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ABSTRACT

In this tutorial we discuss the use of a recently published statistical procedure for the validation of models
that have their required model accuracy specified @ange, often called the acceptable range of
accuracy. This new statistical procedure uses a hypothesis test of an interval, considérgpedthnd

Typell errors through the use of the operating characteristic curve, and provides the model builder’s risk
curve and the model user’s risk curvi.detailed procedure for validating simulation models using this
interval hypothesis test is given, computer software developed for this procedure is briefly described, and
examples of simulation model validation using the procedure and software are presented.

1 INTRODUCTION

This tutorial describes how to use a new statistical procedure recently published by Sargent (2014) for use
in validating a model against an observable system (or another model). An observable system implies
that data can be collected on the system to compare with the model’s bef#ngsonew procedure uses

a statistical intervabasecdhypothesis test to determine if the difference between a mmaigput and the
corresponding system output is within some range (interval) for a set of experimentabnenditi set

of experimental conditions has a set of values for the set of variables that define the domain of
applicability of a model.) This procedure would be used when conducting operational validity of a
model, which consists afletermining whether anodel’'s output behavior has the required amount of
accuracy fothemodel’s intended purpose over the domain of the model’s intended applicaftlitya
discussion of operational validity, see, eSargent 2013.)

The amount of accuracy required of a model is usually specifiethédoyange within whichihe
difference between a model's output variable and the corresponding system output variable must be
contained This range is commonly known as the model’s acceptable range of accufraleg variabés
of interest are random variables, then properties and functions of the random variables such as means are
often what are of primary interest and are the quantities that are used in determining model validity.
Current statistical procedures that usedtgpsis tests in operational validity only test for a single point
(see.e.g, Banks et al2009) or consider ranges indirectly (see Balci and Sargent 1981, 1982a, 1982b, and
1983). The new statistical procedure uses an interval in its hypothesis test to determine model validity.

Two types of errors are possibledascertainingnodelvalidity via hypothesis testingTypel error is
that of rejecting the validity of a valid model, afgpe Il error is that of accepting the validity of an
invalid model The probability of a Typé&error, g is calledthe modelbuilder’s risk, and the probability
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of Type Il error, g, is calledthe model user’s risk (Balci and Sargent 1981 traditional statistical
applications, both quantities are often specified in advance of any sanplingnfortunatelythis rardy
occursin model validationsoin simulation modeling applications, this desirat@quirement may not be
in effect. In model validation, the model user’s risk is especially important and musipberkell to
reduce the probability that an invalid model is accepted as being vHtids bothType | and Type I
errors must be carefully considered when using hypothesis testing for model validation.

The new statistical procedure for hypothesis testing considersTlypl and Typell errors through
the use of the operating characteristic (OC) curviéhe OC curve is defined as tipeobability of
accepting the null hypothesis when etvenprevails, denoted A/E). The probability ofType | error,
a(E), is 1 —Pa(E) whenE has a value where the null hypothesis is;tere the probability of Typd
error, S(E), is Pa(E) when E has a value where the alternative hypothesis is trilete that the
probabilifesof Typel error,  E), and Typdl error, AE), are both functionsf the evenE. Moreover it
is common practice to specify, avhich is called the significance level of the test, as the maximum
allowable value of the probability of Typerror. (For a detailed discussion on hypothesis testing, Type
andTypell errors, and OC curves, seeg, Hines et al2003o0r Johnsoret al.2010.) Furthermore, the
model builder’s and the model userisk curves can be obtained from the OC curve.

The reminder of this paper is organized into two majotiees plus asmmary. Section giscusses
the statistical proceduréncluding a list of steps to be used in applying the interval hypothesis test in
model validation. Section 3 contains detailed examples regarding the use of the interval hypothesis test in
determining simulation model validity. Section 4 is tammary.

2 STATISTICAL PROCEDURE

21  Operational Validity of a Model Output

We are interested in determining if the meara ahodelks output (performance measuiig)satisctory
for its intendeduseas part of conduittg operational validity of thanodel. We compare the difference
betweenthe mean plof some output variable (performance measure) from the true systetimeame:an
Um Of the corresponding output variable from a model of the system; and we wish to determine whether
the difference betweensjandun, is within the model’s acceptable range of accuracy for that variable’s
mean under the set of experimental conditions sgekcifi

Specifically we want to determine if > um — usis contained in the aeptable range of accuracy.
The acceptable range of accuracy fois@iven by Lfor the lower limit andJ for the upper limit. This
interval L, U) will include the value of zerand often U = —LTheinterval statisticalprocedure will be
used to testhe hypothesis:

Ho L<D<U
VS.
Hi:D<LorD>U.

