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ABSTRACT

This article presents Sequem, a fully sequential procedure for computing point estimators and confidence

intervals (CIs) for extreme steady-state quantiles of a simulation output process. The method is an en-

hancement of the Sequest procedure proposed by Alexopoulos et al. in 2014 for estimating nonextreme

steady-state quantiles. Sequem exploits a combination of batching, sectioning, and the maximum trans-

formation technique to achieve the following: (a) reduction in point-estimator bias arising from initial

conditions or inadequate simulation run length; and (b) adjustment of the CI half-length to compensate

for the effects of skewness or correlation in the corresponding quantile point estimators obtained from

nonoverlapping batches. The CIs delivered by Sequem satisfy user-specified requirements related to cover-

age probability and absolute or relative precision. A preliminary evaluation based on three “stress-testing”

processes revealed that Sequem exhibited good performance when used in challenging settings.

1 INTRODUCTION

Steady-state simulations play a fundamental role in system design, and they are particularly appropriate

for evaluating long-run system performance or risk. For example in a call center simulation, let Xk denote

the waiting time spent on hold before the kth caller reaches a service representative for k = 1,2, . . . . Call

center management may seek convincing evidence that in the long run, at least 99% of all call waiting

times do not exceed a critical threshold x∗, say x∗ = 2 minutes. For each possible threshold x ∈ R, we let

FX(x)≡ Pr{Xk ≤ x} and fX(x) = F ′X(x) respectively denote the cumulative distribution function (c.d.f.) and

the probability density function (p.d.f.) of the steady-state distribution of Xk that is achieved as k→∞. With

this setup, for 0 < p < 1 we define the p-quantile xp ≡ F−1
X (p) ≡ min{x : FX(x) ≥ p} of the steady-state

distribution of call waiting times, so that if we take p = 0.99, then the long-run probability is 0.99 that Xk

does not exceed x0.99. As convincing evidence that in the long run at least 99% of all call waiting times

do not exceed 2 minutes, management might require that an asymptotically valid 95% confidence interval

(CI) for x0.99 lies to the left of the point x∗ = 2 minutes. Many reliability and risk simulations are similarly

based on point and CI estimators of a selected extreme quantile xp, where p is taken sufficiently close to

one to reflect the desired likelihood of achieving an acceptable level of system performance.
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In the development of effective steady-state simulation analysis procedures, the main obstacle is that

generally the associated output processes do not even approximately satisfy the basic assumptions underlying

conventional statistical methods. In particular, successive responses are rarely independent and identically

distributed (i.i.d.) normal random variables (for example, consecutive waiting times in a heavily congested

queueing simulation with the empty-and-idle initial condition). When a simulation-generated time series

{Xk : k = 1, . . . ,n} of length n is composed of identically distributed but stochastically dependent (e.g.,

correlated) observations, the point estimation of xp is straightforward: sort the observations in ascending

order X(1) ≤ ·· · ≤ X(n) to yield the estimator x̂p = X(⌈np⌉), where ⌈·⌉ denotes the ceiling function. If the

observations {Xk : k = 1, . . . ,n} are also independent and fX(xp)> 0, then a valid large-sample CI for xp can

also be easily computed. In this situation, the variate
√

n(x̂p−xp) is asymptotically normal with mean zero

and variance p(1− p)
/[

fX(xp)
]2

as n→∞ (Serfling 1980, Section 2.3.3); therefore as n→∞ with a fixed

value of α ∈ (0,1), an asymptotically valid 100(1−α)% CI for xp has the form x̂p± z1−α/2

[
V̂ar(x̂p)

]1/2
,

where V̂ar(x̂p) is a suitable estimator of Var(x̂p) computed from the data set {Xk : k = 1, . . . ,n} and zγ is

the γ quantile of the standard normal distribution.

If the {Xk} are dependent and subject to initialization bias, then the problem of computing point and

CI estimators of xp that are free of initialization bias and asymptotically reliable becomes much more

difficult. The relatively sparse simulation literature on this problem prior to 2014—including Bekki et al.

(2010), Chen and Kelton (2006, 2008), Iglehart (1976), Jain and Chlamtac (1985), Jin, Fu, and Xiong

(2003), Raatikainen (1987, 1990), and Seila (1982a, 1982b)—reflects the following difficulties: (i) lack of

an adequate theoretical basis for some of the existing methods; (ii) lack of effective guidelines for using

the methods in practice; (iii) poor performance of the estimators in industrial-strength applications; and

(iv) excessive computational or storage requirements.

The Sequest method proposed by Alexopoulos et al. (2014) is the first fully sequential procedure in

the literature that delivers an improved CI for a designated steady-state quantile and satisfies user-specified

requirements on the CI’s coverage probability and its absolute or relative precision. The improvement over

existing methods is with respect to the CI’s coverage probability and the average required sample size.

Sequest is based on a combination of ideas from batching (Tafazzoli and Wilson 2011) and sectioning

(Asmussen and Glynn 2007, Section III.5a). In particular, Sequest incorporates effective methods to do

the following: (i) eliminate bias in the sectioning-based point estimator that is caused by an atypical initial

condition for the simulation or by an inadequate simulation run length (sample size); and (ii) adjust the CI

half-length for the effects of skewness or correlation in the batching-based point estimators of the designated

quantile.

