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ABSTRACT

Agent-based Modeling and Simulation has become a mainstream tool for use in business and research in

multiple disciplines. Along with its mainstream status, ABMS has attracted the attention of practitioners

who are not always comfortable developing software in Java, C++ or any of the scripting languages

commonly used for ABMS frameworks. In particular, animal behavior researchers, or ethologists, require

agent controllers that can describe complex animal behavior in dynamic, unpredictable environments. But

the existing solutions for simplifying the description of agent controllers are inadequate for that challenge, so

we present Pickle, an ABMS platform that generates complete simulations and agents using behavior-based

controllers from simple XML file descriptions.

1 INTRODUCTION

Ethology, the science of studying animal behavior, can be a time-consuming occupation. Ethologists spend

hours observing animals, sometimes in the lab and sometimes in the field. They use a notebook to record

their observations in minute detail, and then translate those observations into an ethogram, or a graphical

depiction of the animal’s behavior that resembles a finite state machine or Markov model.

This is a difficult and a time consuming process, and when the ethologist uses an executable model -

a piece of software that runs in a simulated environment - as a research tool, the task becomes even more

difficult (Balch, Dellaert, Feldman, Guillory, Isbell, Khan, Pratt, Stein, and Wilde 2006). The ethogram

would have to be programmed by hand into executable code in a programming language, like Java or C++,

that targets a particular simulation platform such as Repast (Ozik and Collier 2014) or MASON (Luke,

Cioffi-Revilla, Panait, Sullivan, and Balan 2005). This is not only time and labor intensive,, but could also

present significant problems for animal researchers who are not experienced programmers. We believe

this presents an opportunity to simplify or even automate the process of producing executable models of

animal behavior.

The research fields of multiagent systems and model-driven engineering have provided some approaches

to simplify controller generation by constructing toolkits that automatically generate agent controllers from

visual specifications. Some frameworks, like the Agent Modeling Platform (AMP)(Parker 2015) for Eclipse,

allow users to visually construct hierarchical controllers that specify sequences of actions for agents to

take and conditions under which they should execute them. Unfortunately, these sequential approaches are

often inadequate for describing the behaviors of living creatures in dynamic, unpredictable environments.

Repast Simphony features the Statecharts modeling tools, which allow a user to graphically depict states

and transitions between them, but the actual behavior functions of each state must still be hand-coded by

the developer (Ozik and Collier 2014). Other frameworks, such as easyABMS(Garro and Russo 2010)
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or INGENIAS(Pavón and Gómez-Sanz 2003) use the Unified Modeling Language (UML) or a similar

software-oriented modeling language to allow users to visually diagram an agent in terms of views and

relationships. But UML is not likely to be a familiar language for animal behavior researchers, who would

benefit from an intuitive interface that more closely resembles the ethogram depictions that they already

use. NetLogo is a very popular simulation framework that explicitly targets non-programmers(Wilensky

2015). NetLogo has a full-featured GUI interface, but its models must still be programmed using Logo, a

functional programming language. Furthermore, its model-sharing functionality is based on pre-compiled

applets, a dead technology, for which NetLogo has not yet found a suitable alternative (Tisue and Bertsche

2015).

In this paper we present Pickle, an agent-based modeling framework that uses behavior-based robot

control architectures as a basis for describing agent controllers. Behavior-based models, also known as

hybrid controllers, incorporate the advantages of sequential and UML-based controllers, while overcoming

many of their shortcomings. Similarly to sequential controllers, behavior-based controllers allow agents to

operate under different rules in different circumstances, but whereas sequential controllers are tied to rigid

sequences of actions, behavior-based controllers allow for emergent behavior driven by a stream of input

from their sensors. This allows them to be more adaptable to changes in their environment.

Pickle simulations use semi-structured data files to describe not only the simulation parameters, but also

the agents themselves, including their behavior controllers. This allows the entire simulation to be not only

machine readable, but machine writable. This means that we can arbitrarily modify semi-structured data and

even randomly generate controllers from scratch, given a schema description of what those controllers should

include. It also means that entire simulations and agents may be serialized for transmission, collaboration

and storage, independently of the source code for the simulation environment in which they run.

Finally, we have designed Pickle to be easily extendible by experienced programmers, able to be run

on multiple simulation kernels, and explicitly capable of supporting automatic generation and modification

of agent XML descriptions.

