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ABSTRACT

Dynamic models are used to describe the spatio-temporal evolution of complex systerfisgligntly
difficult to construct a useful model, especially for emerging situatiorts asithe 2003 SARS outbreak.
Here we describe the application of a modern predictor-corrector methadicle filtering— that could
enable relatively quick model construction and support on-the-fly correction ascairgta arrives. This
technique has seen recent use with compartmental models. We contribute hese tottheibest of our
knowledge, the first application of particle filtering to agent-based models. Winifgarticle models adapt
to different ground-truth conditions, agent-based models exhibit limited adaptability somde model
initializations. Several explanations are advanced for such behavior. Since this resmachsan initial
foray into this line of investigation, we draw out a clear path of the next stejedeionine the possible
benefits of using particle filters on agent-based models.

1 INTRODUCTION

Epidemiology seeks to understand the dynamics of disease spread through human and animal populations.
In spite of advances in public health knowledge over the last century, infectious disease stil jalegees
burden on length and quality of life. Traditional epidemiological study makey hea of time-series data
(Osgood and Liu 2014) and regression analysis techniques (Auchincloss and Diez Roux 2008). Public
health agencies will use this data to identify possible causal relafisnslgtween health-related
parameters. Such approaches provide one way for making predictions about evoltitebwien and
distribution of disease in a population. Unfortunately, such approaches tend tocsrhletgp systems
exhibiting hallmarks of complex systems, such as non-linearity, reciprocalitgusaidback loops, and
resulting phenomena such as tipping points and other threshold effects, letk-irGuch features are
particularly notable in the context of communicable disease spread.

Dynamic modeling is an approach that leverages multiple types of domain-specifit loglfatlarify
and account for multiple causal pathways. Lipsitch et al. (Lipsitch et al. 20@8)ructed a conceptually
simple model early on in the 2003 SARS outbreak to approximate the basic reproductive number.

Dynamic modeling does have its own limitations, however. Models need tofiogestly calibrated
to real-world data to be able to make actionable predictions. While roughly calibrated modetsrcae of
employed to make short-term predictions, over time the discrepancy between modelopsedicd
empirical observations will increase, requiring further calibratfosgpod and Liu 2014). This growing
discrepancy reflects inaccurate parameter values, omitted or oversimplifieatcterization of dynamic
processes, and the vagaries of stochastic fluctuations in empirical processessulting model can be
unreliable and costly. In the control of communicable illness outbreaks, theteaditionally not only
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been a heavy emphasis on use of continuous data from the field, but a stogmiticetof the value of
quickly built models that give actionable insight.

Predictor corrector models have been in common use for the better part of a centupf.th@ oldest
and most widely applied is the Kalman filter (K. addition to extremely broad applications in real-time
control context, this approach has been applied successfully in the context of communssssesd
models (Qian, Osgood, and Stanley 2014). However, Kalman filtering is associategweithl notable
shortcomings. Firstly, it relies on linear models or linearized versions ofimear-inodels in the case of
the Extended Kalman Filter (Osgood and Liu 201€pupled with the KF’s reliance on a maximum
likelihood estimate (MLE), such linearization can pose tremendous challengesontbgt of the non-
linear models typical in communicable disease epidemiology. Secondly, KF presupposesnGaussi
distributed errors for both measurement error and process -A@seassumption that can be highly
problematic in the case of epidemiological count reporting processes, such asithdew wumbers.
Finally— and most importantly for this researethe KF linearization assumption cannot be readily applied
to agent-based models, whose dynamics do not readily admit to representation using cdirtieuous-
differential equations.

Recent papers have leveraged particle filtering in the context of compartmemtals (Ong et al.
2010; Osgood and Liu 2014). The idea is to use a compartmental model that incorporates broatiy accur
dynamics for a given complex system. Then a patrticle filter algorithm igimgpited over many iterations
of the model. Using the weight-update and resample procedures of the partigléhfiteollection of
particles is hoped to approximate the posterior distribution over states and paraneetiarseoin practice,
this can be used to enable to construction of quick and relatively simplified mdudelfs when combined
with real-world data, develop the ability to provide predictive value.

Indeed, in (Ong et al. 2010), the authors built a compartmental SIR model for teameeddiN1
outbreak in Singapore, using data that came in from general practice anddaehdly clinics throughout
the country; they found that, in spite of some significant model over-predictindssome significant
model simplifications, the disease peak was well predicted. Also, the farthetttaosgidemic cycle, the
more accurate the predictions of the particle filter became. The authoribelésar particle filtering can
be a powerful tool in building relatively simple models, which can be done ora timely fashion, but
still enabling those models to provide predictive ability for an ongoing and new epidemic outbreak.

