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ABSTRACT 

In this paper, we consider heuristics for master planning in semiconductor manufacturing. While lead 
times are typically assumed as fixed in production planning, we use iterative simulation to take load-
dependent lead times into account. An AutoSched AP simulation model of a semiconductor supply chain 
is used for implementing the scheme. Simulation results show that the iterative scheme converges fast and 
leads to less variable, more profitable production plans compared to planes obtained by the fixed lead 
time approach. 

1 INTRODUCTION 

Production planning deals with determining release schedules that try to match production output with 
given demand in such a way that revenue- or cost-related objective functions are optimized while capacity 
restrictions are taken into account. Most of the existing production planning models assume a fixed lead 
time as an exogenous, prescribed parameter of the planning approach (Voß and Woodruff 2006). The lead 
time of a product is an estimate of the cycle time in the planning algorithms. We refer to the cycle time of 
a product, also known as flow time, as the average time that is required to complete its processing in the 
production system. Production planning in semiconductor manufacturing is challenging due to the reen-
trant flows, the long cycle times, the high utilization of the expensive machines, the diverse product mix, 
and the different sources of variability. 

It is well known from queueing theory that the cycle time increases nonlinearly with the utilization of 
the resources of the base system. However, the utilization is a result of the release schedule used. This 
leads to a well-known circularity in production planning. On the one hand, the planning approach deter-
mines the release schedule based on a prescribed lead time. On the other hand, the cycle time depends on 
the lot release schedule (Pahl et al. 2007, Missbauer and Uzsoy 2011). 

Iterative simulation is one approach that tackles this circularity by iterating between a production 
planning model that determines production quantities based on a prescribed lead time and a discrete-event 
simulation model that uses these production quantities to calculate new flow time estimates (Hung and 
Leachman 1996, Almeder et al. 2009, Irdem et al. 2010 among others). 

In this paper, we are interested in applying the iterative simulation approach to a specific multi-
facility, multi-product, and multi-period master planning problem. The problem includes important fea-
tures of semiconductor supply chains like reentrant process flows, outsourcing options, and multiple 
products with long process flows. The master planning problem and exact and heuristic approaches to ef-
ficiently solve it are discussed by the two present authors in (Ponsignon and Mönch 2012). However, a 
fixed lead time is assumed for all products in this paper. A one-stage supple chain consisting of four 
scaled-down wafer fabs is represented by a simulation model. To the best of our knowledge, iterative 
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simulation is not used so far for supply chains in the semiconductor industry. We show by performing de-
signed experiments that the iterative scheme converges for our problem.  

The paper is organized as follows. The researched problem, including the master planning heuristic, is 
described in the next section. Related literature is also discussed. The iterative scheme is presented in Sec-
tion 3. The results of computational experiments are shown and analyzed in Section 4.  

2 PROBLEM 

2.1 Master Planning Heuristic 

We consider a master planning problem in a one-layer semiconductor manufacturing network consisting 
of wafer fabs as nodes, i.e., there is no flow of quantity across the nodes (see Figure 1). The problem is 
denoted by MPSC throughout the paper. We are interested in determining appropriate wafer quantities for 
the planning horizon for a set of products  max,...,1: pP   that can be processed in maxm  front-end (FE) fa-
cilities. The market demand is given by firm orders and supply reservations. It is assumed that inventory 
is possible. Unmet firm orders are carried over as backlog to the next period. The capacity limits are relat-
ed to bottleneck work centers. The planning horizon considered is 26 periods. 

 
Figure 1: One-layer semiconductor manufacturing network for wafer processing. 

 
It is assumed for MPSC that all products have a fixed lead time. The problem contains an objective 

function related to the difference between revenues and total costs, and it is subject to a set of constraints. 
The objective function strives to keep the number of unmet firm orders low and to satisfy supply reserva-
tions if capacity is sufficient, whereas the inventory level is minimized accordingly. The production can 
be outsourced to silicon foundries if more capacity is required. An inexpensive assignment of products to 
in-house facilities and silicon foundries is privileged. The production partitioning over different facilities 
is limited with respect to fixed production costs. 