2 PREVIOUS WORK

2.1 BioSim

In previous work with the BioSim platform, we detailed methods for dynamically generating controllers

from semistructured data descriptions by generating and compiling Java source code on the fly(Medina,

Hybinette, and Balch 2014). We accomplished this through the use of XSLT transformations to produce

the text of the source code, and then invoking the Java ClassLoader to compile the code and inject it into

an already running environment. This entire process was controlled by a dynamically generated ANT build

script, and we used the Java Architecture for XML Binding (JAXB) to generate a document object model

for our controllers, which allowed us to randomly generate and arbitrarily modify our XML controller

descriptions.

The Java source code that was generated was specifically targeted for the BioSim modeling and

simulation framework, which uses the MASON simulation kernel and the Clay robot control architecture

library(Balch 1998).

While these efforts were successful and promising, the present work improves upon them in several

important ways. First our approach to BioSim became complicated because it was necessary to overcome

inherent limitations in the simulation framework. Second, the BioSim framework required pulling together

different technologies in sometimes counterintuitive ways. For instance, in BioSim there is no explicit

support for a sense-think-act cycle with a separation of concerns between each step in the cycle.

By designing Pickle from the ground up with separation of concerns and explicit support for sense-

think-act agents in mind, we are now able to specify not just controllers, but entire agents, including body

attributes, sensors and actuators using XML. Rather than generating and compiling code at runtime, we

195



Medina and Hybinette

can simply use the XML specification to populate instances of Pickle classes and carry out the internal

wiring of those classes.

2.2 SASSY

Our use of a middle translation layer to maintain separation between the application layer and the simulation

kernel has been partly inspired by previous work on the SASSY Agent-based Modeling and Simulation

framework(Hybinette, Kraemer, Xiong, Matthews, and Ahmed 2006). SASSY uses a middle-layer API to

wed an ABMS framework to a high-performance Parallel Discrete Event Simulation (PDES) kernel. But

SASSY was never intended to be a multi-kernel architecture; it essentially provides its own application

layer and its own PDES kernel. Furthermore SASSY has no support for serializable agents; a SASSY user

would need to be a capable programmer to create an application. Pickle has been designed with the intent

to function on multiple kernels, given appropriately written Simulation Drivers for each kernel. In future

development, we intend to incorporate more high-performance elements into Pickle, such as a middle layer

that can use GPU acceleration for massively parallel agent computations.

2.3 MissionLab

Our controller model, and the field of behavior-based robotics in general, owes a particular debt to

the work of Ronald Arkin, who formalized much of its groundwork. Along with Douglas MacKenzie

and Jonathan Cameron, Arkin produced MissionLab, a robotics simulator that uses behavior-based robot

controllers (MacKenzie, Arkin, and Cameron 1997). MissionLab features a graphical user interface to

specify the robot controllers, which produces code in the Configuration Description Language (CDL), a

domain-specific language developed specially for MissionLab. CDL describes high-level features of robot

controllers, including behavior primitives and how those primitives combine to form assemblages, but it

does not define the implementation of behavior primitives themselves. Rather it presumes that the CDL

primitives will be bound to some existing library of primitives designed for a particular physical platform.

This makes sense for MissionLab, since the intent was to compile a robot controller, test it in a simulated

environment, then take that same controller and put it onto an actual robot.

Pickle extends on these ideas in three ways. First, we abandon the use of special purpose domain-

specific languages in favor of semi-structured data representations, or XML in our case. This allows us to

maintain a language-neutral environment, and also makes our controllers completely machine generatable

and modifiable, a feature that is not easily supported with a domain specific language.

Second, Pickle allows users to create and modify an agent’s sensors and actuators as part of the XML

description. In MissionLab, sensor and actuator hardware are simulated through a server application, which

supports very specific models of hardware sensors and actuators which may be found on the target hardware

robotics platforms. By removing the strict dependency on hardware availability and describing sensors and

actuators in terms of other Phenomena (anything that is perceivable through a Sensor) in the simulated

world, Pickle offers a set of capabilities better suited towards an ABMS for animal behavior research.

Finally, MissionLab is based around the idea of specifying teams of robots that work together toward a

common goal. But for animal behavior research, it is just as necessary to specify agents that will be working

at odds, as in a predator and prey scenario. As such, while MissionLab offers no support for complex

behaviors such as killing, consuming or otherwise removing agents from the world, Pickle supports these

actions directly through its actuators and Simulation Driver model.