In (Osgood and Liu 2014), the authors took a more theoretical approach, and built an aspbnteloizs
of a simple disease progression to serve as synthetic ground truth. A coempalrtnodel was constructed
using similar disease assumptions. The different natures of agent-based aadroemal models and
systematic inaccuracies in a parameter value resulted in significantly diffeeelittions of new disease
infections over time. However, when using the particle-filtering technique, the domepgal model
collection was able to strongly reduce the errors inherent in compartmental models.

In contrast to such previous contributions, this research applies this tecbm@ueagent-based particle
model rather than the compartmental models. This is important for two reasony, thiegplarticle filter
— in contrast to the long-standing Kalman Filter (Qian, Osgood, and Stanley-20bé} not assume a
particular mathematical formulation of model dynamics. Secondly, there are areas wheiigasgént
models have certain key advantages over compartmental models. Agent-based models are taore able
represent the heterogeneous nature of agemi¢ably including heterogeneous historieand their social
networks (Tian and Osgood 2011).

This research marks what we believe to be the first application of particle filteririgMs.A

2 ALGORITHM DESCRIPTION

2.1 Particle Filter Intuition and Derivation

To understand how a particle filter is implemented here, it is helpful tostaddrthe stochastic nature of
the dynamic models being employed to understand an unknown ground-truth. In the communicable diseas
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area, an agent-based model seeks to simulate processes such as contact, transmsstbnaogentact,
incubation, recovery, and waning of immunity. Some sources of stochastics wilieb® the need to
capture temporal variability of a highly unknown parameter. How often dndar long does a person
contact another person in their social network? That might best be modelled bygdrawi a probability

distribution.

A second type of stochastics comes from the need to generalize modelgmedittve could measure
the social network of a population exactly, then we could make predictions abgatrtitadar population,
but it would not be easily generalizable to others. So we would use a negperkwhich has basic
structures in common but whose exact connections vary from simulation to simulation.

Thirdly, some characterizations of model predictions as stochastic reflefdcththat for certain
processes, statistical regularities may be better understood than the mechanics of that process.

The implications of the above is that there are uncertainties about the moeléostatime-step to
time-step. At the same time, there will be incoming empirical observatjon§he goal, therefore, is to
find a way of sampling from the distributigriX,, X1, X3, ... X¢| Vo, y1, V2 - ¥¢) Over model state at a given
time, taking into account both uncertainty in model predictions and that asdagitite@bservation error.
By sampling over this distribution, we canby extension- then sample over future trajectories of the
model, sampling from the difference in gains between baseline and an intervention, on lhetveech
interventions, and compute the probability of different events (e.g., the probddaitity given intervention
will save more than a certain count of lives, or will be cost saving).

The particle filter provides a means of accomplishing such sampling. The kiengkaissociated with
this approach that of sampling from this system state distribpt(mﬁ‘),Xl(l),Xél), ~XPyo, v, v2 ---Yt)-
This challenge is particularly acute given that for non-linear models,lagle any closed-form
characterization of the distribution. Particle filtering provides an approach pfisgrfrom the distribution
by sampling from many weighted particles over model state, each associated with a sptecifector at
a given time. More specifically, in accordance with the approach of impordangding, we approximate
sampling from such an unknown distribution over model states by sampling frondily esailable
distribution (a proposal distribution), but weighting the samples accordittgeiorelative probability
(density). More formally, importance sampling states that sampling frargattdensityp(x) can be
approximated by sampling from another distributiotermed the proposal distribution, or importance

proposal- q(x), attaching a weight to that sample equag%%x and then sampling in turn from those

(
samples, with a probability equal to their weight. In this case, each ofdhog#es from the distribution

is termed a particle.