The heuristic approach researched in the present paper is a rule-based assignment procedure denoted 
by RA-MPSC. First, the product with the highest backlog cost or the highest revenue is selected. Then, 
the demand for the selected product in the current time period is allocated to the wafer fab with the most 
remaining capacity. When capacity is not sufficient in the actual period, the algorithm looks for available 
capacity in previous time periods. This leads to pre-production and stock building but it avoids backlogs. 
If the demand cannot be entirely assigned to a single wafer fab, an additional wafer fab with the second 
most remaining capacity is selected. We do not assign the demand for a the selected product in the current 
time period to more than two wafer fabs to minimize the production partitioning. This procedure is repeated 
until all products and all time periods have been considered. Note that orders are allocated with a higher 
priority than forecast. In addition, minimum and maximum capacity limits are strictly respected. Indeed, 
if the load is too low, it is increased by means of a repair loop. For more details on this heuristic, we refer 
to (Ponsignon and Mönch 2012). 

Next we describe how the fixed lead time is represented in RA-MPSC. The index maxk,...,0k   is 

used to calculate the capacity consumption of a product. We assume that the product has a cycle time of 
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1kmax   weeks and that maxb  bottlenecks exist in a specific facility. We use product- and facility-specific 

capacity consumption matrices  1maxmax  kbIRC , where the elements bkcc  of C  model the capacity con-

sumption of one wafer when this wafer is processed on bottleneck b with max1 bb  and its completion 

period is max0 kk   periods ahead. When the route of a product and a lead time is given, the matrices 
can be determined using the flow factor that corresponds to the given lead time. Note that this approach 
allows to deal with reentrant process flows. 

RA-MPSC determines the number of wafers pmtx  that have to be completed in each period t  for 

product p  and facility m . Then a release schedule pmtx~  can be calculated by using a backward loading 

scheme and a simple lot sizing rule.  

2.2 Discussion of Related Work 

An iterative linear programming-simulation scheme is proposed by Hung and Leachman (1996) for pro-
duction planning in wafer fabs. However, only a limited set of experiments is carried out to assess the per-
formance of the scheme. Kim and Kim (2001) discuss another iterative approach for production planning. 
Irdem et al. (2010) show that only the latter approach unambiguously converges when it used for produc-
tion planning in wafer fabs. A disadvantage of the iterative simulation approaches for wafer fabs is the 
huge computational burden that is caused by the repeated simulation runs. Almeder et al. (2009) uses iter-
ative simulation in a supply chain context. However, the setting considered there is quite different from 
semiconductor manufacturing. 

Another stream of production planning research with load-dependent lead times is related to clearing 
functions (Missbauer and Uzsoy 2011). A clearing function provided the expected aggregated output of a 
tool group as a function of an appropriate measure of work in progress (WIP), typically aggregated over 
all products. The tool group-specific clearing functions are incorporated into the linear programming for-
mulations for production planning. The clearing functions are derived from simulation output. It is a non-
trivial task to fit appropriate clearing functions for the tool groups of a wafer fab. Kacar et al. (2012) 
compare the performance of clearing function- and iterative simulation-based linear programming formu-
lations for production planning in a scaled-down wafer fab. It turns out that the linear programming mod-
el based on clearing functions outperforms the iterative simulation-based one with respect to variable pro-
duction plans and with respect to profit. 

Supply network-wide master planning approaches are not well studied for the semiconductor manu-
facturing setting. We are only aware of the paper by Ponsignon and Mönch (2012). However, a clear limi-
tation of our previous work is the assumption of a fixed lead time. In this paper, we make a first attempt 
to mitigate this assumption by considering an iterative simulation scheme. Note that the decision to look 
at an iterative scheme was influenced by the fact that we can reuse the simulation infrastructure that is de-
scribed by Mönch and Zimmermann (2004) and Ponsignon and Mönch (2010). 