3 BEHAVIOR-BASED CONTROLLERS

Agent-based Modeling and Simulation is an M & S approach that uses autonomous software processes to

generate emergent behavior and complex systems. These autonomous software entities are called Agents,

and their defining feature is that they follow a “sense-think-act” operational life cycle. At a given step of

a simulation, an agent takes input from its environment (sensing), processes it in some manner (thinking)
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subordinate processes like path planning and map-

ping, as necessary. Unlike reactive controllers, there

is typically a lot of computation between the sensor

input and the motor output.

and uses the result to enact some change in its environment, such as moving within it, or modifying its

state (acting). Defining the middle part, think, is crucial to agent development, and constitutes what is

typically referred to as the control architecture of an autonomous agent.

Much of the research around agent control architectures has emerged from the robotics community.

Over the last several decades, robot control architectures have gone from hierarchical controllers, which

are plan-intensive and deliberative, to lightweight and dynamic reactive controllers. Later, the emergence

of behavior-based controllers combined the two previous approaches.

In a hierarchical controller, a task is broken down into subtasks and distributed to subcomponents of

the architecture. (See Fig. 2). Several successful robots from the 1970’s followed this method, such as

Shakey built at Stanford Research Institute (SRI).

Like ABMS agents, deliberative robot architectures operate on a sense-think-act cycle. And like every

other attempt at agent controller generation, deliberative architectures are confined to a single decision-tree

pattern of processing the sensor input and selecting an appropriate output for the actuators. But these

hierarchical planners proved to be very cumbersome. They were too resource intensive for the early

hardware on which they ran, and they were not able to adapt well to highly dynamic environments.

In the early 1980’s, some roboticists started using so-called “reactive” controllers. These emphasized

a tight coupling between sensor inputs and actuator outputs, with minimal planning or deliberation in

between (See Fig. 1). In a reactive view, the presence of a ‘god-like’ controller is both unnecessary and

ineffective in generating robust behavior. This point of view is summarized well in Rodney Brooks’ 1987

memo “Planning is just a way of avoiding figuring out what to do next”(Brooks 1987).

Brooks later developed the Subsumption architecture, which inverted the flow of information in the

controller. Rather than flowing from top (a master controller) to bottom (subordinate processes) as in

an hierarchical controller, a subsumption architecture operates from bottom to top. Specifically, rather

than just one master process, sensor inputs are consumed by many independent processes. Each of these

processes perceived information according to its own rules. The results are then passed along to higher

order processes, which subsume those micro decisions by either accepting or overriding them.

Behavior-based architectures represent a compromise between the hierarchical and subsumptive ap-

proaches. They take the notion of bottom-up information flow from subsumptive controllers, combined with

the representational world knowledge and ‘sense-think-act’ approach of hierarchical controllers, to create

planning robot controllers that can adapt to uncertain and dynamic physical environments. We use Arkin’s
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Figure 3: An example of a hypothetical hybrid controller. A temporal coordinator, or finite state machine,

controls the behavior of the agent, while each state of the machine is a reactive controller, or behavioral

assemblage.

Theory of Societal Agents as a conceptual model for our behavior-based experiments(Arkin 1998). This

model itself derives from Marvin Minsky’s Society of Mind(Minsky 1988), which envisioned intelligence

as a phenomenon that emerged from a society of competing and cooperating interests.

4 SYSTEM DESIGN

In this section we will describe the overall system design of the Pickle agent-based platform. Later, we

will discuss specific details about its implementation.

4.1 Design Objectives

When designing Pickle, we had three design objectives for our modeling framework: first, it must have

explicit support for sense-think-act agents. This paradigm is fundamental to collaborative biological, and

simulation & modeling research, and our framework must enable researchers to create and modify both

sensors and actuators easily. It should also be easy to connect them through a controller, while maintaining

a consistent interface between sensors, actuators and controller.

Second, the same separation of concerns between sensors, actuators and controller should be a feature

of the entire framework. The simulation kernel itself should have a consistent interface to the application

layer, and the configuration layer, which comprises the XML descriptions, should be loosely coupled with

the application layer. This will enable future support for multiple simulation kernels, visualization methods

and semi-structured data representations.

