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ABSTRACT 

Classic first and second-order response surface models (RSM) do not automatically observe 
monotonicity, while in many real problems, the researcher knows the response to be monotonic in some 
variables. This paper provides the constraints on coefficients that ensure monotonicity and offers some 
approaches for estimating monotonically constrained response surfaces.  

1 INTRODUCTION 

Multiple regression using linear models of the simulation response surface is a powerful way to 
reconstruct variable effects and interactions from limited observations. While many advanced data 
analysis methods are available, multiple regression using first or second-order response surfaces are 
widely taught and recommended (Penn State 2014; Xu, H. 2013; SAS Institute 2014; ReliaSoft 
Corporation 2013; NIST/SEMATECH April 2012). 

A linear model of a response � over a multi-dimensional independent variable � has the form 
 � � � � � �;  � � � ���� �

�

��� , (1) 
where �� �  are pre-determined scalar functions of �, � is sampling error from the simulation, and the �� 
are the unknown regression coefficients. The form of � �  is not guaranteed monotonic in any dimension 
of �, even if the functions �� �  are monotonic, because the coefficients are allowed to be positive or 
negative.  

To illustrate, consider a function of  five dichotomous variables 
 � ��������� � ����� � ����� � � ����� � � ����� � � ����� � � ����� �

� ����� �� � ����� �� (2) 

where ������� and � all equal -1 or 1. Note that � is non-decreasing in all variables.  
Let the function � represent ground truth, and suppose the researchers undertake to estimate it, using 

a ����  fractional factorial experiment. However, researchers have prior knowledge that �  is non-
decreasing in the first three variables, ��������� , while the directions of effects �������  remain 
unknown.  

Table 1 shows the design of experiments (DOE) and simulation responses. The responses, which are 
single replicates, are contaminated by a sampling error which is normal with mean zero and standard 
deviation 0.3. Because the design in Table 1 has resolution V, it is possible to separate main effects and 
two-way interactions. Researchers choose to estimate the main effects plus interactions between the first 
four factors, namely, �����������������, assuming that the interactions with � are negligible. A 
regression results in the estimated response 
� ��������� � ����� � ����� � � ����� � � ����� � � ����� � � ����� � � ����� �� �

����� �� � ����� �� � ����� �� � ����� �� � ����� ��. 
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Table 1: ���� fractional factorial design of experiments. 

Experiment A B C D E Response 
1 -1 -1 -1 -1  1 0.200 
2 -1 -1 -1  1 -1 -0.255 
3 -1 -1  1 -1 -1 0.243 
4 -1 -1  1  1  1 0.137 
5 -1  1 -1 -1 -1 1.127 
6 -1  1 -1  1  1 0.909 
7 -1  1  1 -1  1 1.255 
8 -1  1  1  1 -1 1.162 
9  1 -1 -1 -1 -1 2.016 

10  1 -1 -1  1  1 2.045 
11  1 -1  1 -1  1 2.622 
12  1 -1  1  1 -1 2.797 
13  1  1 -1 -1  1 2.989 
14  1  1 -1  1 -1 2.517 
15  1  1  1 -1 -1 2.183 
16  1  1  1  1  1 2.873 

 
The regression has a root mean square error of  0.264 (4 degrees of freedom).  Figure 1 shows outputs of 
the prediction model for � � � � �� side by side with the true response from (2). The estimate is non-
monotonic in factor �, decreasing in � when � � � and  � � ��, and increasing in other cases.  

 

Figure 1: Predicted response from regression model (2) of response data (Table 1).   

In this case, the corrupting sampling error together with a model space that admits non-monotonic 
functions, results in a non-monotonic prediction function even though the truth response is monotonic. 
The counter-intuitive effect is not a problem for statisticians who know that it is not statistically 
significant. However, Figure 1 can have problems in presentation to clients or across disciplines. Counter-
intuitive results are a negative against credibility and can distract from the key points. Moreover, why not 
use a model space that is a more compliant representation of the studied processes if it were feasible?  
Prior research has found cases where monotonic models had better predictive power of monotonic 
processes than their unconstrained counterparts (Neelon and Dunson 2004). 