The closednterval form of the null hypothesisoHs nonstandard in thetatistical literature, which
typically presents kas a simple equality (e.g.,oHD = d for some specifiedl) or an open onsided
interval (e.g.Ho: D < U). The main contribution of the current paper is to illustrete such interval-
based null hypotheses canused in model validation

Test statistics for testing means commonly usetfistribution when the variances are unknown.
We assume that the variances of the model and system outputs are urbunosgual unless stated
otherwise and thus will use thedistribution for our hypothesis testing. This procedure requires the data
from both the simulation model and the system to be approximately Normal Independent and Identically
Distributed (NIID). This can be accomplished in model validation for both the system data and the
simulation model data by using standard methods that are carriéd sintulation output analysis to
obtain approximately NIID data; namely, for terminating simulations, one couldhesenethod of
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replications and for nonterminatingtéadystate) simulationseither the method of replications or the
method of batch means (see, elgaw 2014). Let ny indicate the number of model NIID data values
(observations) andsthe number of system NIID data valueBhet-distribution with theappropriate test
statistic will be used for testing the means of our NIID d&s.mentioned above, botfypel and Type

Il errors are important in model validation and they are considered througisalef OC curnv& The
significance level of the test, for our situation is the maximum af = o(D = L) anday = a(D = U).
Also, letting 4 = (D = L) and & = (D = U), we note thata+ . = 1 anday + fu = 1.

2.2 Statistical Foundation and Notation

As above, we denote the probability of Typaror by a = a(D = L) oray = o(D = U). In addition, for
convenience of exposition, waessume that the simulation model and the system have equal population
variances,j.e.,a? = o4 = g2. Then using straightforward manipulations, we find that the acceptance
regionA for the hypothesis testy is given by T € A where

[ ]
| L/o U/o |
A= |tla,ny+tng—2,———|,t| 1—ay,n, +ng—2,———1]1,
ER 1,1 J
nm nS nm nS

the test statistic

the sample mean of the model values is denoted,iidsample mean of the systeatues is denoted
by S, the pooled variance estimator from thg + ng NIID observations is denoted by

o _ (tn = 1S3+ (n, = 1)S?
= Ny +ng—2 ’

and S2, andS? respectively denote the sample variances of the model and system NIID observations.
Further, the notation(y, k, &) denotes the 10@% quantile of the noncentrabdistribution with kdegrees
of freedom and noncentrality parameig(see, for instance, Hines et 2003), andr = max(«a;, , ay).
We denote the probability of Typeerror by £ = (D = L) or iy = (D = U). Then by definition of
the test statistic T

B = P(Accept b | HofalsewithD=1) =T € A|D=L)
and
Bu=P(Accept B | Hofalse withD=U =P € 4 | D = U).

2.3 Interval Statistical Procedure

We now outline a new statistical procedure for model validation that incorporates the augmented interval-
based null hypothesisTable 1 presentsh¢ explicit stepsneeded to carry ouhe interval statistical
procedure to determine if the mean of a specific simulation model output variable has sufficient accuracy
to satisfy its acceptable range of accuracy for a specific set of experimental cond@tem$. give what

should be determined in the validation processrpncthe start of thdnterval statistical procedure.
Subsection 2.1 contains information regarding both Steps 0 almdStep 2the Initial Sample Res for
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the model and system are sebett The sample data are collected from both the model and system and
analyzed to obtain estimates of the means and variances of the model and system output ofliméerest.
pooled variance estimai® calculated using the two output variance estimates and sample sizes.

Step 3 involves investigating the traolé-for different values ofx andf at both LandU regarding
the model buildés and model user’s risk curves; the purpose of the investigattorsedect thegs values
for L andU to be used in the hypothesis teStep 4 concernthe evaluation ofample sizes larger than
the Initial Sample Sizes with respect tioeir effecs on the model builder's and model user’s risk curves
to select the Final Sample Sizes to be used in thethgpis test

Step 5involves collecting additional data as determined in Step 4 and analyzing all of the collected
data to obtaimverall estimates of the means and variances ahttel and system outputs, as well as an
updatedpooled variancestimate.Then using these new estimatéise hypothesis test acceptance region
and test statistiare calculatedand the rik curves aree-calculated Next wedetermine ifthe test statistic
falls within or outside of the acceptance region to ascertain whether ghenahodel is invalid or
accepted as valid for this specific test with the risks as shown by the final risk curves.

