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ABSTRACT 

Conceptual modeling is the abstraction of a simulation model from the real world system that is being 
modeled; in other words, choosing what to model, and what not to model.  This is generally agreed to be 
the most difficult, least understood and most important task to be carried out in a simulation study.  We 
present two example problems that illustrate the role of conceptual modeling in a simulation study.  We 
then define a set of terminology that helps us frame the conceptual modeling task, we discuss the role of 
conceptual modeling in the simulation project life-cycle, and we identify the requirements for a good con-
ceptual model.  Frameworks that may be helpful for carrying out and teaching effective conceptual mod-
eling are listed, and one framework is outlined in more detail. 

1 INTRODUCTION 

One of the most difficult issues in simulation modeling is determining the content of the simulation mod-
el.  The job of the modeler is to understand the real system that is the subject of the simulation study and 
to turn this into an appropriate simulation model.  The chosen model could range from a very simple sin-
gle server and queue, through to a model that tries to encapsulate every aspect of the system.  In effect, 
there are an infinite number of models that could be selected within this range, each with a slightly differ-
ent content.  The question is: which model should we choose?  We explore the answer to this question in 
this paper. 
 On the surface we might suggest the answer is to build the model that contains as much detail as pos-
sible.  After all, this model will be the closest to the real system and so surely the most accurate.  This 
might be true if we had complete knowledge of the real system and a very large amount of time available 
to develop and run the model.  But what if we only have limited knowledge of the real system and limited 
time?  Indeed, we rarely have the luxury of vast quantities of either knowledge or time, not least because 
the real system rarely exists at the time of modeling (it is a proposed world) and a decision needs to be 
made according to a tight time schedule. 
 So, if we need to develop a simpler model, we need to determine the level of abstraction at which to 
work.  This process of abstracting a model from the real world is known as conceptual modeling.  We 
shall define conceptual modeling and the process of doing it in more detail in a while, but first it is useful 
to illustrate the issues involved in conceptual modeling with some practical examples.  

2 CONCEPTUAL MODELING EXAMPLES 

The first example provides an illustration of conceptual modeling in a health context.  This is followed by 
a less detailed description the conceptual model for a simulation of a traffic problem. 

978-1-4673-4780-8/12/$31.00 ©2012 IEEE 1909978-1-4673-4782-2/12/$31.00 ©2012 IEEE



Robinson 
 

2.1 Simulating an Outpatients Clinic 

Our simulation and modeling team was asked to develop a simulation model for a hospital in Birming-
ham, UK.  The hospital was investing in a new outpatients building, a multi-million dollar project, and 
their key question was how many consultation rooms are required?  They had performed some calcula-
tions based on expected patient flows and on observations of the current outpatients system.  However, 
there was obviously some concern with making major investment decisions based on these limited data. 
 We were quick to point out the problems of making calculations based on static data which do not 
take into account the effects of variability in patient flows and consultation times.  This is something for 
which discrete-event simulation is very well suited. 
 When asked to build a model such as this, the typical approach would be to start collecting data and 
to develop a detailed model of the system.  However, the more we investigated how an outpatients system 
works the more we realized just how complex the system is.  There are many specialties using the facility, 
each with its own clinical team.  Patients can progress through a series of tests and consultations.  For 
some specialties, such as ophthalmology, specialist equipment and dedicated rooms are required.  Sched-
uling patient appointments is a significant task and then there is the matter of late arrivals and non-
attendances.  Staff shifts, working practices and skills all impact upon the functioning of the system. 
 Given appropriate data, it would be quite possible to build a simulation model that took account of all 
these details.  There were, however, two issues that made such a model infeasible: 

 Lack of data: much of the necessary data had not previously been collected and even if we were 
to try, issues of patient confidentiality (e.g. you cannot sit in a consultation room timing consulta-
tion times) would make it impossible to collect all the data we needed. 

 Lack of time: the hospital required an answer within a few weeks and we had very limited time 
and resource to devote to the modeling work given the number of parallel activities in which we 
were engaged. 