In this paper, we will show how the functional form in (1) can be made monotonic in certain 
dimensions of � by applying a set of linear constraints on ��, provided that the derivatives of �� �  are 
bounded over the region of interest. One can estimate the coefficients by constrained least squares or 
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constrained maximum likelihood. Further, these models have a natural Bayesian approach, the constraints 
representing prior knowledge about the coefficients. Given prior probability densities on ��  whose 
support is restricted by linear constrains on ��, and given the likelihood function for the sampling errors, 
we can generate random samples from the posterior distribution of �� using one of the many Bayesian 
sampling algorithms.  

Monotonic response surface models are of frequent interest in the literature. There appears to be little 
if any prior work on monotonic linear regression models, the direction of research being in non-
parametric and semi-parametric models. The term “monotonic regression” traditionally refers to the pool 
adjacent violators (PAV) method in Ayer, et al. (1955). Rather than coefficients, the PAV directly 
estimates means of groups of observations that have ranks imposed on them. Originally, PAV applied 
only to functions of a single variable, but has since been extended to multiple variables using partial 
orderings on the observations (Barlow et al. 1972, Burdakow et al. 2004, Lim and Glynn 2006). In 
multivariate monotonic regression, the family of models consists of piecewise constant functions, which 
are of limited use in estimating between the observations.  

Kay and Ungar (2000) give constraints on the coefficients of neural nets that ensure monotonicity of 
the neural net function and then solve a constrained least squares minimization. All of the examples are 
univariate, although the theory supports multivariate response surfaces. This paper applies essentially the 
same approach to second-order multivariate response surface models.  

Hall and Huang (2001) found that kernel estimators can be made monotonic for one-dimensional 
functions. Racine and Parmeter (2008) extended the approach to multiple dimensions. In both the 
univariate and the multivariate cases, the existence of their solution depends on weak assumptions on the 
kernel functions over a bounded interval. 

Bayesian approaches to monotonic response surface estimation are abundant. Gelfand and Kao (1991) 
use a Dirichlet mixture model over a family of monotonic functions to obtain Bayesian estimates of 
dosage response functions. If all of the functions in a family indexed by a parameter are monotonic, then 
so will be any mixture of functions from the family. Sampling the parameter against a Dirichlet process 
provides a prior distribution over a large class of monotonic functions. The concept was later applied to 
link functions for generalized linear models (GLMs), (Mallick and Gellfand 1994, Gelfand 1997). While 
these solutions only apply to responses of single variables, a Dirichlet mixture GLM could be combined 
with constrained coefficients, resulting in multivariate monotonic response surfaces. However, we restrict 
the present work to GLMs with fixed link functions and strictly linear models. 

Researchers have restricted various response surface classes to subclasses of functions which are 
monotone in one or more dimensions. Neelon and Dunson (2004) propose a Bayesian monotonic 
regression using priors on the parameters of a piecewise linear spline function, the knot locations being 
among the parameters. Their extension to responses of several variables using a simple additive model of 
univariate functions ignores interactions between variables. 

It is possible to constrain the derivatives of Gaussian processes (GP) at a finite set of points, thereby 
obtaining estimated response surfaces with acceptable behavior for the application. Riihimäki and Vehtari 
(2010) derive the constraints on GP weights for a user-selected set of points or “hints”. The method does 
not guarantee global monotonicity, so two or more iterations with intermediate inspections may be 
necessary to reach an acceptable representation. Riihimäki and Vehtari demonstrate this method on a data 
set of 1,222 observations with seven independent variables, one of which is monotonic. 

Lin and Dunson  (2014) model a class of monotonic response surfaces as projections of GP, thereby 
obtaining a prior distribution over the class of monotonic functions. After drawing a Monte Carlo Markov 
Chain (MCMC) sample against the posterior of an ordinary GP, the estimator projects the sample paths 
onto the space of monotonic functions using a multivariate extension of PAV. They demonstrate the 
method on data sets of up to 1,024 observations with up to two independent variables. 

