Proceedings of the 2012 Winter Simulation Conference
C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A. M. Uhrmacher, eds.

Configuring Simulation Algorithms with ParamILS

Robert Engelke
Roland Ewald

Albert Einstein Str. 22
University of Rostock
18059 Rostock, GERMANY

ABSTRACT

Simulation algorithms often expose various numerical parameters, e.g., to control the size of auxiliary data
structures or to configure certain heuristics. While this allows to fine-tune a simulator to a given model, it
also makes simulator configuration more complex. For example, determining suitable default parameters
from a multi-dimensional parameter space is challenging, as these parameters shall work well on a broad
range of models. Instead of manually selecting parameter values, the configuration space of a simulation
algorithm can also be searched automatically. We investigate how well PARAMILS (Hutter et al. 2009),
an iterated local search algorithm for algorithm configuration, can be applied to simulation algorithms, and
discuss its implementation in context of the open-source modeling and simulation framework JAMES II.

1 PARAM-ILS

PARAMILS searches for an algorithm’s parameter configuration that results in optimal performance on a
(randomly drawn) sequence of problem instances. It tries to find good parameter configurations by starting
from an initial configuration, evaluating it, and then changing some of its parameters at once (sometimes
all). The new configuration is evaluated and used as the starting point for a hillclimbing, to find a local
optimum. The whole procedure is repeated until a termination condition (e.g., overall execution time) is
met.

During hillclimbing, two configurations are compared by applying them to the sequence of problem
instances (in our case, model setups) and recording their performance (in our case, execution time). Hutter
et al. (2009) present two techniques for this comparison, called BasicILS and FocusedILS. BasicILS
evaluates both configurations on the same fixed sequence of problem instances. FocusedILS, on the other
hand, stops the comparison at some problem instance if one configuration performs worse than the other
(on a sufficiently large sub-sequence of problem instances). Another abort mechanism for configurations
which perform poorly is to cap the ressources for them, depending on the best configuration found so far.

While PARAMILS is not restricted to any specific kind of algorithm, it has been predominantly applied
to SAT-solvers (Hutter et al. 2009). Additional issues may arise for simulation algorithms. For example,
when evaluating stochastic simulation algorithms, the noise inherent in execution time measurements may
be much larger, as it does not only stem from the underlying hardware and operating system, but also
from the diversity of possible simulation trajectories and the corresponding computational loads to simulate
them. Such effects may hamper the applicability of PARAMILS and thus need to be investigated carefully.

2 IMPLEMENTATION & INTEGRATION INTO JAMES II

Our implementation of PARAMILS is integrated into the modeling and simulation framework JAMES
IT (Himmelspach and Uhrmacher 2007), so it can be used with any JAMES II simulator. A major challenge

978-1-4673-4781-5/12/$31.00 ©2012 IEEE

Engelke and Ewald

—— —_— -

steers ~configurations ™
BaseExperiment < ——————— ILSSimSpaceExplorer ParamiILS
¢ ? ~ - fesults _ %
|
RandomConfigurationSampler | |[RandomModelSetupSampler BasiclLS FocusedILS

Figure 1: Apart from implementing the PARAMILS variants as such (blue types), a custom exploration
component that supports random sampling of hierarchical simulator configurations and their numerical
parameters (orange types) had to be added to the JAMES II experimentation layer. A PARAMILS instance
runs in a separate thread and sends requests to the experimentation layer. A request triggers the execution of
a specific simulator configuration on a specific model setup. Eventually, the PARAMILS instance receives
the results of the run and continues the search.

was to support the random sampling of both simulator configurations and simulation models in a way that
is transparent to PARAMILS. In particular, how to deal with the hierarchical parameterization of simulators
and their sub-components (i.e., plug-ins) in JAMES I1? Each simulator—and each plug-in it relies on,
etc.—may have an arbitrary number of numerical parameters that shall be searched. This results in a
hierarchy of parameters, from which we sample in proportion to the dimensionality of the parameter space
for each sub-tree. For example, consider a simulator that may either rely on plug-in A, with one numerical
parameter, or plug-in B, with three numerical parameters. In this case, our sampling mechanism is %—: =4
times more likely to draw a configuration for plug-in B. This is done to ensure that the larger parameter
space of plug-in B is explored sufficiently. Figure 1 shows how the PARAMILS variants are connected to
the experimentation layer of JAMES II, mostly by relying on already established concepts regarding the
exploration of a ’simulation space’, i.e., a space of model setups and simulator configurations (see Ewald
and Uhrmacher 2009).

A first evaluation of both BasicILS and FocusedILS was conducted for the discrete-event stochastic
simulation algorithm 7-leaping (Cao et al. 2006), which has four numerical parameters that can be
adjusted. Preliminary results indicate that the approach is feasible to find good parameter configurations.
The approach should be particularly suitable to tune simulators with several sub-components that exhibit
numerical parameters, e.g., parallel and distributed discrete-event simulators (Fujimoto 2000) that rely on
partitioning, synchronization, and load balancing mechanisms. We plan to investigate this in future work.

ACKNOWLEDGMENTS

This research has been supported by the DFG (German Research Foundation), research project EW 127 /1-1
(ALeSiA).

REFERENCES

Cao, Y., D. T. Gillespie, and L. R. Petzold. 2006, Jan. “Efficient step size selection for the tau-leaping
simulation method.”. The Journal of Chemical Physics 124 (4).

Ewald, R., and A. M. Uhrmacher. 2009. “Automating the Runtime Performance Evaluation of Simulation
Algorithms”. In Proceedings of the Winter Simulation Conference, edited by M. D. Rossetti, R. R. Hill,
B. Johansson, A. Dunkin, and R. G. Ingalls, 1079-1091: IEEE Computer Society.

Fujimoto, R. M. 2000. Parallel and Distributed Simulation Systems. Wiley.

Himmelspach, J., and A. M. Uhrmacher. 2007. “Plug’n simulate”. In Proceedings of the 40th Annual
Simulation Symposium, 137-143: IEEE Computer Society.

Hutter, F., H. Hoos, K. Leyton-Brown, and T. Stiitzle. 2009. “ParamILS: An automatic algorithm configuration
framework”. Journal of Artificial Intelligence Research 36:267-306.