In the case of the particle filter, the weight updates are performed onlyn&t pbobservation and are
computed recursively, with the weights just prior to a given observation dejppgndent on the weight
after the previous observation, and those weights only being updated at the poénoloervation. For
notational simplicity, we first consider the case of a single particleiassd with stat&, at time t. That
is, we decompose

p(Xo, X1X2, . XelYo, Y1, V2 Vo) = DXe|ye, Xe— )P Ke-1|Ye-1, Xe—2) - X1 ly1, Xo)-
To understand the weight update rules to allow us to sample from the abovepiaidestd understand

the components that will be used. We denote the state of the model afdinparticle: ath(i). The

likelihood functiong (yt|Xt(i)) specifies the likelihood that we will observe the empirical giatat timet
given the model stat)ét(i) posited by particlé at timet. This likelihood will be specified explicitly by the
modeler. The probability densin/(Xt(i)|Xt(i)1) specifies the probability density of a particle arriving at

stateXt(i) at time timet, given that that particle was in staxtfé'_)l at timet — 1. This probability density is
implicit in light of the emergent and stochastic behavior of the system under study.
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To sample fromp(X;|y1,X,) via particle filtering, we note that we require a weight equal

p(X1]y1, Xo)
—<—=—=>* and that fot > 1,
a(X1|y1, Xo)

w =p(Xt|yt'Xt—1)W
‘ q(Xelye, Xe—1) et

pXelye, Xe—1) _ p(Xe|Xe—1)g (el Xe)
' _ ' q(Xelye, Xe—1) Q(thyt'Xt—l) o _

The final step is to realize that we can set our importance proposal to sithigigguation. If we
chooseX;|y:, X;—1) = p(X:|1X:-1), (i.e., if we choose not to consider the empirical gata evolving
the model between observations), we have

p(XelXe—1)9(yelXe)
= g(elXe)
_ . q(thyt;Xt—l) gLkl _ _
and we only need to specify the likelihogdWe follow (Osgood and Liu 2014) an employ a negative
binomial distribution.

We further note that

9Oelxe) = (7T p¥e(d = p)” (4)
xﬁr and can be interpreted probability that a given reported case is a true taske
dispersion parameter. Because the distribugion |x;) will in general assign a non-zero likelihood to both
the cases where the empirical data is greater than or equal to thkenagtiel state, this distributional
assumption helps avoid a pathology in which all particles are assigned a likelihood of O.

Every so often, the particle population will need to be resampled. This i® due fact that, as the
particle filter progresses, a few particles might have high weights whileothess will have weights near
0. The advantage of simulating many particles will be diminished given thatpneakittive power will
come from those few highly-weighted particles. In this case, thereforeshalfagéch of particles will be
created by sampling from the particles according to their weights aatingy copies. Most new particles
will be copies of the fewer highly-weighted originals. Weights are then reriseasialWhile not explored
here, sampling from the entire trajectory of states in the context of resamgaliriges tracing the lineage
of a given particle from the first to the last time point, and then samptingtfre particles at the final time
according to their weight.

wherep =

2.2 Final Algorithm

As can be seen from the section above, there are 2 basic steps: the first to set upléhfltearand the
next to iterate.
1. Initialization step: where time= 1, fori e {1, N}

a. SampleXl(i) from q; (xq|y1)
b. Calculate an initial weight for each particle, assuming uniform weigﬁf;
2. Update step: where time> 2
a. SampIeXt(‘)qut (xt|ytJX1(:lZ—1)
b, sewx() = (12, 1)
c. Update weights using:
w = wg (ve|x)
Normalize weights to sum to 1
e. Resample

z|=

o
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3 GROUND TRUTH MODEL

3.1 I ntroduction

We describe here the ground-truth model that generated the data for our phetiitig filgorithm. The
ground-truth model was constructed using the AnyLogic framework (based on Java), wiskyeia
design reasons, the particle model was constructed in pure Java and implemgmteth&viAnyLogic
project. The entire modeling framework was thus a hybrid one from two differapeptves. Firstly,
the framework combined agent-based modeling methodology with a particle filtering megyoaoh
novel manner. Secondly, the model exhibited a hybrid handling of time, withabadgtruth model
running in continuous time using AnyLogic’s agent-based modeling mechanisms, and the particle filter
versions of the models running in discrete time in custom Java classes.

3.2 Ground Truth Modedl

The structure for the ground truth model adheres to the extensively aBfiBdmodeling paradigm
(Osgood and Liu 2014). Agents in themselves are categories as being in one of:43paseeptible,
(E)xposed, (I)nfective, (R)ecovered. (Colditz et al. 1994) (This approximat@sdiseases of importance,
including SARS, since infected individuals go through latent state before becominiyéteemselves.
See (Lipsitch et al. 2003).) One clear benefit of this approximationti# tben be applied with agent-
based models as undertaken here and in (Osgood and Liu @0ih4),compartmental ground-truth model
as employed in (Ong et al. 201QYVhile not done here, this can facilitate the comparison of predictions
between agent-based and compartmental models.