Third, everything must be serializable. Full serializibility enables both the collaboration of non-

programmers, and the automatic generation of agents. To enable the collaboration of non-programmers,

there must be a way for agent and controller definitions to be generated, stored and shared independently

of the executable source code that is used to actually run them.
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Figure 4: A description of the pickle taxonomy. Agents are distinguished from other Phenomena by the

presence of Sensors, which consume information about the simulated environment, Actuators that effect

changes to the environment, and a Controller that binds sensors with actuators.

4.2 Taxonomy of a Pickle Simulation

The notion of a physical world in which agents can perceive objects, process those perceptions and then

take actions to effect change in their physical environment is central to Pickle and to agent-based modeling

and simulation as a whole. In a Pickle simulation, anything that is perceivable through a sensor is called

a “Phenomenon”. Phenomena also have bodies with sets of free-form attributes such as size and color.

There are two basic types of Phenomena: Obstacles, which are inanimate objects and Agents, which are

animated through a sense-think-act cycle. The things that set an Agent apart from any other Phenomenon

in a Pickle simulation are: Sensors, which collect data about neighboring Phenomena, Actuators, which

attempt to modify the simulated world in some way, and a Controller, which connects the Sensors to the

Actuators. A diagram of the Pickle Taxonomy is depicted in Fig. 4.

4.3 Sensors

Every agent has a set of sensors that collect information about nearby Phenomena in the simulated world

and pass that information on to the Controller. For example, a simple sensor might return all Phenomena

within a certain distance from the sensing agent’s current location. But there are several ways that we can

refine that information. First, it is probably more useful for a sensor to return information about a particular

type of of Phenomenon. For instance, a minnow might have a sensor dedicated specifically to detecting

predators, like sharks, another sensor dedicated to other minnows, and still another sensor dedicated to

obstacles like coral reefs. In Pickle this is accomplished by defining a list of filters for each sensor.

Another way in which we can filter the information returned by a sensor is by specifying an active

region for the sensor. Every sensor has an active region that is essentially a pie slice with respect to the

sensing agent. Phenomena that fall within the pie slice are perceived by the sensor, while those that fall

outside the pie slice are ignored. Whenever a sensor is activated, resulting data is passed to the behavior

controller, which in turn activates the agent’s actuators.

4.4 Actuators

For an agent to interact with its environment, it must have actuators. These allow the agent to move through

the environment, to grab or eat other agents, and to modify the state of their environment in any meaningful

way. Actuators receive their instructions from the agent’s controller as a list of Action objects, each of

which is marked as belonging to one of the agent’s actuators.
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For example, a Navigation Action marked with the name of the agent’s navigation actuator will contain

a vector that is given to the actuator. The Navigation actuator in turn makes a request to the Simulation

Driver to move its owning agent to a point in space specified by the vector.

4.5 Controller

A Pickle Controller is a memoryless finite state machine that binds sensors to actuators. It does this by

consuming sensor data (a list of items called Perceptual Schemas) provided by the agent’s sensors, and

producing a list of actions which are processed by the agent’s actuators. A Controller is basically a set of

schemas, each of which subscribes to exactly one Perceptual Schema. The use of the Schema nomenclature

comes from our previous work in BioSim, and more broadly from the work of Arkin and Arbib(Arbib

2003).

By “memoryless” we mean that at any given step (event or time based), the result of the controller

computation depends only on its sensor inputs for this step, and not on any previous steps. This creates

some limitations for our agents. For instance if a predator is closing in on a prey, and the prey moves

outside of the predator’s sensor range, the predator has effectively forgotten about the prey and will stop

tracking it until it comes back into its sensor range.

When a Perceptual Schema arrives at the Controller, the Controller Schemas are polled to see if any

of them subscribe to it. If so, that Controller Schema is “fired” by which we mean that it is given the data

attached to the Perceptual Schema as input, and called upon to produce some result.

For example, an agent may be attracted to a resource such as a food pellet. Such an agent will have a

sensor which detects nearby food pellets. When that sensor detects a food pellet, it sends a reference to

the nearest pellet along with the pellet’s point in space relative to the agent. This sensor data is identified

in the controller as a Perceptual Schema called “nearestPellet”. The controller would then have a schema

that subscribes to the “nearestPellet” Perceptual Schema, that when fired, would produce a vector pointing

toward the food pellet. That vector is then passed along to the agent’s Navigation Actuator, which asks

the Simulation Driver to move the agent accordingly.