Substantial experimentation with Sequest revealed that in the estimation of extreme quantiles (that

is, xp for p ∈ [0.95,1) or p ∈ (0,0.05]) with no precision requirement, Sequest may deliver CI coverage

substantially below the nominal level, or it may require excessive sample sizes. The Sequem method

proposed in this paper addresses the problem of estimating extreme quantiles by adopting and extending

the maximum transformation method of Heidelberger and Lewis (1984). For simplicity we only consider

estimating xp for p ∈ [0.95,1). The name Sequem is an abbreviation of the phrase “Sequential extreme

quantile estimation via the maximum transformation.”

The remainder of this paper is organized as follows. Section 2 provides an overview of Sequem and a

formal algorithmic statement of the procedure. Section 3 contains a summary of the results of a preliminary

experimental performance evaluation of Sequem. Section 4 contains concluding remarks and an outline

of the next steps in our work on Sequem. The slides for the oral presentation of this article are available

online via www.ise.ncsu.edu/jwilson/wsc15sequem.pdf.

2 OVERVIEW OF SEQUEM

From the simulation-generated time series {X1, . . . ,Xn} of length n = bm, we form b nonoverlapping batches

each of size m, so that the jth batch consists of the observations {X( j−1)m+1, . . . ,X jm}. For j = 1, . . . ,b, we
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sort the jth batch in ascending order to obtain the order statistics X j,(1) ≤ X j,(2) ≤ ·· · ≤ X j,(m) and define

the associated batch quantile estimator (BQE) by

x̂p( j,m)≡





X j,(1) if p≤ 0.5/m ,

δp,mX j,(⌈mp+0.5⌉−1)+(1−δp,m)X j,(⌈mp+0.5⌉) if 0.5/m < p < (m−0.5)/m ,

X j,(m) if (m−0.5)/m≤ p ,

(1)

where

δp,m ≡ ⌈mp+0.5⌉− (mp+0.5) for m = 1,2, . . . . (2)

Similarly from the entire time series and its associated order statistics X(1) ≤ ·· · ≤ X(n), we compute

the overall point estimator of xp,

x̃p(n)≡





X(1) if p≤ 0.5/n ,

δp,nX(⌈np+0.5⌉−1)+(1−δp,n)X(⌈np+0.5⌉) if 0.5/n < p < (n−0.5)/n,

X(n) if (n−0.5)/n≤ p.

(3)

Using (1) and (3), we also compute a modified estimator of the variance of the BQEs,

S̃ 2
x̂p
(b,m)≡ b−1

b

∑
j=1

[
x̂p( j,m)− x̃p(n)

]2
.

Finally we compute the following 100(1−α)% CI for xp,

x̃p(n)± t1−α/2,b−1S̃x̂p
(b,m)

/√
b, (4)

where tr,ν is the r-quantile of Student’s t-distribution with ν degrees of freedom for r ∈ (0,1). As m→∞
with b fixed, the asymptotic validity of the CI (4) can be established under any of the following conditions on

the underlying process {Xk}: (i) φ -mixing (Sen 1972); (ii) geometric ergodicity for Markov chains (Muñoz

2010); or (iii) a geometric moment contraction condition (Alexopoulos, Goldsman, and Wilson 2012; Wu

2005). Condition (iii) is satisfied by a rich diversity of widely used linear and nonlinear processes, including

autoregressive–moving average (ARMA) processes, generalized conditional heteroscedastic (GARCH)

processes, random coefficient autoregressive (RCA) processes, and threshold autoregressive (TAR) processes

as well as a broad class of Markov chains.

The maximum transformation technique of Heidelberger and Lewis (1984) converts the problem of

estimating an extreme quantile to the problem of estimating a quantile closer to the median. If X∗1 ,X
∗
2 , . . . ,X

∗
c

are i.i.d. random variables with c.d.f. FX(·) and if we define the random variable Y = max{X∗1 ,X∗2 , . . . ,X∗c }
with c.d.f. FY (y) = Pr{Y ≤ y}= [FX(y)]

c for all y, then FY (xp) = [FX(xp)]
c = pc ≡ q ; hence the estimation

of xp reduces to the estimation of the q-quantile of the distribution of Y . Heidelberger and Lewis (1984)

considered values of c such that pc ≈ 0.5, since estimators of the median typically have smaller mean

squared error than estimators for extreme quantiles. However, such an assignment can lead to sample

size explosion because for p = 0.99 one has c ≈ ln(0.5)/ ln(0.99) ≈ 69; and the implications of this are

explained below.

Heidelberger and Lewis (1984) applied the maximum transformation to an autocorrelated stationary

process {Xk : k = 1, . . . ,n} of length n by forming L contiguous groups of data, each consisting of cm

consecutive observations so that n = cmL. Conceptually each group is arranged in a c×m matrix whose

rows are formed from the consecutive nonoverlapping batches of size m within the group — that is, the

first batch of m observations in the group forms the first row of the associated matrix, the second batch of

m observations in the group forms the second row of the matrix, etc. This arrangement ensures that each
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column of the matrix consists of observations of the underlying process {Xk} separated by lag m; and if m

is sufficiently large, then the observations in each column of that matrix are approximately i.i.d. with the

c.d.f. FX(·) so that the maximum of the observations in each column is a random variable with the c.d.f.