This paper takes a simpler parametric approach than those just reviewed. Prior research has 
demonstrated the practical capability to match arbitrary monotonic shapes in one or two dimensions with 
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hundreds or thousands of design points. Often in simulation experimentation, designs of experiments 
(DOE) are relatively lean, the objective being to characterize a response against many variables for 
purposes of prediction or to assess uncertainty in the presence of incomplete knowledge of input 
variables. DOEs with as few as 10 unique cases per variable are common (Leoppky, Sacks and  Welsh 
2009). A parametric response surface may be needed to fill in the “white space” between observations. 
This paper will demonstrate estimation on a problem with 12 factors, 11 of which are known to be 
monotonic using the linear second-order response surface model 

 � � � �� � ����
�
��� � ���

�
�����

�
��� ���� � ����

��
��� . (3) 

We derive the constraints for monotonicity for second-order response surface models. We discuss 
how they would be used in maximum likelihood and Bayesian estimation and offer some numerical 
examples. Section 2 will derive the monotonicity constraints first for model (1) and then for the more 
particular model (3). Section 3 will discuss statistical models based on (1) and (3). Section 4 will outline 
the Bayesian approach to estimation. Section 5 will present results of monotonically unconstrained and 
constrained models for data sets. Section 6 will summarize and provide some discussions of options and 
issues not addressed in the paper. 

2 MONOTONIC CONSTRAINTS ON LINEAR MODELS 

This section derives sufficient conditions on the coefficients �� in (1), and on ��, ��� and �� in (3) that 
ensure global monotonicity in one or more dimensions.  

Suppose that � � ���� ���� � ��� , � � � � �� , and that the functions �� � ������ � ��� ��  are 
differentiable over ��  with bounded first partial derivatives. If monotonicity is required in several 
dimensions, then the constraints will be the union of the constraints over the monotonic dimensions. For 
now, assume that � �  shall be non-decreasing in �� for all � � �. Choose ������� such that 

 ��� �
���

���
�� ���, for all � � �� (4) 

Define ��
� � ������� ��  and ��

� � ������� ��  for � � �� Clearly, � � ��
� ���

� � 
Differentiating (1), the partial derivative of � �  with respect to ��  is �
��

���
� � ��

���

���
�

�

��� . Using  (4),  ��
���

���
� � ��

�� ��� ���
�� ��� . Applying this result, 

�
��

���
� � ��

�� ��� ���
�� ����

�

���  Therefore, a sufficient condition for � �  to be non-decreasing 

in �� is� ��
�� ��� ���

�� ��� � ��

��� . Similarly, for � �  to be non-increasing in ��, 
�� ��� ��� ��� ��� ���

�

��� � � , using the identities ���
� � �� ��  and ���

� �

�� �� . 
It is now possible to state sufficient conditions for monotonicity in multiple dimensions. Let  

 
�� �

��if���shall be non-decreasing in��� �
���if���shall be non-increasing in���

��if���is not monotonically constrained in �� �
��for�� � ��� � ��  

Then the aggregate conditions for monotonicity as specified in ��  are 
 �� ���� ��� ��� ���� ��� � ���

��� for � � ��� � �, (5) 
where ��� �

���

���
�� ���, for � � ��� ���������������� � �, and for all � � �. 

Next, we apply (5) to the response surface form in (3). We require the region � to be bounded by the 
hypercube �� � ��� . The partial derivatives of the terms in (3) with respect to �� all vanish except for 
�

���
�� � � , �

���
���� � ��  for � � ��� � � , and �

���
��
�
� ��� . Because of bounds on the independent 

variables, the partial derivatives are bounded as follows:  �
���

�� � �,  �� �
�

���
���� � ��, and  ��� �

�

���
��
� � ���. Partial derivatives in the other dimensions are similarly bounded. Therefore, applying (5) 
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with ��  again being the specification for monotonicity, the sufficient condition for monotonicity of the 
quadratic response surface is 

 
���� � � ���������� ����������� � �������������

����������

�

���
���

� � 

for � � ��� �� such that��� � �. 