4.6 Motor Schemas

In fact, this describes a Motor Schema, which is one of three kinds of Controller Schemas, each of which is

distinguished by the kind of result it is expected to produce. Motor Schemas produce a vector, which signals

a desire to move the Agent in some corresponding direction, with a given magnitude. Motor schemas are

defined by the Perceptual Schema that they react to, the type of reaction, either ‘attraction’ or ‘repulsion’,

the response curve of the reaction, which is ‘linear’, ‘quadratic’ or ‘exponential’, and a weight value or

priority value, to be used by its Coordination Operator.

4.7 Action Schemas

An Action Schema is tied directly to one of the Agent’s non-navigation actuators. When an Action Schema

is fired, it sends the corresponding sensor data to the Actuator. If the Shark has an Action Schema called

“chompMinnow” that is tied to a Chomp Actuator, the sensor data (i.e. the x and y coordinate, or “Point”

in shark-space and the reference to the minnow itself) are sent to the shark’s Chomp actuator, which in

turn can tell the Simulation Driver “I want to chomp this minnow”.

It is important to note here the Simulation Driver’s role as an arbiter of the simulated world. An agent

may signal a desire to eat another agent, and the Simulation Driver may either act accordingly or, with

some random probability allow the prey to escape.
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4.8 State Change Schemas

Motor Schemas and Action Schemas are grouped together in the Controller as a unified state called an

Agent Schema. An Agent Controller may have multiple Agent Schemas, along with a way to transition

in and out of these states. This brings us to Pickle’s third kind of Controller Schema, the State Change

Schema. Each State Change Schema belongs to an Agent Schema and is also bound to some other Agent

Schema. When fired, a State Change Schema changes the currently active state from the Agent Schema

to which it belongs, to the Agent Schema to which it is bound.

A controller is a finite state machine, consisting of discrete states and transitions between those states.

At each step, sensor data is ingested by the controller. First, State Change Schemas are checked against

the sensor data, and if one is fired, then the active Agent Schema changes immediately. Next the Motor

Schemas are checked, and produce a result vector. Finally, the Action Schemas are checked. Once the

Action Schemas have returned their results, they are put into a list along with the navigation vector and

passed to the actuators for action.

4.9 The Navigator

In the controller, Motor Schemas are grouped hierarchically into an abstract syntax tree, where the Motor

Schemas are the leaf nodes and Coordination Operators are the interior nodes.

Every node of the Navigator produces a vector. Motor Schemas (the leaf nodes) produce vectors when

fired as detailed above. If a Motor Schema is not fired, it produces a zero vector. Weighted sum operators

evaluate all of their children and scale their output according to a weight value assigned to each child, and

return the vector sum of all of them. Priority, or subsumption operators, evaluate their children and choose

exactly one result to return. The choice is made by assigning a priority to each child, so that the child that

has both fired and has the highest priority is selected as the result vector.

For example, imagine a scenario with a shark that currently sees two things in its environment: a minnow,

to which it is attracted, and an obstacle, from which it is repulsed. With a summation coordination operator,

the attractive and repulsive vectors are summed into a result vector which, over successive time steps will

guide the shark around the obstacle and toward the minnow, as demonstrated by Arkin. Alternatively, the

subsumption operator will completely suppress the output of one schema in the presence of another schema.

So in the above example, the repulsive vector would be completely disregarded in favor of the attractive

vector toward the minnow. The end result could be that the shark takes a more direct route toward its prey,

or that it stumbles blindly into an obstacle.

A more practical use of the subsumption operator can be given in the implementation of Boid mechanics.

In Boid mechanics, agents attempt to maintain an ideal distance between each other in a flock. This comes

from the artificial life research of Craig Reynolds(Reynolds 1987). Boid agents have an inner zone and an

outer zone and neighboring agents will try to stay within the outer zone without entering the inner zone and

risking a collision. This can be implemented using a subsumption operator as follows: agents have both

an inner zone sensor and an outer zone sensor. While the outer zone sensor fires, the agents are attracted

to their neighbor, but as soon as the inner zone sensor fires, it suppresses the attraction to the neighbor and

returns only a repulsion from the neighbor.