Table 1: Interval statistical procedure.

Step 0: Model Validation Formulation
e Determine the performance measure to be tested.

e Specify the acceptable range of accuracy, includiramdU for the performance measure that is to| be
tested.

e Give the experimental condition that is to be used for the test.
e Select the validation test to be used.

Step 1: Interval Validation Hypothesis Té&strmulation
e Give the statistical hypothesis to be tested.
e lect the statistical test to use.

Step 2: Initial Sample and Analysis
e Select Initial Sample Sizes for the model and system.
e Collect the sample data.
e Analyze the sample data to obtain model and systean and variance estimates for the hypothesis test.
e Calculate the pooled variance estimate.

Step 3: InvestigatAlphaBeta Tradeoff
e Select the beta values fordndU to evaluate, noting that &« =1 atL and at U
e Calculate the risk curves using the pooled variance estimate from Step 2 andlies/selected.

e Evaluate the tradeffs between the model builder's and the model user’s risk curves for différent
values.

e Select thep values forl. andU to use in the hypothesis test.

Step 4: Investigate Sample Sizes
e Evaluate the model builder's and the model user’s risk curves using different (larger) sample sizes than
the Initial Sample Sizes. Sample sizes should be selected from a set of feasible choices. (Note: The
model and system variance estimates calculat&deip 2 are used to calculaach new pooled variange
estimate for the increased sample sizes used for developing each new set of ristoctineeimcreased
sample sizes.)

e Determine Final Sample Sizes.

Step 5: Conduct Hypothesis Test
e Collect additionhsamples if sample sizes were increased in Step 4.
e |If new samples have been collected, calculate the new samgds andvariance estimates ¢
appropriate, and a new pooled variance estimate.
e Calculate the acceptance region, the test statistic, andnileriSk curves using thselecteds values
from Step 3all sample values, and the appropriate pooled variance.
e Determine the results of the acceptance test:

63



Sargent, Goldsman, and Yaacoub

o If the test statistic falls outside the acceptance region, the model has been determinedalidh
with the risks as shown by thimél risk curves; and so the model needs to be modified.

o If the test statistic falls inside the acceptance region, the model has been determined not to he invalid
with the risks as shown by thimdl risk curves andhus is accepted as valid for this test.

24  Computer Software

Appendix A gives a shippet of R code (R Development Core Team 2008) to illustrate how one calculates
the test statistic ,Tthe pooled variancg? (if o2 is not specified), the acceptance regioofAthe test
statisticT, and the value @8 (&) whend = D — U is specified for the upper case, or wideg D — L is
specified for the lower case. The inputs g&(&), B(U), S, S2,ny, ng, L, andU for the functions (§),

andM andS are additionally specified for the calculation of the test statistic.

3  SIMULATION EXAMPLES

In this sectionwe illustrate our new interval statistical procedure fasimulation model validation via
severalsimulation model example$he interval statistical procedure given in Table 1 will be followed

and we will use hie specially developeadomputer software briefly discussed in Subsection /4.

choosea very simple system to model in our examples as the purpose of the examples is to demonstrate
how the new interval statistical procedure works.

3.1  System and Model Descriptions

The system to be modeled is a sirgdever queueing system with an infinite allowable queith
customers served in order of arrivdlhe performance measure of interest is thamigne for the
costumers to traverse shjjueueing systein steady state(For a discussion on queueing systems and the
gueueingresults used in thisection, see, g., Gross et al. 2008.)The true systemnder study is an
M/G/1 queueing process whose service time distribution is log norited. Poisson arrival process has
an arrival rate of 0.1 per minute and the service time has a mean of 5 minutes, which gives a system
utilization, also called traffic intensity, of 0.9.hesimulation modelhereafter referred to as the ‘model’,
developed for this system is an M/M/1 queueing modlek i, be the mean time of the model,he the
mean time of the system, and D 7 H s be the differencéetween the two mean timgslote: In all of

the cédculations, the system meavill be subtracted from the model mdan purposes otonsistency)

The accuracy required of the ‘mean time’ of thedel is specified by Daving anacceptable range of
accuracyof L =-1.0 andU = 1.0,unless otherwise specifiedVe wish to test the validity of this model
using the interval statistical test for the expentaécondition where the customer arrival rate is 0.1 per
minute and the service time has a mehA minutes.In ourmodel the arrival process is Poisson and the
service time distribution is exponential as our model is an M/M/1 queueing matlel.now have
specified the requirements of Step 0 of the Interval Statistical Prodediable 1.