Within the ground-truth model, agents are placed inside of a social network, arslreyenthe ability
to exchange messages only between other agents with whom they are connected. As discussed in the next
sedion, the structure of this network varies from scenario to scenario.

3.2.1 Network Type

This work used four prominent network types: distance based, Poisson Random (“random”), Ring Lattice,

and WattsStrogatz small world (“small world”). The random network requires the specification of an
average number of connections per agent; each pair of individuals in the population isecbwitbaqual
probability in light of the implied network density. In AnyLogic, the netwohoice was declaratively
specified (andused AnyLogic’s built-in support for those explored network types), whereas it was
constructed manually in the particle model.

Secondly, we employed a distance-based network. Here, we specified a connection distéiode:. thres
A given pair of agents is connected if and only if they lie within a dpdcdistance of each other. This
network depends importantly on the spatial layout assigned to the agents. In bothgrattigieund-truth
models, both the X and Y coordinates of agents were drawn independently from continuous uniform
distributions between 0 and 500. A third network type used was a ring latiicarkye@n which all nodes
are logically placed in a ring, connecting nodes with are withiodes in either direction. Finally, the
small world network represents a mixture between a ring lattice and a randomknetilwersmall world
network can be generated by starting with a ring lattice network, and theecifiesl fraction of the
connections are rewired to be connected with another node picked with uniform profrabiliacross the
population.

Several features distinguish the networks. While all serve as conduitsoftvastic percolation
processes for pathogen, the structure of a random network is less affected byottessticst. In other
words, many different random networks, with the same number of connections and the sameohumber
nodes lead to very similar connection patterns (because the variation of therrmfrnonnections for a
given node is approximated by a Poisson distribution (Erdos and Renyi 1960)), and hence, simitar behav
of disease spread.
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On the other hand, distance based networks can be quite different between vemsgptizeusame
construction parameters. If the connection distance is not so large as to makeveggone connected,
distance networks can have disconnected subnetworks. The number and size of these discominested sec
can vary between parametrically similar networks. Even where the eetwerk consists of a single
component, the highly overlapped nature of the paths from a given node (e.g., an infecthe) noaes
means that the spread of contagion across such paths can be far more readily “blocked” than is the case in
random networks.

By contrast, small world networks exhibit a mixture of the locality exibby ring lattice networks
and the globally interconnected structure of random networks. As discussed belowfetieisadi between
networks under stochastics will affect how the particle models are able to adapt to difieditions.

3.2.2 Agent Behavior

In the ground-truth model, agents decide their behavior according to thehstat@dicated in Figure 1.

Here, agents all start off in the susceptible state. They can become exposdutonigagiving an infecting
message from an agent currently spreading the disease to whom they are connected. Onceheyposed, t
will wait for a precisely defined incubation period, a parameter of the modefeld®coming infective

For every time unit an agent spends in the infective state, it performs an action to exposereigjhbr

to infection; if that neighbor is susceptible, the neighbor will enter the exiate. Finally, after a
precisely defined recovery period (another model parameter), that agent becomes recovered, which means
that they do not infect others, and cannot become infected by others.

"¢ statechart

[ Susceptible
\I -

3

( Exposed \

Y (A incubationPeriod

[ lnfected (# chanceOfinfectionPerContact

(® contactsPerTime

(& recoveryPeriod

(A Recovered )

Figure 1: Agent state chart in the ground-truth model.

3.2.3 Actual and Reported Data

Following (Osgood and Liu 2014), within the ground truth model, we considered a difference between the
actual daily incidence rate and the reported incidence rate. When someone gets agdyme a 50%
chance of reporting that illness, with the reported count being drawn frormomibl distribution. The
particle weights are updated according to the likelihood of observing that reported in¢igence

3.24 Evaluation Metric

In order to assess the effectiveness of the particle filter in improwodgl accuracy, we compared the
performance of the model absent particle filtering with that which includedtlpafiltering. The
comparisons were performed over 24 realizations and used a sum squared errotonjeddge the
discrepancy between the ground truth and estimates in sampled particles (Osgood and Liu 2014)
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Specifically, at each timestep t, prior to any particle weight update, we compilisedegpancy for a given
particle position (sample) by sampling from 1000 particles according to wledjhts; for each such
particle, we computed the square of the difference between that particle anduhé truth value. We
then summed the average of the square of those values evaluated across all of the sampled particles.

4 METHODSAND RESULTS

Figure 2 displays the outputs from each of 9 Monte Carlo simulations we ragdorof the Random,
Small World and Distance based network types, we ran a simulation with the particle oftjraeesiep,
and every 5 time steps. All of these networks were structured so as to haverage, approximately 10
connections per agent.