 So what did we do?  We focused on the critical issue of how many rooms were required and designed 
a simple model that would give at least an indication upon which the hospital managers could base a deci-
sion.  Our world view was that the additional information a basic simulation could offer would be more 
beneficial than no simulation at all. 
 The simple model we constructed took a couple of days to build and experiment with.  It provided a 
lower bound on the rooms required.  In doing so it provided information that would give a greater level of 
confidence in making the decision that the hospital faced.  This was all that was possible given the data 
and resource available, but it was still valuable. 
 The model we designed is outlined in figure 1.  Patient arrivals were based on the busiest period of 
the week – a Monday morning.  All patients scheduled to arrive for each clinic, on a typical Monday, ar-
rived into the model at the start of the simulation run, that is, 9.00am.  For this model we were not con-
cerned with waiting time, so it was not necessary to model when exactly a patient arrived, only the num-
ber that arrived. 

 
 

Figure 1: Simple Outpatients Building Model 
 

Patients scheduled 
to arrive

(by clinic type)
Wait

Consultation
room

Did not attend

1910



 
 A pro
attend we
line. 
 Data 
there were
we used t
sultation t
 The in
varied fro
left the sy
on staff o
predicting
only incre
came avai
 For e
showing t
2 shows a
 

Figure 2: 
til Last Pa
 
 This e
system.  I
volved si
equipmen
constraint
might be d
 Wheth
leave the 
the model

oportion of pa
re sampled at

on the time in
e norms to w
hese as the m
time. 
nput variable 

om 20 to 60 i
ystem.  A key
or equipment 
g a lower bou
ease the need
ilable. 
ach room sce
the probabilit
an example of

Example of R
atient Leaves 

example illus
In this case, t
mplifications

nt.  It also inv
ts on data an
described as a
her we got th
reader to judg
l and whether

atients do not 
t the start of t

n a consultati
which the clini
mean of an Er

for the simul
in steps of 10
y simplificati
availability.  

und on the roo
d for consulta

enario the mo
ty that the sys
f these results

Results from t

strates the ver
the real system
s such as mo
volved assum

nd time, the c
a ‘far abstract
he conceptual
ge.  It is certa
r it was the be

R

attend their a
the simulation

ion room wer
ical staff aime
lang-3 distrib

lation experim
0.  The main 
on, which all
Albeit extrem

oms required.
ation rooms w

odel was rep
stem would b
s. 

the Outpatien

ry essence of
m was not in
odeling only 
mptions about
conceptual m
tion.’ 
l model right 
ain that reader
est model or n

Robinson 

allotted clinic
n run and thes

re limited, sin
ed to work.  T
bution to give

ments was the
output variab
l involved rec
mely unlikely
.  In other wo

with patients w

licated 1000 
be cleared in u

nts Building M

f conceptual m
n existence, bu

Monday mo
t, among othe

model involve

is in large m
rs will form q
not. 

c.  Typical pro
se were remo

nce they had n
These data w
e an approxim

e number of c
ble was the ti
cognized, wa
y that this wo
ords, shortage
waiting in th

times and a 
under 3 hours

Model: Freque

modeling; ab
ut it was a pr
orning’s clini
ers, the consu
d a great dea

measure a mat
quite different

oportions of p
oved before en

not specifical
were available
mation for the

consultation r
ime it took un
as that there w
ould be the ca
es of staff and
he rooms whil

frequency ch
s – the hospit

ency Distribu

bstracting a m
roposed syste
ic and not m
ultation time
al of simplifi

tter of opinio
t judgments o

patients that d
ntering the w

lly been time
 by clinic typ

e variability in

rooms, which
ntil the last p
were no limita
ase, the mode
d equipment w
le the resourc