(6) 

Condition (6) also happens to be a necessary condition for monotonicity of the quadratic response 
surface provided that � � �� � ��� . For simplicity suppose that for some choice of ��, ��� and ��, that � 
in (3) is non-decreasing in �� for all � � � � �� � ��� . In particular, choose � as follows: if �� � �, then 
�� � ��, otherwise �� � ��; if ��� � � then �� � ��, otherwise �� � ��. Then for this �, 

 
 � � ��

���
� � �� � �����

�
��� � ����� 

� �� � �� ��� �� ��� ��� ��

�

���

� � �� �� �� ��� �� �� �� 

 
which is (6) with � � � and �� � �� Similarly, if �  is non-increasing in��� , we can choose � � � �

�� � ���  such that 
 
� � �

��

���
� � ��� � �� ���� �� ��� ���� ��

�
��� � � �� ��� �� ��� ��� �� . 

 
In general, (6) is true if � is monotonic as specified by �� . 

3 STATISTICAL ANALYSIS WITH MONOTONIC MODELS 

This section lays out a statistical model based on the monotonic response surfaces (1) and (3). A model 
for � simulation responses is 

 �� � � �� � �� ��for�� � ��� ��, (7) 
where � is one of the forms in  (1) or (3),  �� � � � �� are design points, �� is the simulation response 
for design point �� and �� is error due to random sampling in the simulation. We will assume that �� are 
independent and normally distributed,  ���� ���� � �� is the common variance for �� .  

The log likelihood function for the sample in (7) with � from (1) is 
 

� ����� � �
�

�
��log �� � � ��� � �

�

�

��� ���� �
�
���

�

��
�
��� . (8) 

with � � ���� � ��  and � � ���� � �� . 
Then the maximum likelihood monotonic response surface depends on the estimates ����which 

maximize (8) subject to constraints (5). One may solve this problem using a constrained nonlinear 
optimization utility, such as MATLAB’s fmincon. See Section 5 for an example. 

More general models of sampling error, such as non-normal distributions, non-uniform variances and 
correlation between errors are possible. See for example, Gelfand (1997), Lim and Glynn (2006) and 
Staum (2009). These different models will lead to different forms for the log likelihood. Nevertheless, 
one may pursue the same approach, which is to maximize the likelihood function subject to constraints on 
the parameters which will ensure monotonicity. In the case of GLM, note that link functions preserve 
monotonicity. The method of constraining linear model coefficients enforces monotonicity as well with 
GLM as in simple linear models. 

One should make sure that the simulation response really is monotonic before imposing monotonic 
constraints on the response surface model. Simulations often produce non-intuitive non-monotonic results 
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as a result of bugs in implementation, invalid simulation models of processes, or a modeled process that is 
not in truth monotonic. In the two former cases, the simulation and models need more scrutiny leading to 
debugging or fidelity improvements. The latter case could lead to an unexpected and important finding.  

4 BAYESIAN MONOTONIC RESPONSE SURFACES 

A Bayesian inference of the model in (7) with response surface defined by (1) or (3) needs only prior 
distributions on the parameters ��  and �� together with a means of estimating the posterior distribution, 
or at least a means of simulating a sample from the posterior. In this paper, we use bounded uniform prior 
distributions. 

Let the prior density of ��  be uniform on the region of support defined by �� � �� � �, together 
with the constraints (5), where � is sufficiently large to bound all plausible values of ��. Let the density of 
��be uniform on � � � � � with � sufficiently small and � set sufficiently large to bound all plausible 
values for �. These assumptions give the parameters non-informative proper prior densities. The log joint 
density of ���� �, ignoring the normalization constant is 

 
� ���� � � �

�

�
���� �� � ���������� �

�

�

��� ���� �
�
���

�

��
�
��� , (9) 

with � � � � �, �� � �� � � and �� subject to (5).  The density (9) represents a proper joint density.  
In absence of a closed-form expression for the posterior density � ����� , Monte Carlo Markov 

Chains (MCMC) provide a family of algorithms for sampling from � �����  without integration (Chib 
and Greenberg 1995). All of the numerical examples in this paper were evaluated using the Differential 
Evolution Markov Chain from Ter Braak (2005). 