Thus the arrival processes for the model and the system are identical as are the means of the service
times. The only differencebetween the model and the systemthesservice time distributions whidh
any case have identical mearfg/e note that the log normal distribution used for the system service time
is a twaparameter distribution whereas the exponential distribution used for the model iparameter
distribution.) Alternatively, f we view the true M/G/1 system as another simulation mdbdeh the
examples can be viewed aalidating a simulation model against another simulation model instead of
against a system.

In Step 1 of our Procedure given in Tableng first specify the statistical hypothesis to be tested.
This is the hypothesigjiven in Subsection 2.1Next the statistical test to be used is selectethe twe
samplet-testdiscussed in Subsections 2.1 and 2This test requires NIID observationdVe obtain
approximatelyNIID observations from both the modahd ystemusing the method of batch means as
discussed in Section Z-or both the model and systeme will use a truncation point of 750 customers
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and batch size of 750 customersSample sizes refer tine number of batch meanshich we use as
approximately NIID observations).

3.2 ExampleOne

We nextcarry out Step 2 of the Procedure descrilbbefable 1 as we have completed StepWe select
the Initial Sample Sizes to be = 10 andnn = 15. We collect the NIID observations (batch meanis)
these sample sizes ftre system and ndel. Analyzing the collectediatg we obtainS = 11.645,52 =
1.386,M = 9.888, and’2, = 1.015. Next the pooled variance estimate using the formula in Section 2 is
SZ =1.160.

Moving to Step 3we evaluate the risk curves using differemglues in order to selecty@lues for L
and for Uto use inthe hypothesis testin this examplethe sameg values will be used dt andU. Our
software for thidgnterval statisticalprocedurds used to obtain the risk curves shown in Figures 1 and 2
for g values of 0.4 and 0.5The pooled variance @state obtained in Step 2 ised in calculating these
risk curves. The horizontak)(axis in Figure is (D — L) and in Figure 2 isl¥ — U). (Note, e.g., thahe
value of Dis -1 at the xaxis location of 0 in Figure 1.The model builder’s risk curves atfee curvason
the rightside of zero in Figure 1 (Losv Case Curves) and to the leftzero in Figure 2 (Upper Case
Curves). The modaliser’srisk curves arghe curveon the leftside of zero irFigure 1 and otthe right
sideof zero inFigure 2. The risk curves in Figures 1 and 2 are identical efadpeing ‘reversed the
reason being thahe same values were used foafidfy. (Our examples, unless stated otherwise, will
henceforth us&entical values forand £, and we will present only the Low€&ase Curves becausde
Upper Case Curves are just reversed images dothrer) The risk curves are examined to evalubte t
tradeoffs between the model builder’s risk and the model’'ssisk for different pvalues at LandU.
Based on our evaluation of the risk curves,selecfi. = pu = 0.40 as our value to use in the hypothesis
test for determining validity (Note that this gives.e= auy = 0.60 sinceg+ L =1 and @ + fu = 1.)

Builder and User Risk Cur\ Builder and User Risk Cun
— 0.4
2 2
3 3
© [}
Qo Qo
o o
a a
T T T
-2 1 0 1 2 -2 1 0 1 2
D-L D-U
Fgure 1 Example One fisk curves at L Figure 2: Example Onrisk curves at U

In Step 4 we explore increased sample sizes to determineffees on the risk curvesThe pooled
variance estimate mube calculated for each new set of increasamiple sizesising theperformance
measure variance estimates from Step 2 and the increased sample Gizesoftware was used to
produceFigure 3 which shows the Initial Sample Size risk curves along with the risk curves for sample
sizes of g= 15 andh, = 40, whereS3 = 1.113. (These sets of risk curves are for= py = 0.40 as these
p values were selected in Step Ater evaluating different feasible sample sizes, it was decided tq use n
=15 and p = 40as the sample sizes for the hypothesis test.