FY (·). For ℓ= 1, . . . ,L, let Yi,ℓ denote the maximum of the observations in column i of the matrix for group

ℓ, where i = 1, . . . ,m. If m is large enough, then from the associated order statistics Y(1),ℓ ≤ ·· · ≤ Y(m),ℓ

we can compute the ℓth group quantile estimator (GQE) Y(⌈mq⌉),ℓ of the q-quantile of Y for ℓ = 1, . . . ,L.

If for any convenient value of q we take c = ⌊ln(q)/ ln(p)⌋, where ⌊·⌋ is the floor function, and if m is

large enough, then the GQEs {Y(⌈mq⌉),ℓ : ℓ= 1, . . . ,L} are approximately i.i.d. normal unbiased estimators

of xp so an approximate CI for xp similar to (4) can be based on the sample mean and sample variance

of the GQEs. Heidelberger and Lewis (1984) demonstrated the potential of the maximum transformation

approach, but they provided no guidelines for choosing the number of groups L and the batch size m.

Sequem addresses the latter two fundamental problems and extends the group quantile method of

Heidelberger and Lewis (1984) in two key respects.

• Given the effectiveness of the Sequest procedure (Alexopoulos et al. 2014) for estimating nonextreme

quantiles (0.1≤ p≤ 0.9), Sequem estimates the q = 0.9 quantile of the max-transformed data so

that in Sequem we take c = ⌊ln(0.9)/ ln(p)⌋. This assignment results in substantially smaller values

of c and limits the aforementioned sample size explosion.

• Sequem uses a sectioning mechanism based on applying the maximum transformation to the entire

simulation-generated time series {Xk : k = 1, . . . ,n} of length n by conceptually arranging that time

series into a c× (mL) matrix so that the first subseries of mL consecutive observations form the

first row of the matrix, the second subseries of mL consecutive observations form the second row

of the matrix, and so on. This ensures that each column of the matrix consists of observations

that are separated by lag mL, where mL≫ m so that from the maximum values in each column

{Ỹi : i = 1, . . . ,mL}, we compute a point estimator of xp with substantially reduced bias and variance.

A formal algorithmic statement of Sequem is given in Figure 1. Step [0] of Sequem initializes various

experimental parameters of Sequem. Steps [1] and [2] compute an initial estimate of the length w of

the warm-up period that is sufficiently large to include any pronounced (primarily deterministic) initial

transient so that beyond observation w, the underlying process {Xk : k >w} exhibits approximately stationary

stochastic behavior. In particular, the first loop in steps [1a–b] starts with b = 64 batches of size m0 = 256

and progressively increases the batch size by the factor of τwrm = 2 until the sample standard deviation of

the BQEs exceeds the value εa = 10−10 and the estimated coefficient of variation of the BQEs exceeds

the threshold εr = 10−5. The second loop in steps [1c–d] applies von Neumann’s randomness test with a

significance level that decreases gradually from the “aggressive” value αwrmi = 0.25 to about αwrmf = 0.001.

Each time the BQEs fail the randomness test, the batch size is doubled (τwrm = 2) and the test is repeated.

Step [2] performs a more stringent randomness test to obtain a batch size m large enough so that

observations Xk and Xk+m of the underlying process separated by lag m are approximately i.i.d., which

ensures the approximate validity of the maximum transformation. The level of significance αmxt decreases

at the same rate as in steps [1c–d], and the batch size is doubled (τmxt = 2) after each failed test.

Step [3] starts by skipping the initial w observations of the underlying process, where the truncation

point w is taken to be the sum of the final batch sizes from steps [1] and [2]. Step [3b] obtains additional

data and forms L = 64 groups of size cm as described in Heidelberger and Lewis (1984). For the ℓth group

(ℓ= 1, . . . ,L), we compute the group quantile estimator Y(⌈mq⌉),ℓ from the c×m matrix associated with that

group. (This grouping is retained in steps [3]–[5].) The loop in steps [3c–d] sequentially increases the

batch size m until the estimated absolute skewness of the GQEs falls below the threshold B
∗(p) = 0.6. To

avoid an explosion of the batch size m, we limit the number of iterations of step [3] to u∗ = 50, we impose

temporary upper bounds n∗ and m∗ on n and m respectively that have no effect beyond step [3], and we

exploit Equation (11) to increase the batch size in a less pronounced fashion than in steps [1] and [2].
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[0] Set the value p ∈ [0.95,1), α ∈ (0,1), and the absolute (h∗) or relative (r∗) precision requirement on the
half-length of the approximate 100(1−α)% CI for xp. Initialize the remaining experimental parameters
as follows.

[a] Set the “baseline” batch size m0← 256. Set the initial batch size m← m0, the initial batch count
b← 64, and the initial sample size n← mb. For the initial phase of determining the length of
the warm-up period in step [1], set the absolute tolerance on the sample variance of the BQEs,

εa ← 10−10, and the associated relative tolerance, εr ← 10−5. For computing the CI skewness
adjustment in step [4], set the associated tolerance, εs← 10−3.