Instead of the hard constraints of (5), we multiply the joint density by steep roll-off functions of the 
form � � � ��� �

�� � �

��
, where � is small enough that � �  approximates a zero-centered step 

function. Specifically, � is sufficiently small that the loss from � �  is much greater than losses from lack 
of fit expressed in (9). The log joint density when modified by these multipliers becomes 

 
�� ���� � � �

�

�
���� �� � ���������� �

�

�

��� ���� �
�
���

�

��
�
���   

� log � ��� ���� ��� ��� ���� ���
�
��� . 

(10) 

Unlike the ordinary step function, ��� � �  is defined for � � �. When the MCMC proposes samples that 
violate constraints, (10) imposes a stiff penalty. Markov chains migrate onto the support of the prior 
distributions. 

5 NUMERICAL EXAMPLES OF SIMPLE MONOTONIC RESPONSE SURFACES 

Returning to our example from the introduction, what would happen if the first-order model of the 
response (2) were re-estimated applying prior knowledge that the function is non-decreasing in factors 
���������?  Equation (6) reduces to 

 �� � �� ��� ��� ��� � �� ��� ��� ��� � �� ��� ��� ��� � � 
�� � �� ��� ��� ��� � �� ��� ��� ��� � �� ��� ��� ��� � � 
�� � �� ��� ��� ��� � �� ��� ��� ��� � �� ��� ��� ��� � �, 

(11) 

since there are no second-order effects making �� � �����������, and because the variables are from 
��� � , �� � �� and �� � � for all �. 

A new maximum likelihood estimate based on (8) and constrained by (11) is 
 � ��������� � ����� � ����� � � ����� � � ����� � � ����� � � ����� � �

����� �� � ����� �� � ����� �� � ����� �� � ����� �� � ����� ��. 
(12) 

The constrained coefficients were computed using MATLAB’s fmincon function. Figure 2 shows 
predictions of the constrained model for � � � � ��. 
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The constrained response surface preserves monotonicity for the three variables known to possess it. 
When compared to the true function over the full factorial space of 32 inputs, the constrained model’s 
root mean squared error (RMSE) was 0.25 compared with the unconstrained model’s RMSE of 0.29. In 
this case, a constrained response surface estimator complies with prior knowledge of monotonicity with 
no sacrifice in prediction error.  

 

Figure 2: Predicted response from constrained regression model (12) of response data (Table 1). 

A more practical application comes from simulation of integrated air and missile defense (IAMD) 
systems. Table 2 shows 12 parameters that control a scenario in which multiple cruise missiles attack a 
high value site defended by an IAMD. The IAMD consists of radars, a command and control net, missile 
interceptors and launchers. The parameters are normalized to the interval ����� using their minimum and 
maximum values. Table 2 distinguishes between uncertainty parameters (those dependent on an uncertain 
threat and environment) and design parameters (attributes of the IAMD). In this application, IAMD 
developers explore responses to different combinations of parameters in order to decide on investments in 
IAMD improvements. 

Table 2: Parameters governing simulation of site defense against cruise missiles.  

Factor Type Minimum Maximum 
Terrain roughness Uncertainty 0: flat 1: hilly 
Number of threats Uncertainty 0: two cruise missiles 1: 12 cruise missiles 
Threat spacing Uncertainty 0: small 1: large 
Single shot PK Design 0: low 1: high 
Weapon range Design 0: short 1: long 
Weapon speed Design 0: slow 1: fast 
Salvo size Design 0: one per threat 1: two per threat 
Launcher loadout Design 0: small 1: large 
Simultaneous engagements Design 0: one per launcher 1: many per launcher 
Reaction time Design 0: short 1: long 
Surveillance radar range Design 0: short 1: long 
Fire control radar range Design 0: short 1: long 