In Step 5 the first action required is to collect the addiisampleghat are called for frorstep 4.

We obtain 5 more system NIID observati@ml 25 additionainodel NIID observations (batch means)
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Next we analyze the totamples of 15 system observations and 40 model observations. We atained
11.734,52 = 2.240,M = 9.957, and?, = 1.254. Next we calculate the pooled variance estimate using
the formula in Section 2 to obta$i3 = 1.514. We usethe software program witthe newly calculated
pooled variance estimate of 1.514 to prodtleefinal risk curves shown in Figure 4, along witte
acceptance region for the test statisti¢-—2.436, 2.436)and theTl value of -4.771.Since the value of
the T does not fall within the acceptance region, the null hypothesis is rejected meaning that the
simulation model does not have a mean time output that is accep(@bke.acceptance region can be
calculated forD, which is (0.907, 0.907) and the differenbetweenthe two sample means is 9.957
11.734 = -1.777, which, of course, falls outside the acceptance rég®is consistent with the fact that
the T value falls outside of its acceptanagion.) Thus the model has been determined to be invalid
with the risks aslepictedby the finalrisk curves plotted in Figure 4.

Builder and User Risk Cur\ Builder and User Risk Cun

— nnp[115,ng1110
v [{----- N, 140, n, 115

Probability
Probability

D-L D-L

Figure 3 Example One sample size risk curves.at Figure 4: Example Offieal risk curves atlL.

The reason that this (simulation) model mean time output is not acceptiiaithie service times of
the system server have a larger variance than the service times of the modeWwbde/both havethe
same mean of 5 minutesThe variance of the service time of the log normal used for the system was
42.96. (Note: the parameters of the log normal were (1.11The)true excepted mean time for both the
M/M/1 model and the M/G/1 systeoan be calculate@nd they turn out to b0 minutes for the M/M/1
and 11.8 minutes for the M/G/fgsulting in the mean time for the system to be larger by 1.8 minutes.
We note that the differend? is —1.8 minutesand thus it falls outside thecceptable range of accuracy
for D of L = -1 and U= +1. Thus,this example illustrates the effetttatthe variability of service time
has on the behavior of a queueing systamd therefore variances of service times are extremely
important when investigating queueing systems.

3.3 ExampleTwo

Example Two will illustrate the use of the interval statistical procedure whenriot equal to -U Let
Example Twobe identicato Example One except thiat= -2. For Example Two,Hhis dlows the model
mean time to be acceptable from 2 minutes less ti@syistem mean time up to 1 mialdrger han the
system mean time; thigivesD a range of (-2, 1) as opposed td,(l) in Example OneUsing the same
sample sizes and data observatifstosn Step 2 ofExample One for Example Two causes?, M, S2,
andsS? to havethe same values for both exampldgsing he same falues in Step 3 foExample Two
as were used in Example One results in the s&@keuwvesfor both Examplegxcept that the location of
risk curves forL is shifted because ofi¢ use of different value for L Thus the risk curves showm
Figures 1 and Apply to both Examples excepiatthe value of Don the xaxis of Figure 1 at location 0
for Example Two is —2, hvereas for Example One it was bécause thg-axis of Figure 1 is D —LThe
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value of Don thex-axis in Figure 2 is identical for both Examples One and Two bethesame value
for U is usedin both Examples.

Selectingthe samef valuesfor the hypothesis test in Stepti®at were selected in Example One,
namely f. = fu = 0.40,results inidentical risk curvesor Examples One and Two when both have the
same sample sizes. The only difference in Figure 3 between the risk curves for Exangpénd Twes
the value oD on the xaxis recallirg that thex-axis in Figure 3 is D £. Let us selecin Step 4 the same
sample sizes for the hypothesis test Wateselected in Example One, i.es, 15 and p = 40.