[b] For determining the preliminary length of the warm-up period in step [1], set the starting randomness
test size αwrmi ← 0.25, the final randomness test size αwrmf ← 0.001, the associated batch-size
inflation factor τwrm← 2, and ℓ∗← 15, the maximum number of iterations of the randomness tests
allowed in each of steps [1c] and [2c]. For determining in step [2] a batch size sufficiently large to
ensure proper operation of the maximum transform, set the starting randomness test size αmxti← 0.25,
the final randomness test size αmxtf← 0.001, and the associated batch-size inflation factor τmxt← 2.

[c] For controlling the batch size in the skewness-reduction step [3], set the upper-bound function
on absolute skewness of the BQEs, B

∗(δ ) = 0.60, δ ∈ (0,1). Set the constant for the maximum
transformation to c← ⌊ ln(0.9)/ ln(p)⌋, the corresponding max-transformed quantile q← pc, and
the number of groups L← 64 that are used to compute the final point and CI estimators of xp. Set
the upper bound u∗← 50 on the number of iterations of step [3]. Set the upper bound τskw← 2 on
the batch-size adjustment factor to be used when testing the BQEs for excessive absolute skewness
in step [3]. Finally set the (temporary) upper bound n∗← 3.0×108 on the total sample size to be
considered when assigning the corresponding maximum batch size m∗ in step [3].

[1] From the initial time series {Xk : k = 1, . . . ,n}, form b batches of size m to compute the BQEs (1).

Compute the sample mean and sample variance of the BQEs,

xp(b,m)← 1

b

b

∑
j=1

x̂p( j,m) and S2
x̂p
(b,m)← 1

b−1

b

∑
j=1

[
x̂p( j,m)− xp(b,m)

]2
. (5)

Initialize the iteration counter ℓ← 1 for the iterations of the warm-up randomness test in step [1].

[a] If
Sx̂p(b,m)≤min{εa,εr|xp(b,m)|} ,

then go to step [1b]; otherwise go to step [1c].

[b] Update the batch size and the total sample size according to m← ⌊mτwrm⌋ and n← bm; obtain the
required additional observations by restarting the simulation if necessary; update the BQEs (1) and
the sample statistics (5); and return to step [1a].

[c] Apply von Neumann’s test for randomness to the current set of BQEs {x̂p( j,m) : j = 1, . . . ,b} by
computing the test statistic

Cb← 1−
∑

b−1
j=1 [x̂p( j,m)− x̂p( j+1,m)]2

2(b−1)S2
x̂p
(b,m)

. (6)

Compute the size of the current randomness test, αwrm← αwrmi

(
0.60ℓ−1

)
+αwrmf

(
1−0.60ℓ−1

)
. If

|Cb| ≤ z1−αwrm/2

√
(b−2)/(b2−1) or ℓ≥ ℓ∗,

then go to step [2]; otherwise proceed to step [1d].

Figure 1: Algorithmic statement of Sequem.
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[d] Update the iteration counter, batch size, and sample size according to ℓ← ℓ+ 1, m←
⌊

mτwrm

⌋
,

and n← bm, respectively; obtain the required additional observations by restarting the simulation if
necessary; update the BQEs (1) and the sample statistics (5); and return to step [1c].

[2] Determine a batch size m sufficiently large so that the BQEs pass a more stringent test of randomness
that is needed to ensure the validity of the maximum transform as follows.

[a] Set the length of the warm-up period according to w←m, the current batch size. Initialize the iteration
counter ℓ← 1 for the maximum-transform randomness test. Update the batch count according to
b←min{cL,256} and reset the batch size m← m0.

[b] Update the total sample size, n←w+bm, and obtain the additional observations needed by restarting
the simulation if necessary. Skip the first w observations in the overall time series of length n so that
we have the “warmed-up” time series of length n′← n−w = bm with the following indexing scheme:{

X ′k = Xw+k : k = 1, . . . ,n′
}

. From the latter time series, form b batches of size m to compute the
associated BQEs (1) and the associated sample statistics (5) and (6). Compute the size of the current

maximum-transform randomness test, αmxt← αmxti

(
0.60ℓ−1

)
+αmxtf

(
1−0.60ℓ−1

)
. If

|Cb| ≤ z1−αmxt/2

√
(b−2)/(b2−1) or ℓ≥ ℓ∗,

then go to step [3]; otherwise go to step [2c].

[c] Update the iteration counter, batch size, and sample size according to ℓ← ℓ+1, m←
⌊

mτmxt

⌋
, and

n← bm, respectively; and return to step [2b].

[3] Determine a batch size m sufficiently large so that the GQEs have manageable skewness as follows.

[a] Initialize the skewness-reduction iteration counter, u← 1. Set the final length of the warm-up period
by incrementing the initial value of w from step [2a] by the final value of m from step [2], w←w+m.
Set the upper limit

m∗← ⌊(n∗−w)/(cL)⌋
on the batch size allowed on any iteration of the following substeps [3b–d].

[b] Update the total sample size, n← w+cmL, and obtain the additional observations by restarting the
simulation if necessary. Skip the first w observations in the time series of length n so that we have
the warmed-up time series of length n′′← n−w = cmL with the indexing scheme

{X ′′k,i,ℓ = Xw+(ℓ−1)mc+(k−1)m+i : k = 1, . . . ,c; i = 1, . . . ,m; ℓ= 1, . . . ,L} .