 
A Monte Carlo simulation outputs the “number of leakers”, which is the number of cruise missiles in 

the scenario not defeated by the IAMD. The simulation was executed for a Latin hypercube DOE of 120 
unique cases with 10 Monte Carlo repetitions per case, resulting in 1,200 measurements of leakers. The 
mean of leakers for the 120 cases ranged from zero to 6.6 with an overall average of 0.96 leakers. Using 
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the 10-per-case Monte Carlo repetitions, the standard errors of the means ranged from zero to 0.60 with 
an overall root mean square of 0.22. 

For comparison, we fit two types of response surfaces to this data set, stochastic kriging (Staum  
2009) and a monotonically constrained GLM. 

The stochastic kriging response surface was a superposition of a 13-term linear model (first-order 
trends without interactions) and a Gaussian process with covariance �  such that 
��� � ������ � �� ��� � ���

��
��� . The 13 linear coefficients, ��, and 12 values �� were chosen to 

maximize the likelihood function assuming normal sampling error. 
The stochastic kriging response surface fits the data set of 120 mean leakers with an RMSE of 0.2 

leakers. However, in a k-fold cross validation (Arlot  2010) with k = 10, the RMSE of the kriging surfaces 
was 1.0 leakers. Stochastic kriging virtually always fits to within the standard error of the mean at the 
DOE design points. In between points, it smoothly reverts to the linear model (Staum 2009). In 
experiments with very many dimensions, the d-dimensional space between points is quite large, resulting 
in cross validation errors much larger than errors of fit.  

Figure 3 contains profiles of the stochastic kriging response surface around an arbitrary center point 
indicated by the vertical lines. Of particular interest is the incorrect non-monotonic response to reaction 
time. Likewise, the weapon range response in Figure 3 is counter-intuitive. Leakers should increase with 
increasing reaction time and decrease with increasing weapon range in the IAMD simulation. The non-
monotonic trends in Figure 3 are a result of sampling error and an unconstrained model space. 

 

 

Figure 3: Stochastic kriging profile of nine factors in the IAMD site defense simulation around a center 
point: terrain: 1, number of threats: 0.30, threat spacing: 0.388, probability of kill: 0.02, weapon range: 
0.81, weapon speed: 0.83, salvo size: 1, launcher loadout: 0.27, simultaneous engagements: 0.41, 
reaction time: 0.66, surveillance radar range: 0.30, fire control radar range: 0.19. 

For a Bayesian monotonically constrained response surface for the IAMD site defense data set, we 
must first identify those factors known to be monotonic and the direction of monotonicity for each such 
factor.  Cruise missile leakers is non-decreasing with respect to three factors: terrain, number of threats 
and reaction time. Leakers is non-increasing with respect to eight factors: probability of kill, threat 
spacing, weapon range, weapon speed, launcher loadout, simultaneous engagements, surveillance radar 
range and fire control radar range. For the one factor, salvo size, the direction of effect is unknown or 
non-monotonic. Instead of the linear mean response model in (1), we use a GLM of the form 

 � � ����� � ���� � � � � , (13) 
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where � � � � � ��� ��
��

 is the logistic link function, ���� �  is the number of threats for design 
point � and �  denotes the largest integer less than �. The sampling errors � are independent and normal, 
with zero mean and uniform variance. In short, � is a scaled and discretized logit normal distribution. It is 
discrete and bounded to the same range as the leakers output of the IAMD simulation. We use form (3) 
for � � .  �� � � for the factors terrain and salvo size, because these factors have only two levels.  