hart was gene
tal’s target.  F

 
utions for Tim

model from th
em.  The mod
modeling staf
s.  Because o
ication; as su

on and one w
on the credibil

do not 
waiting 

d, but 
pe and 
n con-

h were 
patient 
ations 
el was 
would 
ce be-

erated 
Figure 

me un-

he real 
del in-
ff and 
of the 
uch, it 

we will 
lity of 

1911



Robinson 
 

2.2 The King’s Road Nursery 

As a second example, which also involved a ‘far abstraction’, we briefly present the King’s Road Nursery 
problem (figure 3).  This model, which is based on real modeling work, has been set as a conceptual 
modeling challenge in the SCS M&S magazine (www.scs.org/magazines/2010-
07/index_file/ConceptualModelingCorner.htm accessed April 2012) where it is presented as the 
Happyfaces Daycare Center problem.  The problem entails the proposal to open a daycare nursery in 
King’s Road.  The question is whether or not this will have a detrimental impact on the flow of traffic in 
King’s Road, especially during the early morning commuter period. 
 

 
Figure 3: The King’s Road Nursery Problem 

 
 This problem is regularly presented to students on simulation courses.  Their natural tendency is to 
devise elaborate models which represent in detail the flow of traffic in King’s Road and the surrounding 
streets.  The actual model that was developed is presented in figure 4.  Without discussing the nature of 
this model in detail here, the key point is that the problem has been reduced to a simulation model with 
three entity types (representing the different road users), four activities and three queues.  This meant the 
simulation was developed in a matter of hours and only required very limited data, making it a feasible 
model for the time and resource available for the study. 
 

 
Figure 4: The King’s Road Nursery Conceptual Model 
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2.3 Not all Conceptual Models need to be far Abstractions 

The two examples above serve to illustrate the extent to which a model can be abstracted away from the 
real system; we are calling these ‘far abstractions’.  However, we would not want to leave the impression 
that conceptual models have to be so far abstracted.  Indeed it is not always desirable to abstract to this 
degree and for some simulation studies it is appropriate to model much of the scope and detail in the 
problem domain.  We refer to this as ‘near abstraction’.  For an example, see the Ford engine plant model 
described in Robinson (2008a, 2008b).  These papers describe a simulation that was designed to deter-
mine the throughput of a new engine assembly plant.  The model contained much detail about the real 
system. 

3 WHAT IS CONCEPTUAL MODELING? 

Conceptual modeling is the abstraction of a simulation model from the part of the real world it is repre-
senting (‘the real system’).  The real system may, or may not, currently exist.  Abstraction implies the 
need for a simplified representation of the real system in the simulation model.  The secret to good con-
ceptual modeling is to get the level of simplification correct, that is, to abstract at the right level. 
 Because all models are simplifications of the real world, all simulation modeling involves conceptual 
modeling.  Even the most complex and detailed simulation still makes various assumptions about the real 
world and chooses to ignore certain details.  

3.1 Definition of a Conceptual Model 

More formally we define a conceptual model as follows: 
 

‘… a non-software specific description of the computer simulation model (that will be, is or has been 
developed), describing the objectives, inputs, outputs, content, assumptions and simplifications of the 
model.’ (Robinson 2008a) 