Error Metric for 12 Simulations
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Figure 2: Box plot of error metric over 9 simulations using 3 netwgrstyrandom, small world, distance-
based) with 3 particle filtering setups (no weight updating, updating éuime step, and updating every
5 time steps).

What is shown in Figure 2 is that the particle filter actually resnltpoorer performance of the
particles, most especially for the small world network. For this reason, \Beware simulations, presented
in Figure 3.

In Figure 3a we used a distance network, but characterized a situation in diofodeler was
uncertain of the exact connection distance used in the ground truth model. As avteluthe ground
truth model makes use of a specific connection threshold (41.5), the partatesated using a connection
threshold drawn from a uniform distribution from 20 to(6éhs are shown with “dist” appended to the
name). As shown in Figure 3a, the patrticle filter without particle weight upd@ingFoff_dist) returns
an average error of 429 with standard deviation of 20.3. Updating eacktém (D_I1_dist) reduces the
mean to 344, but increases the deviation to 96.8. The Kolmogorov-Smirnov (KS)westrbBx PFoff dist
and D_I1_dist i3k < 0.0001. Using an update interval of 5 (D_I5_dist) reduces the spread, but returns
rxs = 0.14 in relation to without weight update. Clearly, in the case of uncegrtaiicle parameters, the
particle filter is results in a beneficial effect on the predictive alulitthhe particles.

In Figure 3b, we use a ring lattice network (implemented in the particles adl aventd network with
p = 1.0), and employ 640 realizations. Similar to the varied-parameter distance networlarusipdate
period of 1 time step significantly drops the mean (73.3 to 66.0) and increases the standaod {eviti
to 7.43). However, the update period of 5 time steps returns almost the samasutpuipdate period at
all (mean of 73.8 and deviation of 1.36).
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Error Metric for Varied Connection Distance Error Metric for Ring Lattice Network
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Figure 3 a) Box plot of error metric over 3 simulations using a distance-based netwhbrgraiind truth
connection distance of 41.5 and particle connection distance drawn from a uniform distribution from 20 to
60. Results shown for no weight update period, 1 time step updates, and 5 time step updatgdotdBox
error metric over 3 simulations using a ring-lattice network with connectiort ob@nper agent. Results
shown for no weight update period, 1 time step updates, and 5 time step updates.

Finally, Figure 4 displays the results from two simulations using a ring latétgork with 640
realizations (as opposed to the 24 realizations for all other results). With &n0.0001, it is clear that
the presence of the particle filter in Ring_I1_640 provided a better fit to ground-truth. output

Error Metric for Ring Lattice with 640 realizations

80
1

Error Metric
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50
1
oo

T T
Ring_PFoff_640 Ring_I1_640

Figure 4: Box plot of error metric over 2 simulations using a ring-lattice network.

5 DISCUSSION

The basic format of this experiment is mathematically similar to (Osgood an20iLi4). We initially
expected to see the same type of particle filter output. That experiment produced Fiduae &aré two
especially noteworthy features. The first is that there was exhibited a wide ohpgrticle trajectories
often near the ground-truth data, expanding wider throughout the time betweéh wpelates (indicated
by the red and purple horizontal lines).
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Figure 5 Similar particle filter using a compartmental particle model (Osgood and Liu 2014).

A second finding from (Osgood and Liu 2014) is that the patrticle filter improves act¢hraaghout
the model. The range of the particle predictions (in blue) is very broddieahe model run. The
discontinuities visible at = 2, and3 result from particles being reweighted and resampled. An example
output from this particle filter is shown in Figure 6. These two featunesry prominent in (Osgood and
Liu 2014)-- stand in contrast to the results here.

Our initial results in Figure 2 bear this out. The agent-based particleeiilter increases the mean
error, increases the deviation, or both. Figures 3 and 4, however, provide strong awdetieeparticle
filter logic is properly formulated in the model, and that the observed beldiffens strikingly between
different scenarios. This was further borne out by an extensive examination oflogic¢hat drew on
much previous familiarity with successfully operating particle filters.
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Figure 6: Example output for small world network & 10, # = 0.9). Weight update occurs every 10
time steps starting &t= 1.

We can think of two possible explanations for the poor performance of the partiiénfiFigure2
and its improved performance in Figures 3 and 4. The first is thatabadytruth model and the particle
model are logically identical. By contrast, in (Osgood and Liu 2014), the ground-toglésl m an ABM
whereas the particles employ an aggregate model. They are necessarily diffenezadh other, with the
particle models inevitably diverging from the ground truth.