4.10 The Simulation Driver

With so many autonomous processes roaming throughout the simulated world, the need for an arbitrator,

or referee becomes apparent. This is the job of the translation layer, or Simulation Driver. When agents

use their actuators to effect some change in the simulated world, they send the request to a simulation

driver, which collects actuator requests from all the agents in a particular timestep, and may or may not

implement those requests in the simulated world. The simulation driver is in charge of arbitrating collision

detection between both agents and inanimates, maintaining the physics of motion for the agents, deciding
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Figure 6: A high-level view of Pickle’s architecture.

Pickle is essentially an application layer that reads

input from a Configuration Layer consisting of XML

descriptions for simulation parameters, Agents and

Controllers. It uses a set of drivers as a translation

interface to run on multiple simulation kernels.

who gets eaten and who escapes. The use of a single layer for this task supports our notion of loose

coupling between the simulation kernel and the application layer.

5 IMPLEMENTATION

5.1 Scala and XML

We have written our prototype implementation of Pickle in the Scala programming language, a hybrid

object-oriented and functional language that compiles to produce bytecode for the Java Virtual Machine.

Scala enables us to define all of our agents’ behaviors at runtime while keeping a relatively small and

manageable code base. We exploit its functional programming features to both enable a thin programmer

user interface, and to dynamically generate anonymous functions. While the same end results are possible

in a pure Java implementation, (i.e., anything in Scala has an equivalent implementation in Java), such an

implementation would require thick, intrusive interfaces, hand written code and result in a code base that

is more bloated and less maintainable and extendable than our Scala implementation.

Furthermore, our prototype implementation uses XML (Extensible Markup Language) as the semi-

structured data format to serialize simulations, agents and controllers. While it is convenient that the Scala

programming language features native support for creating and parsing XML as literal values, there is no

reason why a similar implementation could not support JSON or any other semi-structured language as

well, and this is an extension that is marked for future work.

5.2 Sensor implementation

In practical terms, a sensor is a curried lambda function, generated at runtime that queries a data structure

maintained by the simulation kernel and accessed through the Simulation Driver. When the sensor is

initially created, it is given a list of filter functions and a numeric range with offset angles to define the
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range of the sensor, or its effective “pie slice.” When it is called, the function is provided with the current

position of the calling agent.

Each filter is an anonymous Boolean function. For instance a filter that returns all minnows within the

given range would be type= “Minnow”, which performs a string comparison on the perceived Phenomenon’s

type value. Similar comparisons can be made on any of a Phenomenon’s attributes. So for example, if an

agent needed a sensor specialized for all green food pellets versus all red food pellets, or all minnows of

size greater than 5, this would be specified in the XML as a Sensor with two filters: one that matches on

the type (“minnow” or “food pellet”) and one that matches on the attribute (“color = green”).

The pie slice region can be defined in the XML as a center angle relative to the agent’s straight-ahead

or 0◦heading. It has a left-offset to define the inner-angle of the left edge of the pie slice with the center

and a right-offset for the right edge. Finally, it has a range parameter to specify the radius from the agent’s

center.

5.3 Simulation Kernel

We have implemented our prototype driver to support the MASON simulation kernel from George Mason

University(Luke, Cioffi-Revilla, Panait, Sullivan, and Balan 2005). MASON operates on a single thread

that uses a time-stepped event queue to poll the agents in the simulation sequentially. But we should

reiterate that the design of Pickle is not restricted to either time-stepped or being single threaded, it allows

for both Discrete Event Simulation, or a multithreaded Process-based Simulation. Pickle simply inherits

the simulation paradigm of the implementation of the Simulation Driver.

When polled and given sensor data, Pickle Agents use their Actuators to send requests to the Simulation

Driver. This may be a single-thread that manages the underlying event queue and environment data structures,

or it may be a thread manager that dispatches requests to a subordinate process running in parallel. In

a Pickle simulation, the application remains insulated from the implementation details of the underlying

kernel.

5.4 Visualization

Currently, we use MASON’s built-in Java Swing-based visualization layer to view our simulations. This is

just a convenient stopgap decision. Our future plans are to implement a WebGL-based visualization layer

for viewing the simulation as well as for designing the Agent XML. In fact, our next iteration of Pickle

will be an entirely web-based application, in which the engine described here is run from a server, and

sends positional data to a client, which renders the visualization remotely.