 
Let us explore this definition in some more detail.  First, this definition highlights the separation of the 
conceptual model from the computer model.  The latter is software specific, that is, it represents the con-
ceptual model in a specific computer code.  The conceptual model is not specific to the software in which 
it is developed.  It forms the foundation for developing the computer code.   
 Second, it is stated that the description is of a computer simulation model that ‘that will be, is or has 
been developed.’  This serves to highlight the persistent nature of the conceptual model.  It is not an arte-
fact that gets created and is then dispensed with once the computer code has been written.  It serves to 
document the basis of the computer model prior to development, during development and after develop-
ment.  Indeed, the conceptual model persists long beyond the end of the simulation study, since we cannot 
dispose of the model concept.  Of course, because the modeling process is iterative in nature (Balci 1994; 
Willemain 1995; Robinson 2004), the conceptual model is continually subject to change throughout the 
life-cycle of a simulation study. 
 Finally, the definition is completed by a list of what a conceptual model describes.  It is vital that the 
objectives of the model are known in forming the conceptual model.  The model is designed for a specific 
purpose and without knowing this purpose it is impossible to create an appropriate simplification.  Con-
sider what would have happened if the purpose of the outpatients building model had not been properly 
understood.  We would almost certainly have been driven to a more general purpose, and by nature much 
more complex, model.  Poorly understood modeling objectives can lead to an overly complex model.  In-
stead, because the purpose of the model was clear we were able to create a very simple model. 
 It is useful to know the model inputs and outputs prior to thinking about the content of the model.  
The inputs are the experimental factors that are altered in order to try and achieve the modeling objec-
tives.  In the example above, this was the number of consultation rooms in the outpatients building.  The 
outputs are the statistics that inform us as to whether the modeling objectives are being achieved (e.g. the 
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time to clear all patients from the outpatient system) and if not, why they are not being achieved (e.g. the 
utilization of the consulting rooms). 
 Knowing the objectives, inputs and outputs of the model help inform the content of the model.  In 
particular, the model must be able to receive the inputs (e.g. it must model the consultation rooms) and it 
must provide the outputs (e.g. it must model the flow of patients until all have exited the system).  The 
model content can be thought of in terms of the model scope (what to model) and the level of detail (how 
to model it). 
 The final two items in the list of what a conceptual model describes are the assumptions and simplifi-
cations of the model.  These are quite distinct concepts (Robinson 2008a): 

 Assumptions are made either when there are uncertainties or beliefs about the real world being 
modeled.  

 Simplifications are incorporated in the model to enable more rapid model development and use, 
and to improve transparency. 

 So, assumptions are a facet of limited knowledge or presumptions, while simplifications are a facet of 
the desire to create simple models.   

3.2 Artefacts of Conceptual Modeling 

To understand conceptual modeling further it is useful to set it within the wider context of the modeling 
process for simulation.  Figure 5 shows the key artefacts of conceptual modeling.  The ‘cloud’ represents 
the real world (current or future) within which the problem situation resides; this is the problem that is the 
basis for the simulation study.  The four rectangles represent specific artefacts of the (conceptual) model-
ing process.  These are as follows: 

 System description: a description of the problem situation and those elements of the real world 
that relate to the problem. 

 Conceptual model: as defined in section 3.1 
 Model design: the design of the constructs for the computer model (data, components, model exe-

cution, etc.) (Fishwick 1995).  
 Computer model:  a software specific representation of the conceptual model. 

  

 
 

Figure 5: Artefacts of Conceptual Modeling (Robinson 2011) 
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 These artefacts are quite separate.  This is not to say that they are always explicitly expressed, with 
the exception of the computer model.  For instance, the system description, conceptual model and model 
design may not be (fully) documented and can remain within the minds of the modeler and the problem 
owners.  It is, of course, good modeling practice to document each of these artefacts and to use this as a 
means of communicating their content with the simulation project clients. 

The model design and computer model are not strictly part of conceptual modeling, but they do em-
body the conceptual model within the design and code of the model.  These artefacts are included in fig-
ure 5 for completeness.  Our main interest here is in the system description and conceptual model which 
make up the process of conceptual modeling; as represented by the shape with a dashed outline in figure 
5.  Unlike the model design and computer model, these two artefacts are independent of the software that 
will ultimately be used for developing the simulation model. 
 It is important to recognize the distinction between the system description and the conceptual model.  
The system description relates to the problem domain, that is, it describes the problem and those elements 
of the real world that relate to the problem.  The conceptual model belongs to the model domain in that it 
describes those parts of the system description that are included in the simulation model and at what level 
of detail.  The author’s experience is that these two artefacts are often confused and seen as indistinct.  
Indeed, a major failure in any simulation project is to try and model the system description (i.e. every-
thing that is known about the real system) and to not attempt any form of model abstraction; this leads to 
overly complex models. 
 The arrows in figure 5 represent the flow of information, for instance, information about the real 
world feeds into the system description.  The processes that drive the flow of information are described as 
knowledge acquisition, model abstraction, design and coding.  The arrows are not specifically representa-
tive of the ordering of the steps within the modeling process, which we know are highly iterative (Balci 
1994; Willemain 1995; Robinson 2004).  In other words, a modeler may return to any of the four process-
es at any point in a simulation study, although there is some sense of ordering in that information from 
one artefact is required to feed the next artefact. 
 The dashed arrow shows that there is a correspondence between the computer model and the real 
world.  The degree of correspondence depends on the degree to which the model contains assumptions 
that are correct, the simplifications maintain the accuracy of the model, and the model design and com-
puter code are free of errors.  Because the model is developed for a specific purpose, the correspondence 
with the real world only relates to that specific purpose.  In other words, the model is not a general model 
of the real world, but a simplified representation developed for a specific purpose.  The issue of whether 
the level of correspondence between the model and the real world is sufficient is an issue of validation 
(Landry, Malouin, and Oral 1983; Balci 1994; Robinson 1999; Sargent 2008).  Both conceptual modeling 
and validation are concerned with developing a simulation of sufficient accuracy for the purpose of the 
problem being addressed.  As a result, there is a strong relationship between the two topics, conceptual 
modeling being concerned with developing an appropriate model and validation being concerned with 
whether the developed model is appropriate. 