Proceeding to Step 5, the first action is to collect the additgamaples as specified in Stepldet us
use the same additional observations that were used in ExampleT@uas,we obtain the same values
for S, S2, M, S%, andS3 that were obtained for Example On&/e use the software program with the
newly calculated pooled variance estimate of 1.514 to produce theisikaurves shown in Figure 4,
along with the acceptance region for the test statistfe5T111, 2.436)and theT value of —4.771.Since
the vdue of T falls within the acceptance region, the null hypothesis is not rejatieghing that the
simulation model has a mean time output that is accepté@lie acceptance region can be calculated for
D, which is ¢1.907, 0.907)and the difference of the two sample means is 9.957 — 11.7347%7;
which, of course, fadl withinthe acceptance region; this is consistent with the fact that vadugfalls
within its acceptance region.Yherefore,the model has been determined to be valid with the risks as
depicted by the risk curves plotted in Figure 4. Note that the accuracy required of the simulation model in
this example washot as stringent é&xample 1which allowed the model to be accepgbl

34  ExampleThree

Example Three differs from Example One by using a different variance for the sestaoe timeshan

what was used in Example On&/e proceed as in Example Onéle start withStep 2 of the procedure
given in Tablel since Step 1 has been completed as discussed in Section &.4eléat Initial Sample
Sizes of p= 10 and m = 20and proceed to collect the NIID observations (batch means) of these sample
sizes on the system and modeAnalyzing the collected data webtainS = 9.337,52 = 1.558,M =
10.202, and?, = 1.769. Next the pooled variance estimate using the formula in Section 2 is calculated
to obtainS3 = 1.701.

Proceedo Step 3 where we evaluate the risk curves using differealugs to select palues for L
andU to use in the hypothesis test. In our example the sarakigs will be used dtandU. We use our
software for this statistical procedure to obtain the risk curves shown in Figure Sdlresg of 0.3 and
0.5. Note hat the pooled variance estimate obtained in Step 2 is used in calculating these risk curves.
The risk curves are examined to evaluate the traddvetiseen the model builder’'s risk and the model
user’s risk for different specified yalues at LandU. Basedon ourevaluation of the risk curves, we
selectf. = fu = 0.30 as our valgo use in the hypothesis test for determining validityhiggives ¢ =
au =0.70 since g+ fL =1 anday + fu = 1.)

In Step 4 we explore increased feasible sample sizes to determine their effects on the risk curves. The
pooled variance estimate must be calculated for each new pair of increased sample sizes using the
variance estimates from Step 2 and the increased sample sizes. Our software was used to produce Figure
6 which displays the Initial Sample Size risk curves along with the risk curves for sample Sizes1a&
andnm = 35 usingS3 = 1.708. (These sets of risk curves are flor= Sy = 0.30 as these valsavere the
ones selected in Step 3After exploring different feasible sample sizeg decided to use; 15 and R
= 35 as the sample sizes for the hypothesis test.

In Step 5 the first action required is to collect the addition samples thateterenined in Step 4.

We need to obtain 15 more model NIID observations (batch means) and 5 more system NIID
observations.Next we analyze the total samples of 35 model observations and 15 system observations.
We obtained = 9.472,52 = 0.844,M = 9.981, and’?, = 1.058. Next we calculate the pooled variance
estimate using the formula in Section 2 to obgin= 0.996. We obtain from the software program
using the newly calculated pooled variance estimate of 0.9%h#ieisk curves shown in Figure 7, the
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accepance region for the test statistic(-2.717, 2.717)and the Tvalue of1.651. Since the value of the

T statistic falls within the acceptance region, the null hypothesis is not rejecéething that the
simulation model has a mean time that is acceptaflibe acceptance region can be calculatedfor
which is £0.837, 0.837)andD is 9.981 -9.472 = 0.509, which falls inside the acceptance region; this is
consistent with the fact thahe T value falls inside its acceptance regiormhus the model has been
determined to be valid with respect to the mean system time with the risks as showrfihgl ttek
curves plotted in Figure 7 Of courseyalidity of the mean behavior doestimply other measures such
as variances or distributions are also valighch property or function of a random output of interest must
be tested individually for validity.)

Builder and User Risk Cur Builder and User Risk Cur Builder and User Risk Cur
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Figure 5: Example Three Figur&gample Three Figure 7: Example Three
B risk curves at L sample size risk curves L finalrisk curves at L

The reason that this (simulation) model mean time output is acceptable is because the service times of
the system server have the same mean as the model and a variance of 18.88 that is close to that of the
model server’s variance @b.0. (Notethatthe parameters of the log normal used as the distribution for
the system server we(1.33, 0.75).)The true epected mean time for the M/M/1 model is 10 minutes
and for the M/G/1 is 9.39 minute§.he difference Cbetween these two means is 0.61 minutes and falls
within theacceptable range of accuracy fooDL = -1 and U= +1. If the acceptance range of accuracy
was smaller, tn the simulation model may not have the accuracy required.