Therefore within ℓth group consisting of c adjacent batches of size m, we let X ′′k,i,ℓ denote the

ith observation in the kth batch (“data row”) constituting that group. Within the ℓth group whose
associated c×m matrix is obtained conceptually by vertically concatenating (stacking) the group’s
successive data rows each of length m, compute the maximum Yi,ℓ of the observations in the ith
column of the resulting matrix so that we have

Yi,ℓ = max
{

X ′′k,i,ℓ : k = 1, . . . ,c
}

for i = 1, . . . ,m and ℓ= 1, . . . ,L .

Within each group ℓ, compute the associated order statistics Y(1),ℓ ≤ Y(2),ℓ ≤ ·· · ≤ Y(m),ℓ so that the

ℓth warmed-up GQE based on c batches (“data rows”) of size m is

ŷp(c,m, ℓ)←





Y(1)ℓ if q≤ 0.5/m ,

δq,mY(⌈mq+0.5⌉−1),ℓ+(1−δq,m)X(⌈mq+0.5⌉),ℓ if 0.5/m < q < (m−0.5)/m ,

X(m),ℓ if (m−0.5)/m≤ q ,

(7)

Figure 1 (Continued): Algorithmic statement of Sequem.
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for ℓ= 1, . . . ,L . From the L GQEs in (7), compute the sample mean, variance, and skewness,

yp(c,m,L)← 1

L

L

∑
ℓ=1

ŷp(c,m, ℓ) , (8)

S2
ŷp
(c,m,L)← 1

L−1

L

∑
ℓ=1

[
ŷp(c,m, ℓ)− yp(c,m,L)

]2
, (9)

B̂ŷp(c,m,L)← L

(L−1)(L−2)

L

∑
ℓ=1

[
ŷp(c,m, ℓ)− yp(c,m,L)

Sŷp(c,m,L)

]3

. (10)

[c] If ∣∣B̂ŷp(c,m,L)
∣∣≤B

∗(p) or u = u∗ or m = m∗ ,

then go to step [4]; otherwise compute ψ(u)≡max
{

1.10,τskw/
√

u
}

, the upper limit on the batch-size
inflation factor, increase the batch size according to

m←
⌈

m ·mid

{
1.05,

[
B̂ŷp(c,m,L)

/
B
∗(p)

]2

, ψ(u)

}⌉
, (11)

where mid{ζ1,ζ2,ζ3} ≡ ζ(2), and increment the skewness-reduction iteration counter u← u+1.

[d] If m > m∗, then set m← m∗ and u← u∗. Return to step [3b].

[4] Update the group count and batch size according to L← L/2 and m← 2m.

[5] With the updated values of m and L, recompute the warmed-up GQEs (7), their sample mean (8), sample
variance (9), and sample skewness (10); then compute the sample lag-one correlation of the GQEs,

ϕ̂ ŷp(c,m,L)← 1

L−1

L−1

∑
ℓ=1

[ŷp(c,m, ℓ)− yp(c,m,L)][ŷp(c,m, ℓ+1)− yp(c,m,L)]

S2
ŷp
(c,m,L)

,

and the associated correlation adjustment

A←max
{[

1+ ϕ̂ ŷp(c,m,L)
]/[

1− ϕ̂ ŷp(c,m,L)
]
, 1
}

that will be applied to the half-length of the CI estimator for xp.

From the updated sample skewness B̂ŷp(c,m,L) compute the associated skewness-adjustment parameter,

β ← B̂ŷp(c,m,L)
/(

6
√

L
)
,

and define the skewness-adjustment function

G(ζ ) =





ζ , if |β | ≤ εs ,
3
√

1+6β (ζ −β )−1

2β
, if |β |> εs ,

for all real ζ , where 3
√

ζ ≡ sign(ζ ) 3
√
|ζ | (Tafazzoli and Wilson 2011).

Figure 1 (Continued): Algorithmic statement of Sequem.
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[6] Compute the “half-length” of the bias-, correlation-, and skewness-adjusted 100(1−α)% CI for the
p-quantile xp,

H←max
{

G(t1−α/2,L−1),G(tα/2,L−1)
}[

AS 2
ŷp
(c,m,L)

/
L
]1/2

. (12)

To compute the “sectioning-based” point estimator of xp that has been adapted to the maximum transform
method, we use the following modified indexing scheme for the warmed-up time series {Xw+ j : j =

1, . . . ,cmL}: let X#
k,i = Xw+(k−1)mL+i for k = 1, . . . ,c and i = 1, . . . ,mL so that within the kth subseries

(“data row”) of length mL formed from L adjacent batches of size m, X#
k,i denotes the ith observation

in that subseries. From the c× (mL) matrix that is conceptually obtained by vertically concatenating

(stacking) the successive data rows each of length mL, compute the maximum Ỹi of the observations in
the ith column of the resulting matrix so that we have

Ỹi = max
{

X#
k,i : k = 1, . . . ,c

}
for i = 1, . . . ,mL .

Then compute the associated order statistics Ỹ(1) ≤ Ỹ(2) ≤ ·· · ≤ Ỹ(mL) and set the point estimator for xp as

ỹp(c,m,L)←





Ỹ(1) if q≤ 0.5/(mL) ,

δq,mLỸ(⌈mLq+0.5⌉−1)+(1−δq,mL)Ỹ(⌈mLq+0.5⌉) if 0.5/(mL)< q < (mL−0.5)/(mL),

Ỹ(mL) if (mL−0.5)/(mL)≤ q.
(13)

The associated CI estimator for xp has the form

ỹp(c,m,L) ± H . (14)

If no precision level is specified, then deliver the CI (14) and stop; otherwise proceed to step [7].