4 REQUIREMENTS OF A CONCEPTUAL MODEL: CHOOSING WHAT TO MODEL 

Before discussing how to perform conceptual modeling, let us consider what makes for a good conceptual 
model.  The key requirements are that the model should be valid, credible, feasible and useful (Robinson 
2008a).  By these we mean the model should: 

 Produce sufficiently accurate results for the purpose: understanding the number of rooms required 
in the building (validity). 

 Be believed by the clients (credibility). 
 Be feasible to build within the constraints of the available data and time. 
 Be useful, that is, sufficiently easy to use, flexible, visual and quick to run. 
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 Overarching all of this is the requirement to build the simplest model possible to meet the objectives 
of the simulation study.  According to Innis and Rexstad (1983), Ward, (1989), Salt (1993), Chwif, Barre-
to, and Paul (2000), Lucas and McGunnigle (2003), and Thomas and Charpentier (2005), simpler models 
are preferred because:   

 Simple models can be developed faster  
 Simple models are more flexible 
 Simple models require less data  
 Simple models run faster  
 The results are easier to interpret since the structure of the model is better understood  

 As such, the need to abstract a conceptual model from the system description becomes even more per-
tinent.  This does not, of course, mean that we should never develop more complex models, but that we 
should only develop them if they are required to meet the modeling objectives. 
 Figure 6 illustrates the relationship between model accuracy and model complexity (scope and level 
of detail).  It shows that with increasing levels of complexity we obtaining diminishing returns in terms of 
accuracy, never reaching 100% accuracy.  Eventually we may even find that the accuracy of the model 
reduces.  This is because we do not have the knowledge or data to support the complexity that is being in-
cluded in the model and we start to make assumptions that are incorrect. 

 
Figure 6: Simulation Model Complexity and Accuracy (Robinson 2008a) 

 
 So which conceptual model should we choose?  We might argue that the model at point x in figure 6 
is the best.  At this point we have gained a high level of accuracy for a low level of complexity.  Moving 
beyond x will only marginally increase accuracy and adding further complexity generally requires ever 
increasing effort.  Of course, if we have a specific need for an accuracy level greater than that provided by 
x, we will need to increase the complexity of the model. 
 The difficulty is in finding point x.  Conceptual modeling frameworks, such as the ones listed below, 
aim to help us in that quest, but conceptual modeling is more of an art than a science.  As a result, we can 
only really hope to get close to x.  In other words, there may be a ‘best’ model, but we are extremely un-
likely to find it among an infinite set of models.  What we should hope to do is identify the best model we 
can.  As such, our quest is for better models, not necessarily the best. 