3.5 ExampleFour

Example Four wilillustrate the use of the interval statistical procedure whepi ttadues aL. andU are
different. Let ExampleFour be identical ttExample Threexcept thavalues for pat U will be different
Using the same sample sizes and data observations from Step 2 of Example Three for Example Four
resultsin S, S2, M, S2,, andS3 having the same values for batkamples. In Step 3 we investigatie
risk curves fodifferent$ values al. andU separatelyand also decide thgvalues to use for hyphesis
testing at LandU separately Let us consider Lfirst. The same fralues at. for Examples Three and
Four will produce the same risk curves for both Examples of which two sets of risk atevasown in
Figure 5. Let us select for the hypothesis test in Example Hoeisame falue of 0.30 for Lthatwas
selected in Example Threedawhose risk curves are shown in Figure 5. Nowewauate the risk curves
atU for different valueof 5. Two sets of risk curves are shown in Figure 8 fealies of 0.2 and 0.4 at
U obtained from our software which used the pooled variance estimate obtained in Shdfer2.
evaluating the tradeffs between the model builder’s risk and the model usskdor different specified
f values it was determined to use @gfue of 0.2 at Uor the hypothesis test.

Moving to Step 4 where we decide on the sample sizes to use for the hypothesis test by exploring
increased feasible sample sizes to determine their effects on the risk duregzooled variance estimate
must be calculated for each new pair of increasadple sizes using the variance estimates from Step 2
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and the increased sample sizes. The effect of sample sizes on the risk curves must be evalaated at
U together as only one set of sample sizes are used for our hypothesi®uestoftware wassed to
produced Figure 9 which displays forthe Initial Sample Size risk curves along with the risk curves for
sample sizes ofs= 15 and m = 35 usingSZ = 1.708. (These sets of risk curves are fiyr = 0.20 as
these values were the ones selected in Stepn3Example 3 we produced Figure 6 which contains the
risk curves at Lwhich would have been produced here if it had not already been displéyext
exploring different feasible sample sizes lbwth LandU, we decided to usesw 15 and m = 35 as the
sample sizes for the hypothesis test.

Builder and User Risk Cur\ Builder and User Risk Cun Builder and User Risk Cur

v010.2 20, ng[110
v10.4 35,n,1115
£ £ 2
5 3 3
s s S
o o o
2 1 0 1 2 2 1 0 1 2 2 1 0 1 2
D-U D-U D-U
Figure 8: Example Four FigureExample Four Figure D: Example Four
B risk curvesat U. sample size risk curvesjat finalrisk curves at U

Proceeding to Step 5, the first action is to collect the additional samples as specified inL&teps4.
use the same additional observations that were used in Example Threewd bbsain the same values
for S, S2, M, S%, andS3 that were obtained for Example Thra&e use the software program with the
newly calculated pooled variance estimated®&96to produce lte finalrisk curves shown in Figure 7
(also produced in Example Three) and Figure 10, along with the acceptance region for the test statistic T
(-2.717, 2393), and the alue of1.651. Since the value of Talls within the acceptance region, the null
hypothesis is not rejectedheaning that the simulation model has a mean time output that is acceptable.
(The acceptance region can be calculatedfarhich is (0.838, 0.73Y, and the differencbetweerthe
two sample means is 9.9819-472 = 0.509, which, of course, falls within the acceptance region; this is
consistent with the fact that thevalue falls within its acceptance region.) Thie model has been
determined to be valid with the risks as depicted by theriisiacurves plotted inigures 7 and 10.

Note that the acceptance region for Example Four is smaller than the acceptance region for Example
Three. The reason is because the model user’s risk was reduced by using a smaller gate for
Example Four compared to the value used in Example Thkeing a smaller acceptance region
reduces the probability of accepting a model as valid and hiedoees the probability of accepting an
invalid model as valid. Howevgethere is another side to this issue. Reducing the modes uisk
increases the model builder’s risk and thus the probability of a valid model being determined to be invalid
is increased.