3 ITERATIVE SIMULATION APPROACH 

3.1 Iterative Scheme 

The iterative scheme works as follows. 
 

1. We denote the current iteration by i . Initialize 1:i . The maximal number of iterations is set 

 to 30max iter . Initialize the lead time  1
pmLT  for lots of product p  in facility m  by using his- 

torical data or results from simulation runs where the given demand is used to  determine a re-   

lease schedule. We denote the lead time used in iteration i  by  i
pmLT . 

2115



Ponsignon and Mönch 
 

2. Determine capacity consumption matrices  i
pmC  based on  i

pmLT , and solve the master planning  

 problem using RA-MPSC. The resulting release schedule is denoted by  i
pmtx~ . 

3. Use  i
pmtx~  to perform three independent simulation runs. Take the mean for the cycle time ob- 

 tained by the runs to estimate the cycle time  i
pmCT  

4. If maxiteri  then update        i
pm

i
pm

i
pm CTLTLT   1:1 , where 10   is a prescribed smooth- 

 ing parameter. Round up  1i
pmLT  to the next integer. In addition, set 1:  ii  and go to Step 2. 

Otherwise, stop. 
 

Note that we do not use a convergence condition as a termination criterion of the iterative scheme 
since we intend to investigate the evolution of the lead times in the long run. However, we limit the 
scheme to thirty iterations to keep the computational burden reasonable. A similar assumption is made in 
Irdem et al. (2010). The selection of the smoothing parameter   influences how much cycle time infor-
mation from the simulation is taken into account when RA-MPSC is executed. Values for  close to one 
have the effect that almost the full cycle time information is used. Different values for   will be consid-
ered within our design of experiments. 

3.2 Implementation Issues 

We use the infrastructure for iterative simulation that is described by Mönch and Zimmermann (2004) 
and that was later extended to the simulation of supply chains by Ponsignon and Mönch (2010). The cen-
ter point of this architecture is a blackboard-type data layer between an AutoSched AP simulation model 
of the one-stage supply chain and the master planning heuristic. Using notification functions of the simu-
lation engine, the blackboard keeps track on completed lots to collect information related to the cycle 
times. The blackboard contains methods to calculate the capacity consumption matrices for each product 
and each facility. RA-MPSC and the blackboard are coded in the C++ programming language. 

4 COMPUTATIONAL EXPERIMENTS 

4.1 Design of Experiments 

We are interested in examining the effect of three factors from the base and planning system on the per-
formance of the iterative simulation scheme. The demand level (DL) is either low or high to influence the 
resource utilization. Three different settings for the initial lead times (ILT) of the products are considered. 
Accurate initial lead times result from Step 1 of the iterative scheme described in Subsection 3.1. Over-
estimated and under-estimated initial lead times are obtained by increasing and decreasing the accurate 
values by one period, respectively. Values for   are 0.20, 0.50, and 1.00. Similar settings for DL and  
are considered in Irdem et al. (2010). A factorial design is used that leads to eighteen factor combinations. 
To limit the computing effort, one problem scenario is considered per factor combination. We perform 
three independent simulation replications for each combination. It allows mitigating the effect of variabil-
ity in the base system on the results. Totally, 1620 simulation runs are carried out in the experiments. The 
design of experiments in use is summarized in Table 1. 