The parameters to be estimated by a sample from their posterior distributions are: 
• �� � ��� � ������� � where �� � are one of the 12 factors, with the exception �� � � for the factors terrain 

and salvo size, 
• �, the standard deviation of the sampling error ��� for Monte Carlo replication � of unique case  �.���� 

is the same as � in (13). 
Using this measurement model for � and the non-informing priors assumed in Section 4, the posterior 

probability density of �� � ��� � ��� ������� given the 1,200 measurements of leakers ��� is 

� �� �� ����� � � ���
��� � �

���� �� ��

� � �� ���
��

���

���

���

� � ���
���

���� �� ��

� � �� ���  

on the support of �� � ��� � ��� � �, which includes monotonicity constraints (6). � is the standard normal 
cumulative distribution function, � ��� �  is defined to be zero if  � � � and one if � � �. The 
MCMC algorithm resulted in a a sample of 100 instances of �� � ��� � ��� �������  , namely 
���� � ���� � ��� ���� ��� � � �� � � � �� �� � �� � � ���� . A Monte Carlo prediction of the mean response is 
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where �� is an additional Monte Carlo sample from �������. The purpose of simulating sampling error is 
to include the bias in averaging over the nonlinear function �. 

This model has an RMSE of 0.9 leakers in cross-validation. Table 3 compares the fit and cross-
validation errors of the kriging and Bayes MCMC predictors. As expected, the monotonic model did not 
fit the simulation responses as well as kriging. However, it performed as well as kriging in cross-
validation. 

Table 3: Prediction error summary for stochastic kriging and monotonic quadratic models applied to the 
IAMD site defense simulation response. 

Predictor RMSE of fit to 120 
responses 

RMSE of 10-fold 
cross-validation 

Stochastic kriging 0.2 1.0 
Monotonic quadratic 0.9 0.9 

 
Figure 4 is a profile of the monotonic model at the same center point as Figure 3. Like the kriging 

estimator, the monotonic estimator identifies PK and reaction time as the two strongest trends. However, 
unlike kriging, the monotonic estimator is uniformly increasing with respect to reaction time. Also, while 
kriging showed a trend reversal with respect to weapon range, the monotonic model has a nearly flat 
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response. The monotonic model shows as good predictive capability as kriging without showing non-
intuitive trends. 

 

Figure 4: Monotonic quadratic response surface profile of nine factors in the IAMD site defense 
simulation around the center point: terrain: 1, number of threats: 0.30, threat spacing: 0.388, probability 
of kill: 0.02, weapon range: 0.81, weapon speed: 0.83, salvo size: 1, launcher loadout: 0.27, 
simultaneous engagements: 0.41, reaction time: 0.66, surveillance radar range: 0.30, fire control radar 
range: 0.19. 

6  SUMMARY AND DISCUSSION 

Quadratic response surfaces are accessible to a large population of simulation analysts. We offer an 
option to constrain quadratic responses to produce suitable monotonic estimates. Monotonic quadratic 
linear models produce intuitive well-behaved estimates in cases with many monotonic factors and austere 
designs of experiments.  

Numerical estimation of monotonic response surfaces is feasible either by constrained maximum 
likelihood or Bayes MCMC methods. We here demonstrated Bayes estimation with up to 12 factors, 120 
unique cases, and 1,200 simulations.  The method adapts well to non-linear link functions and sampling 
error models that generate bounded and discrete responses.  

We showed that the monotonic conditions (6) are both necessary and sufficient for quadratic response 
surfaces. However, necessity depends on an assumption that all points in the hypercube are valid inputs. 
For some applications, this may not be so. In such cases, the monotonic conditions may be too restrictive. 

We limited the statistical applications and examples to cases with independent sampling errors. This 
is not the case for many simulation applications.  

We restricted our example to GLMs with a fixed link function. As noted in Section 1, Dirichlet 
mixture generators provide a more general class of link functions (Mallick and Gelfand 1994, Gelfand 
1997). We might consider combining a generalized link function model with monotonic constraints on the 
linear coefficients. 

Computations with the IAMD application revealed that there is much room for algorithmic 
improvements. The Bayes MCMC implementation did not settle nearly as fast in the IAMD site defense 
case as it has in unconstrained model fitting and in lower-dimensional problems. It helped to mix the 
constrained maximum likelihood estimator with the MCMC streams on initialization to help point to the 
main mode of the posterior distribution. 
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