[7] Apply the appropriate absolute- or relative-precision stopping rule.

[a] If the half-length H of the current CI (14) satisfies the user-specified precision requirement

H ≤ H∗ , (15)

where

H∗ =

{
r∗
∣∣ỹp(c,m,L)

∣∣ , for a relative precision level r∗ ,

h∗ , for an absolute precision level h∗ ,
(16)

then deliver the CI (14) and stop; otherwise proceed to step [7b].

[b] For the fixed batch count b, estimate the batch size m required to satisfy (15)–(16),

m←
⌈

m ·mid
{

1.02,(H/H∗)2,1.2
}⌉

.

Update the length of the warmed-up time series to n′ ← cmL. Obtain the required additional
observations by restarting the simulation if necessary, and return to step [5].

Figure 1 (Continued): Algorithmic statement of Sequem.

Step [4] halves the number of groups L and doubles the batch size m in an attempt to improve the

coverage of the CI (14) in step [6]. This action neither increases the total sample size nor changes the

bias of the sectioning-based point estimator of xp. However, in general the absolute skewness of the GQEs

decreases and the CI half-length increases because of the increase in m and the decrease in L.

Step [5] obtains adjustments for excess autocorrelation or skewness of the GQEs that will be used in the

computation of the CI half-length (12) in step [6]. The latter step computes the approximate CI for xp based
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on the sectioning technique applied to the entire set of max-transformed observations {Ỹi : i = 1, . . . ,mL}
to yield the final point estimator (13). The CI (14) is symmetric about (13) to guard against undercoverage.

Finally, step [7] sequentially increases the batch size m until the absolute or relative precision requirement

on the CI half-length is satisfied as stipulated by (15) and (16). The assignment in step [7b] is based on

substantial experimentation with sequential procedures for estimating steady-state means (Tafazzoli and

Wilson 2011) and the Sequest approach for estimating steady-state quantiles (Alexopoulos et al. 2014).

3 EXPERIMENTAL PERFORMANCE EVALUATION OF SEQUEM

In this section we conduct a preliminary performance evaluation of Sequem based on three test processes

presenting various statistical challenges. Each table below contains performance statistics for two levels of

CI relative precision: r∗ =∞ (i.e., no precision requirement) and a problem-dependent value of r∗ which

is significantly smaller than the average CI relative precision obtained when r∗ =∞. The second precision

requirement is intended to assess the effectiveness of step [7] of Sequem.

Sequem has been implemented in Java, and the code will be freely available soon after the completion

of a more-detailed performance evaluation and the development of a graphical user interface.

3.1 First-Order Autoregressive (AR(1)) Process

Table 1 shows the results of applying Sequem to a first-order autoregressive (AR(1)) process with the

initial condition X0 = 0, the autoregressive parameter ρ = 0.995, and the steady-state mean µX = 100. This

process is generated via the relation Xk = µX +ρ(Xk−1−µX)+εk, for k = 1,2, . . ., where {εk : k = 1,2, . . .}
are i.i.d. N(0,σ2

ε ) with σ2
ε = 1. We applied Sequem to 1000 replications of this process.

Table 1: Performance of Sequem-delivered point and 95% CI estimators of the p-quantile xp of the

AR(1) process described in Section 3.1 based on 1000 replications.

No CI Precision Requirement

p xp Avg. ỹp(n
′) Avg.

∣∣Bias
[

ỹp(n
′)
]∣∣ H

Avg. CI Rel.
Prec. (%)

CI Cover. m n

0.95 116.4691 116.4 0.614 1.59 1.37 93.4% 3207 207766
0.99 123.2926 123.3 0.385 0.975 0.791 95.2% 5583 1789741

0.995 125.7906 125.8 0.308 0.772 0.614 94.1% 6430 4324081

CI Relative Precision = 0.5%

p xp Avg. ỹp(n
′) Avg.

∣∣Bias
[

ỹp(n
′)
]∣∣ H

Avg. CI Rel.
Prec. (%)

CI Cover. m n

0.95 116.4691 116.5 0.212 0.530 0.455 94.7% 22176 1421778
0.99 123.2926 123.3 0.229 0.545 0.442 93.6% 11661 3734704

0.995 125.7906 125.8 0.225 0.540 0.429 93.7% 9190 6178909

The high correlation between successive observations in this process makes it a severe test of Sequem’s

ability to handle correlated observations and to deliver an approximately valid correlation-adjusted CI. The

steady-state marginal standard deviation of this test process is σX = σε

/√
1−ρ2 = 10.0125; therefore

this process starts approximately ten standard deviations below its steady-state mean. The magnitude and

duration of the initial transient in simulation-generated realizations of the AR(1) process under study was

purposely designed to “stress-test” Sequem’s ability to eliminate initialization bias as well as to compensate

effectively for pronounced correlation between successive observations of a target process. For both

precision requirements considered, the average lengths of the warm-up period for estimating the 0.95, 0.99,

and 0.995 quantiles were 2,507 2,993, and 3,030, respectively.