5 FRAMEWORKS FOR CONCEPTUAL MODELING 

A framework for conceptual modeling provides a set of steps and tools that guide a modeler through the 
development of a conceptual model.   It is also useful for teaching conceptual modeling, especially to 
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novice modelers.  The simulation literature, however, provides very few such frameworks.  Some exam-
ples, that the reader may wish to explore further are: 

 Conceptual modeling framework for manufacturing (van der Zee 2007) 
 The ABCmod conceptual modeling framework (Arbez and Birta 2011) 
 Karagöz and Demirörs (2011) present a number of conceptual modeling frameworks: Conceptual 

Model Development Tool (KAMA), Federation Development and Execution Process (FEDEP), 
Conceptual Models of the Mission Space (CMMS), Defense Conceptual Modeling Framework 
(DCMF), and Base Object Model (BOM). 

 The PartiSim framework (Tako et al. 2010) 
For a more detailed discussion on conceptual modeling frameworks see Robinson et al. (2011).  Here a 
very brief outline of the Robinson framework for conceptual modeling is given.  For a more detailed ac-
count, and an illustration of the framework in use, see Robinson (2008b).   
 Figure 7 outlines the conceptual modeling framework. In this framework, conceptual modeling in-
volves five activities that are performed roughly in this order: 

 Understanding the problem situation 
 Determining the modeling and general project objectives 
 Identifying the model outputs (responses) 
 Identify the model inputs (experimental factors) 
 Determining the model content (scope and level of detail), identifying any assumptions and sim-

plifications 
 Starting with an understanding of the problem situation, a set of modeling and general project objec-
tives are determined.  These objectives then drive the derivation of the conceptual model, first by defining 
the outputs (responses) of the model, then the inputs (experimental factors), and finally the model content 
in terms of its scope and level of detail.  Assumptions and simplifications are identified throughout this 
process.   
 

 
 

Figure 7: A Framework for Conceptual Modeling (Robinson 2008b) 
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The ordering of the activities described above is not strict.  Indeed, we would expect much iteration 

between these activities and with the other activities involved in a simulation study: data collection and 
analysis, model coding, verification and validation, experimentation and implementation. 
 The framework is supported by a conceptual model template which provides a set of tables that de-
scribe each element of the conceptual model.  These tables describe: 

 Modeling and general project objectives (organisational aim, modeling objectives, general project 
objectives) 

 Model outputs/responses (outputs to determine achievement of objectives, outputs to determine 
reasons for failure to meet objectives) 

 Experimental factors 
 Model scope 
 Model level of detail 
 Modeling assumptions 
 Model simplifications 
Beyond completing these tables, it is also useful to provide a diagram of the model.  For instance, 

process flow diagrams, similar to those presented in figures 1 and 4, are useful for communicating the 
conceptual model. 
 The modeler works through these tables with the support of the stakeholders and domain experts, it-
eratively improving them to the point that the modeler and stakeholders are satisfied that the conceptual 
model meets the requirements for validity, credibility, feasibility and utility.  This provides a structured 
framework for making the conceptual modeling decisions explicit (documentation) and for debating ways 
of improving the conceptual model.  An illustration of the conceptual model template that accompanies 
this framework, using the example of a simple fast food restaurant problem, is available at http://www-
staff.lboro.ac.uk/~bsslr3/ 

6 CONCLUSION 

Conceptual modeling is the abstraction of a simulation model from a real world system.  It is probably the 
most important aspect of any simulation study.  Get the conceptual model right and the rest of the simula-
tion work will be more straightforward, providing the right information in the right time-scale.   
 This paper provides two illustrations of how appropriate conceptual modeling, through far abstrac-
tion, made a simulation study feasible within the constraints of data and time available.  The discussion 
that follows defines conceptual modeling, its artefacts and its requirements.  From this base, some frame-
works for conceptual modeling are listed and one framework is outlined in more detail.  The framework 
aims to guide a modeler through the process of creating and documenting a conceptual model. 
 Conceptual modeling is not a science, but an art.  As with any art, it can be learned and it can be im-
proved upon with experience.  Frameworks provide a good way of learning about conceptual modeling 
and for helping to do it better.  At present, however, there are very few examples of conceptual modeling 
frameworks and this is an area where more research needs to be undertaken.    
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