3.6 Some Comments on the Examples

The performance measure considered for model validity was the mean time customers spend in the
gueueing systemThe mean system tinaf customers, Win the M/G/1 can be calculated by using the
PollazekKhintchine (PK) formula (Gross et al. 2008¥or the meanartival rate and mean service time

used in theExamples, the PK formula givéd = 7.5+ 0.1o2. Using this equation, we have in Table 2
different values for?, W,and D = pm — us = 10.0 —is. The valuef D andW for the M/M/1 model are
calculated usingé = 25.0,which is the square of the mean service tifietice that the values selected
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for L andU were 10% of Wbf the M/M/1 except for Example Two whetehad a largenegative value

The values fot. andU should be determined by the accuracy required of a model which depensls on it
use. Unfortundely, seting these valuess usually difficult and there has been little scholarly research on
how to do so. The values offL.-1 and U= 1 allow service time variances of-135. One can readily see

from Table 2 that the variance of the service time of Example One (4298@®utside of the acceptable
range of accuragynd the variance of the service time of Examples Three and Four (18.88) lies inside the
acceptableange of accuracy.

Table2: Expected values of mean system times for M/G/1

gl 0 15.0 18.9 | 25.0 35.0 |[43.0
W 7.5 9.0 9.4 10.0 11.0 [11.0
D 2.5 1.0 0.6 0.0 -1.0 |-1.8

4 SUMMARY

This tutorial paper demonstrated new hypothesis test for use in operational validity of simulation
models. The presentation contained a detailed procedure for the ube ioterval hypothesis tesh
simulation model validation, a short description of the statistics used for this procedure, a brief
description of the software that has been developed to use this procedure, and examples of simulation
model validation using thprocedure and software. x&mples involved the testing of a singlerver
gueueing model regarding validity using batch mehas are approximatelMIID observations These
examples covered the use of the model builder’'s and model user’s risk cuitvesdétection of the beta-

alpha values and the sample siz&€he use of risk curves should be valuable in communicating about the
risks involved in Type | and Type Il errors for different sample siZésch information may help to

obtain financial suppoin order to use larger sample sizes.

A APPENDIX: EXAMPLE OF R CODE

We provide R code to calculate the model user’s risk and the acceptance region of the test
statistic Twhen the Vpell errors at Land at Uare specified

beta = function(betal,betaUl,varm,vars,nm,ns,L,U,delta,sigma2,case){
#case="upper' or 'lower', 1if sigma2='NA', pooled variance is used
alphal=1-betal
alphaU=1-betaUl

df=nm+ns-2 #degrees of freedom

Sp2=((nm-1)*varm+(ns-1)*vars)/df #pooled variance Sp2

if(case=="upper'){ #1f upper case is specified
if(sigma2=="NA"){ #1f population variance is unknown

ncp=(U+delta)/sqrt(Sp2*(1/nm+1l/ns))  #non-centrality parameter with delta>@
lower=qt(alphalL,df,L/sqrt(Sp2*(1/nm+1/ns))) #lower Limit of acceptance region,
#qt:quantile of t distribution
upper=qt(1-alphau,df,U/sqrt(Sp2*(1/nm+1/ns))) #upper Limit

}else{ #1f population variance is known (usually not the case)
ncp=(U+delta)/sqrt(sigma2*(1/nm+1/ns))
upper=qt(1-alphau,df,U/sqrt(sigma2*(1/nm+1/ns)))
lower=qt(alphalL,df,L/sqrt(sigma2*(1/nm+1/ns)))

}

beta=pt(upper,df,ncp)-pt(lower,df,ncp)} #calculation of user's risk.

#pt(upper,df,ncp)=cdf evaluated at upper Limit
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if(case=="lower"){ #1f the case is Llower
if(sigma2=="NA"){
ncp=(L-delta)/sqrt(Sp2*(1/nm+1/ns)) #delta is negative in this case

lower=qt(alphal,df,L/sqrt(Sp2*(1/nm+1/ns)))
upper=qt(1-alphau,df,U/sqrt(Sp2*(1/nm+1/ns)))
Yelse{
ncp=(L-delta)/sqrt(sigma2*(1/nm+1/ns))
upper=qt(1-alphaUu,df,U/sqrt(sigma2*(1/nm+1/ns)))
lower=qt(alphal,df,L/sqrt(sigma2*(1/nm+1/ns)))
}
beta=pt(upper,df,ncp)-pt(lower,df,ncp)}
output=1ist(lower=lower,upper=upper,beta=beta)
return(output) #returns Llower and upper Limits of acceptance region of T,
#and the model user's risk at a specified delta

}
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