such as the 4-step model (McNally 2008), apply a static 

deterministic approach to an OD matrix to estimate traffic movement at an aggregate zone level (Gao et al. 

2010). An alternative approach shifts the emphasis from trips to activities resulting in so called Activity-

Based Models (ABM) which assume that travel results from the need to complete activities (working, 

shopping, eating, etc.).  Within this context, agent-based micro-simulations are often used to produce 

disaggregate, person level estimates of mobility. The use and adoption of agent-based micro-simulations 

is increasing and Gao et al. (2010) have shown that an ABM can outperform the TBM approach for 

simulating traffic. 

Several open source and commercial software toolkits have been developed to facilitate agent-based 

micro-simulations.  MatSim (Horni et al. 2009), SUMO (Behrisch et al. 2011), MITSim (Ben-Akiva et al. 

2010),VISSIM (Fellendorf 1994) and Megaffic (Osogami et al. 2013) are examples.  In these approaches, 

the transport network, the population and the travel demand for the study area are defined as input to the 

simulation. Each individual in the population is considered an agent. The simulation tool uses routing 

algorithms to move the agents through the transport network according to the travel demand, which 

consists of an activity chain for each agent.  Different techniques for predicting the location of activities, 

routing and scheduling can be applied. Generally, the simulation has several iterations in which 

parameters such as the route or departure times for a section of the population are altered. After each 

iteration individual travel times are scored by a utility function. The iterations continue until the model 

reaches a stable state where new changes have little impact on the utility function.   Other parameters can 

be introduced to improve traffic estimation results. For example, traffic count data and probe car data can 
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be used to influence how traffic is routed though the network to better reflect observed traffic conditions 

(Osogami et al. 2013). 

These software tools have been used in a variety of scenarios at different spatial scales. Meister et al. 

(2010) developed a large scale multi-modal transport simulation for Switzerland.  Very detailed census, 

land use and travel survey data were used to create activity chains for 6 million agents. Location choice 

decisions for secondary activities such as shopping and leisure trips were derived using a local search 

method.  Gao et al. (2010) developed a simulation for the Greater Toronto and Hamilton area in Canada 

using a 5.8% sample of the households in the region. The availability of detailed trip data removed the 

requirement for a location choice model.  McArdle et al. (2014) implemented a 24 hour traffic simulation 

for Dublin in Ireland.  For this scenario, the population and travel demand were derived from census 

results and travel surveys.  A new location choice model was implemented by adapting the radiation 

model for determining the locations for secondary activities.  Zhuge et al. (2014) developed a simulation 

for the city of Baoding in China based on census results and a small travel survey.  The simulation 

consisted of approximately 1 million agents.  Like the work of Meister et al. (2010), location choice for 

secondary activities was determined using a local search method.  Nicolai at al. (2011) incorporated a 

multi-agent traffic simulation with an urban simulation tool (UrbanSim) to study the effects on house 

prices after construction of a new bridge in the Seattle region in the United States. A 1% sample of the 3.2 

million population was used in the travel simulation.  Furthermore, only commuting traffic was 

considered with no information on secondary trips provided. Smaller spatial scales are also simulated 

using micro-simulations; Toledo et al. (2003) developed a model for simulating the traffic on motorways 

in Northern Stockholm in Sweden.  The OD matrix was generated using the volume of vehicles entering 

and exiting the motorway junctions. 

Generally, the accuracy of a simulation, and the impact of altering parameters, such as the routing 

algorithm or the location choice model, is assessed by benchmarking the simulation output against 

observed ground truth. Travel time, traffic volume and traffic speed are commonly used metrics for this.  

Obtaining reliable observation data is challenging and due to a lack of data, rigorous validation does not 

take place in all studies (Morias & Digiampietri, 2012). In the simulation of Switzerland, Meister et al. 

(2010) compare the observed traffic counts on individual roads with the output from the simulation and 

also aggregate these values to evaluate accuracy for different regions.  McArdle et al. (2014) compare the 

simulation output to hourly counts at 6 locations on motorways on the periphery of Dublin. Similarly, 

Zhuge et al. (2014) compare aggregated volume data in this way for the morning peak in traffic from 6 

count stations. Toledo et al. (2003) provide a very detailed evaluation of their results, examining the 

accuracy of traffic volume at key locations.  Travel time and queue lengths are also evaluated using 

previously collected probe car data.  Gao et al. (2010) evaluate the Toronto simulation by comparing 

volume and speed outputs from the simulation with observed data. Generally, relative errors are used with 

these metrics to produce an overall score for the accuracy of the simulation. 

In the work by (Suzumura and Kanezashi 2014), they evaluated the performance of their proposed 

multi-modal traffic simulator using the road and public transport network for Dublin The travel demand 

and population were estimated using a random spatial distribution of an OD matrix. In this paper, we 

build a detailed case study using real multi-modal travel demand for Dublin derived from the Irish Census.  

Unlike, the previous multi-agent simulation for Dublin, described in McArdle et al. (2014) we use a 

multi-modal approach. 

6 CONCLUSIONS 

In this paper, we have described a high-performance and highly scalable multi-modal traffic simulation 

platform on a parallel and distributed system. The utility of the application is demonstrated using Dublin 

City in Ireland as a case study.  The results show that the simulation produced results in terms of 

aggregated travel times for private and public transport. 
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Future work includes more improvement on the simulation accuracy by calibrating models of agents 

and introducing time-dependent shortest path. In terms of the software architecture of this kind of 

simulation, we could employ spatio-time based database since a simulation essentially just updates the 

status of each agent that could be stored, and a series of analytics over simulation analytics would become 

simpler by sending spatio-temporal query to the database. 
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