6 INITIAL PLATFORM EXPERIMENTS

For an initial stage of testing, we evaluated the success of Pickle in terms of its ability to generate a

variety of intelligent agents correctly from the XML descriptions as described above. We also compared

the complexity of Pickle’s XML descriptions against the complexity of Java-based examples of similar

scenarios in Repast and MASON. We did this by building two scenarios, a terrestrial navigation simulation,

suitable for land-bound animals like ants, and an aquatic simulation suitable for studying swarming and

schooling behaviors. Next we ran the simulations to check the agent behaviors for correctness. Correctness

is evaluated by observing whether the specified behavior generates the expected behavior in simulation

(e.g., if the specification calls for ants to go to green food pellets, do the simulated ants indeed go to

green food pellets in the resulting simulation). Finally, we used the number of lines of code that a user

would be expected to produce as a way to measure the complexity of the solution. We found that in

both scenarios, Pickle yielded correct models of the agent behavior, using a substantially less complex

description compared to handwritten code.

The terrestrial simulation generates a single agent, which navigates through a set of randomly placed

obstacles to arrive at a food pellet. The simulation description, including all agents, their actuators
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Table 1: Results from our initial testing of Pickle. We found that Pickle produced accurate agent behaviors

with less complex code as measured by the number of lines and number of files required.

Scenario 1: Terrestrial Simulation

Framework MASON Repast Pickle

Lines of code 574 299 100

Number of files 5 8 2

Scenario 2: Aquatic Simulation

Framework MASON Repast Pickle

Lines of code 658 697 200

Number of files 6 8 3

and sensors, as well as the obstacles and general simulation parameters is represented by less than 100

lines of XML, and the controller for the agents, which has two MotorSchemas operating within a single

AgentSchema, is represented by just twelve lines of XML. We compared this to the Keep-away Soccer

demo from MASON, which features two mobile agents kicking a soccer ball. This simulation uses 574

lines of Java code in five classes. Similarly, the “Statechart Zombies” demo that ships with Repast occupies

eight files and 299 lines of code.

Our second simulation was an aquatic simulation suitable for studying swarming and schooling behaviors.

It consisted of 30 prey agents with Boid mechanics implemented as described previously, and two larger

predator agents that seek out and consume the prey. This simulation also validated the friction setting of

the simulated world. By setting the friction to a low value, the agents appeared to float in a single direction

until their actuators push them in a new direction. As the simulation progressed, we could see the prey

agents begin to cluster into small schools as they tried to avoid the roaming predators. The controller for

the prey agents consisted of five motor schemas: two to represent the attraction and repulsion of the Boid

Mechanics, one to avoid the predators and one each to avoid obstacles and edges. The simulation and

controllers for both the predator and prey comprised around 200 lines of XML spread out in three different

files. We compared this against the Virus Infection demonstration that ships with MASON and uses similar

predator and prey mechanics with a similar number of agents. The Virus Infection simulation used 658

lines of Java code in six different files. A similar simulation in Repast, the Flock demo, used 697 lines of

code in eight different class files.

A video demonstration of these simulations is available for viewing on Vimeo (Medina 2015).

7 LIMITATIONS AND FUTURE WORK

While our initial testing of Pickle is promising there is much work remaining. Our next step is to use

Pickle as a platform for evolutionary programming, by machine-generating XML controller descriptions

and modifying them as part of the evolution process. With genetic programming we hope to achieve

qualitatively convincing flocking behavior from controllers that evolve for survival in the presence of a

predator.

Writing XML by hand is a fairly cumbersome and error-prone process. Future versions of Pickle will

feature a GUI-based front end for creating the agents, specifying the simulation parameters and generating

the XML. Furthermore, we plan to expand Pickle into a web application, with a WebGL frontend for

both constructing the agents and viewing the simulations. This would allow the application framework

and kernel to be run on a remote server, potentially taking advantage of a high-performance kernel while

allowing researchers to access the platform from cheaper notebooks or mobile devices.

The prototype implementation is not a high-performance framework, and as such does not scale well

to large numbers of agents. We plan to implement a high-performance driver for Pickle in the near future.

204

https://vimeo.com/terrancemedina/introtopickle


Medina and Hybinette

Finally while we are distributing an initial implementation of Pickle there are still features important to

ABMS research that are planned in later releases. For example, there is currently no integrated reporting

feature for tracking simulation results aside from the GUI view. There is also no steering mechanism for

human-in-the-loop changes to the running simulation. These however, will be addressed in future versions

of the Pickle platform.
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