Table 1 shows that for both precision levels, Sequem’s sampling efficiency was good. Moreover in

the no precision case, Sequem delivered nominal 95% CIs with coverages ranging from 93.4% to 95.2%

and with average values of the CI relative precision 100×
∣∣H/ỹp(n

′)
∣∣ ranging from 0.6% to 1.4%. The

results for 0.5% relative precision (r∗ = 0.005) were judged to be similarly good—especially with respect

to the increase in sample size required to satisfy the precision requirement relative to the no precision case.
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For example, Sequem delivered CI estimators of the 0.95, 0.99, and 0.995 quantiles with the following

properties: (i) respective coverage probabilities of 94.7%, 93.6%, and 93.7%; (ii) respective average relative

precisions of about 0.46%, 0.44%, and 0.43%; and (iii) respective average sample sizes of about 1.4, 3.7,

and 6.2 million. These results are competitive with all the results reported in the literature for significantly

less challenging versions of the AR(1) process (Chen and Kelton 2006).

3.2 M/M/1 Queue-Waiting-Time Process

Consider an M/M/1 queueing system with interarrival rate λ = 0.9 and service rate ω = 1, and let Xk be the

time spent in queue by customer k prior to receiving service. Let ρ = λ/ω = 0.9 denote the traffic intensity.

It is well known that the steady-state c.d.f. of Xk is defined as follows: FX(x) = 0 for x < 0; FX(x) = 1−ρ
for x = 0; and FX(x) = 1−ρ exp[−ω(1−ρ)x] for x > 0. Hence the response Xk has steady-state mean

µX = 9, and the steady-state quantiles can be evaluated analytically by inverting FX(·). We assume that

the system starts with 113 customers initially in the system, and we record successive queue waiting times

only for the customers arriving after the beginning of the simulation. Table 2 shows the results of applying

Sequem to 1000 replications of this process.

Table 2: Performance of Sequem-delivered point and 95% CI estimators of the p-quantile xp of the

M/M/1 queue waiting-time-process described in Section 3.2 based on 1000 replications.

No CI Precision Requirement

p xp Avg. ỹp(n
′) Avg.

∣∣Bias
[

ỹp(n
′)
]∣∣ H

Avg. CI Rel.
Prec. (%)

CI Cover. m n

0.95 28.90372 28.8 0.583 1.54 5.36 94.2% 46154 2961218
0.99 44.998097 45.0 0.683 1.73 3.85 95.1% 46936 15027284
0.995 51.929568 51.8 0.718 1.78 3.44 95.1% 44013 29584593

CI Relative Precision = 3%

p xp Avg. ỹp(n
′) Avg.

∣∣Bias
[

ỹp(n
′)
]∣∣ H

Avg. CI Rel.
Prec. (%)

CI Cover. m n

0.95 28.90372 28.9 0.295 0.761 2.64 96.0% 87874 5631307
0.99 44.998097 45.0 0.445 1.127 2.50 95.2% 65422 20942986
0.995 51.929568 51.9 0.499 1.255 2.42 95.3% 56976 38295547

As for the AR(1) process, the warm-up period for this process is also pronounced. For all three precision

requirements, the average lengths of the warm-up period for estimating the 0.95, 0.99, and 0.995 quantiles

were 7,333, 7,649, and 7,669, respectively.

The marginal c.d.f. FX(·) of the M/M/1 queue waiting times is markedly nonnormal, having an atom

at zero (that is, a nonzero probability mass at zero) and an exponential tail. This characteristic induces

a positive skewness in the batch quantile estimators (1) that significantly distorts the behavior of the

conventional sectioning-based CI given by Equation (4), resulting in coverage probabilities significantly

below the nominal level 1−α .

Table 2 shows that for both precision levels, Sequem’s sampling efficiency was good. In the case of

no precision requirement, Sequem delivered the point estimator ỹp(n
′) of xp with average absolute biases

of about 0.6, 0.7, and 0.7 for the 0.95, 0.99, and 0.995 quantiles, respectively. Moreover in the case of

no precision requirement, Sequem delivered nominal 95% CIs for the 0.95, 0.99, and 0.995 quantiles with

respective coverages of 94.2%, 95.1%, and 95.1%, respective average relative precisions of 5.4%, 3.8%,

and 3.4%, and respective average sample sizes of about 3 million, 15 million, and 30 million. From the

recent technical report of Alexopoulos et al. (2015) containing the formal algorithmic statement of the

latest version of Sequest as well as some relevant numerical results, we see that to deliver a 95% CI for the

0.95, 0.99, and 0.995 quantiles in the case of no precision requirement, Sequest respectively required on the

average sample sizes of 10 million, 32 million, and 47 million, with corresponding coverage probabilities

of 95%, 90%, and 86%, respectively. Therefore in this especially difficult test process, Sequem achieved

a substantial reduction in total sample size while maintaining much closer conformance to the nominal

coverage probability compared with Sequest.
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With a relative precision requirement of 3%, Sequem’s point estimators of the 0.95, 0.99, and 0.995

quantiles had average absolute biases of about 0.29, 0.44, and 0.50, respectively. Moreover, Sequem

delivered nominal 95% CIs for the 0.95, 0.99, and 0.995 quantiles with respective coverages of 96.0%,

95.2%, and 95.3%, respective average relative precisions of about 2.6%, 2.5%, and 2.4%, and respective

average sample sizes of about 5.6 million, 21 million, and 38 million.