By contrast, in the current investigation, the simulations where the weight-updige ane turned off
constitute the best possible modeling situatiem situation where we are employing a model that precisely
captures the dynamics of the underlying system being studied. The failure of ttle filieii to improve
upon the results ahe “open loop” model with the particle filter off may be simply be reflection of the
difficulty of improving upon a highly accurate characterization of the underlying system.
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To probe this situation, we constructed Figure 3, which assumes a modeling context irhereiéh t
imperfect knowledge of the connection length in the distance-based network. Introthigiagurce of
uncertainy — and this mismatch between the dynamics of the ground truth model and that resuting fr
the particle models demonstrates strong benefits of particle filtering. As to why the updateafyctene
steps offers a smaller dispersion, it is currently assumed that this is becaoskl ibe filtering particles
based on a 5-time-step sum of incidence cases. Small variations in the ground-truth outpat (uleda
actual incidence cases or the reporting of cases) are smoothed out, leadinggodehzandidate particles
being filtered out because of momentary disagreement with ground-truth output.

The second possible contributor to the failure of the particle filtee¢ore gains in accuracy for the
scenarios depicted in Figure 2 is that the agent-based particles have a much higher dimertsontidy t
aggregate particles from (Osgood and Liu 2014). This leads to two complexitsky, Hicreasing the
state-space dimensionality increases the required particle count to obtain ateagaouling density from
the state-space. Secondly, the particle fitness metric (incidence cases), whichascosgire particles,
is a highly aggregate model output that confers comparatively little informagiavhich to select one
particle over another. In essence, there could be many local minima in the statedspr@cenodels of
vastly different internal structure might nevertheless compare favorablythsisimple fithess metric of
incident cases.

These hypotheses are lent credibility by Figure 4. By virtue of its use of a determiefgtork, these
scenarios result in the ground-truth and particle models all having the same reiwoektions. There
will still be stochastics involved (e.qg., regarding the timing of agestiitn), but such a model exhibits
drastically smaller state-space dimensionality than do those examine@anlibefigures. Given the lower
dimensionality of the state space, the 1000 particles are thereby posited to acouplp higher state-
space density, with a correspondingly improved set of possible particlesfdi@elFigure 4 demonstrates
that running the update every time step noticeably improves particle filter performandeeave+update
“open loop” version. As to why the 5-time-step update does not improve performance, ibeaitdply
that the update frequency is too low. More simulations need to be run to examine this paasicalar i

Connected with this increase in state-space dimensionality is the increagmdat@mnal complexity
of the agent-based patrticle filter. While the high dimensionality of the &gesed model would make
highly desirable very large ensembles (e.g., 1,000,000) of particles, the peepaotigutational cost
makes that infeasible. By contrast, aggregate patrticle filters requirtatgesensembles (due to lower
dimensionality), and can more readily support them computational. An open question is thibagain
from using agent-based particle filters with fewer particles vs using aggregatéeddiers with many
more particles?

There are several other notable complexities about this particle filteigogithm in general. The
ground-truth model uses a binomial draw to determine how many actual cases are répisrtegorted
number is what is used in the likelihood function of the particle in eq. (4)diBpersion parameter
essentially determines how broad or narrow the filter is. Largaiues make the negative binomial more
peaked, and therefore admit:arrower band of particles “theories” as to the current state. Hence, this
parameter has an effect on the whole particle filter behavior. Finding arnpapfgovalue for might
improve performance.

There is a question as to the very idea of using a negative binorthial likelihood function. Indeed,
a binomial distribution makes more intuitive sense (as a chance of “success” or “failure” — reporting or not
— where each opportunity is independent of all others). However, the binommdbutish has the
unfortunate quality where particles positing a count of infectives less lieareported incidence are
associated with a likelihoodand thus a weight of 0. In situations where all particles posit more than the
reported incidence, no particle weight can be calculated. This is the primary @aseledting a negative
binomial likelihood formulation.
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6 SUMMARY

This research provides the first known application of particle filteringatticles corresponding to agent-
based models. We found that the particle models were able to adapt to compensate fohesdmatteen
the model characterization of system dynamics and the actual dynamics, but obsetesiataptation
encountered surprising limits in compensating for stochastic fluctuations within theezbdata in those
cases where the models associated with the particles highly accuratelytaegiotind truth. We advanced
here several possible explanations, for the observed limits, and propose additiorgdl ilwestigation
responsive to these challenges.
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