3.3 M/M/1/LIFO Queue-Waiting-Time Process

The next test process was the sequence of queue waiting times for the M/M/1/LIFO queue, with customers

in the queue being served in last-in-first-out (LIFO) order, an empty-and-idle initial condition, arrival rate

λ = 1.0, and service rate µ = 1.25. In steady-state operation this system has a server utilization of ρ = 0.8
and a mean queue waiting time of ω = 3.2. The M/M/1/LIFO queue-waiting-time process was selected

for two reasons: (i) unlike the two previous test processes, the autocorrelation function for this process

does not decline in magnitude geometrically fast with increasing lags; and (ii) the process has a highly

nonnormal marginal distribution that significantly distorts the behavior of the conventional sectioning-based

CI (4), resulting in coverage probabilities significantly below the nominal level 1−α .

Table 3 shows the results of applying Sequem to 1000 replications of this process. We computed the

“exact” value of each selected quantile xp = F−1
X (p) as follows: (i) we numerically inverted the Laplace

transform of the steady-state marginal c.d.f. FBFIFO
(·) of a busy period in the M/M/1 queue with the same

arrival rate λ and service rate ω (Kleinrock 1975, Equation (5.144)) using the Euler algorithm of Abate

and Whitt (2006); (ii) we combined the relation FX(x) = (1−ρ)+ρFBFIFO
(x) for x≥ 0 with the result of

(i) to compute a piecewise-linear approximation to FX(x) for 0≤ x≤ 75 in increments of size ∆x = 10−3;

and (iii) we inverted the result of (ii) to yield an estimate of xp with high accuracy.

Table 3: Performance of Sequem-delivered point and 95% CI estimators of the p-quantile xp of the

M/M/1/LIFO queue-waiting-time process described in Section 3.3 based on 1000 replications.

No CI Precision Requirement

p xp Avg. ỹp(n
′) Avg.

∣∣Bias
[

ỹp(n
′)
]∣∣ H

Avg. CI Rel.
Prec. (%)

CI Cover. m n

0.95 14.4052 14.4 0.307 0.871 6.06 96.4% 3240 208045
0.99 49.5819 49.6 0.902 2.51 5.07 97.0% 3242 1038381
0.995 71.8438 71.8 1.166 3.26 4.54 97.2% 3105 2088031

CI Relative Precision = 2%

p xp Avg. ỹp(n
′) Avg.

∣∣Bias
[

ỹp(n
′)
]∣∣ H

Avg. CI Rel.
Prec. (%)

CI Cover. m n

0.95 14.4052 14.4 0.104 0.261 1.81 95.4% 23645 1513981
0.99 49.5819 49.6 0.370 0.888 1.79 94.1% 17230 5514620
0.995 71.8438 71.8 0.537 1.29 1.79 94.3% 13134 8827362

Table 3 shows that for both precision levels, Sequem’s sampling efficiency was good. In the case of

no precision requirement, Sequem delivered the point estimator ỹ0.95(n
′) of the 0.95 quantile with average

absolute bias of about 0.3 and average sample size of about 208,000 when estimating the true value

x0.95 ≈ 14.4; on the other hand, the Sequest method in Alexopoulos et al. (2015) required on the average

about 500,000 observations to deliver a 95% CI for x0.95 from this process. Therefore in this case Sequem

achieved about a 58% reduction in total sample size compared with Sequest.

Similarly in the case of no precision requirement, Sequem delivered the point estimator ỹ0.99(n
′) of

the 0.99 quantile with average absolute bias of about 0.9 and average sample size of about 1 million when

estimating the true value x0.99 ≈ 49.6. In the no precision case, Sequem delivered CIs for the 0.95, 0.99, and

0.995 quantiles with respective coverages of 96.4%, 97.0%, and 97.2%, and with respective average relative

precisions of 6%, 5%, and 4.5%. For the case of nominal relative precision of 2%, Sequem delivered CIs

for the 0.95, 0.99, and 0.995 quantiles with respective average relative precisions of 1.8%, 1.8% and 1.8%,

and with respective coverages of 95.4%, 94.1%, and 94.3%. We judged the corresponding average sample

sizes of about 1.5 million, 5.5 million, and 8.8 million to be reasonable. For this test process, some current
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quantile-estimation procedures fail to deliver useful estimators of xp for any value of p ∈ (0,1) (Bekki et

al. 2010).

4 CONCLUSIONS

This article describes Sequem, a fully sequential procedure for computing improved point estimators and

CIs for steady-state quantiles of a simulation output process. The CIs are designed to meet user-specified

criteria related to their coverage probability and absolute or relative precision. A preliminary evaluation

of Sequem based on three output processes designed to “stress-test” the procedure revealed that Sequem

was competitive with existing methods for estimating steady-state quantiles, including Bekki et al. (2010),

Chen and Kelton (2006), and Heidelberger and Lewis (1984).

Future work on Sequem will focus on the following threads: (a) a thorough sensitivity analysis of the

performance of Sequem with respect to the procedure’s parameters; (b) a detailed performance evaluation

based on an expanded suite of problems that includes all the processes in Tafazzoli et al. (2011); (c) the

incorporation of effective data management techniques; and (d) the simultaneous estimation of multiple

quantiles.
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