The master plan typically has a horizon of six months divided into weekly buckets. We reduce the 
length of a single planning period to two days to mimic the situation that the cycle time in wafer fabs is 
often six weeks and weekly buckets are assumed. In addition, this approach decreases the computational 
effort. 
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Table 1: Design of Experiments 
Factor Level Count 

Base System 
Demand Level (DL) low, high 2 

Planning System 
Initial Lead Time (ILT) accurate, over- and under-estimated 3 

Smoothing parameter ( ) 0.20, 0.50, 1.00 3 
Total factor combinations 18 

Number of problem scenarios per combination 1 
Number of simulation replications per combination for a single iteration 3 

Total number of simulation runs for a single iteration 54 
 

The revenue and cost settings used by RA-MPSC are similar to the settings used in Ponsignon and 
Mönch (2012) to which a scaling down factor of 3.5 is applied due to the different time unit. The parame-
ter settings of RA-MPSC are the same as in Ponsignon and Mönch (2012). 

4.2 Simulation Model Used 

The base system is represented by a simulation model. It consists of 4max m  parallel wafer fabs. Each 
product can be processed in each of the four facilities. We consider 32max p  products in all problem 
scenarios. The standard lot size is assumed to be 48 wafers in all facilities. We define the sequence of op-
erations based on a simulation reference model that is derived from the MIMAC-I data set ( MASMLab 
1997). A process flow is assigned to each product that is a unique combination of sub-flows from the two 
products of the reference model. The processing of the products requires between 56 to 66 process steps 
depending on the fabrication routes. The process flow definition is identical in all facilities. Consequently, 
each product has the same raw process time in each wafer fab. We do not model setups and operators in 
the simulation model. The lithography work center is considered as the leading bottleneck in each facility 
due to the reentrant flows and the expensive machines. Hence, we set 1max b . A similar assumption is 
made in Ponsignon and Mönch (2012). To keep the simulation model simple, the number of machines at 
the leading bottleneck is identical in all wafer fabs, i.e., the capacity of the base system is equally distrib-
uted across the facilities. The Earliest Due Date (EDD) dispatching rule is used to rank the lots in front of 
the bottleneck work centers. The First In First Out (FIFO) rule serves as a tie breaker. The single source 
of variability in the base system is the unplanned down time of the machines at the bottleneck work cen-
ters. The mean time to repair (MTTR) and mean time to failure (MTTF) distributions follow exponential 
distribution. We set MTTR=157 minutes and MTTF=2686 minutes. With this setting, the operation time 
of the machines is decreased by 5.85% on average. 

A reduction approach is carried out to allow for decreasing the computational burden. We apply the 
method proposed in Hung and Leachman (1999) to downsize the degree of detail in the simulation  model 
while achieving lot cycle time distributions that are comparable to those obtained with a detailed model. 
The reduced model focuses on a detailed modeling of the bottleneck resources. Non-critical machines are 
represented by stochastic delays using a Gamma distribution in the process flows of the lots. A similar 
approach is used in Ponsignon and Mönch (2010). 

The model is initialized by performing three initial simulation runs with respect to the demand level 
under consideration, recording the number of lots in processing and in the queues, and adding the aver-
aged WIP at the beginning of the first period of each simulation runs. The computational experiments are 
carried out on a computer equipped with a 2.5 GHz dual processor and 2.0 GB memory. The average 
computing time for performing thirty iterations of a single simulation run is around twenty-five minutes. 
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4.3 Results 

We first investigate the convergence of the iterative scheme under different DL, ILT, and  factor levels. 
Therefore, we define the percentage mean absolute deviation (MAD) of the cycle time of product p in it-

eration i as 



max

1

)(

max

)( %100
:

m

m

pmpm
i

pm
i

p CTCTCT
m

MAD , where )(i
pmCT  is the cycle time of product p aver-

aged across all lots released from facility m during iteration i and 



max

1

)(1
:

iter

i

i
pmpm CT

n
CT . MAD values near 

zero suggest the convergence of the scheme. A similar measure is used in Hung and Leachman (1996) 
and Irdem et al. (2010). We follow the recommendation stated in the latter to consider the MAD values of 
the individual products. In the following, the MAD values are plotted as a function of the iterations. 

Figure 2 shows the MAD values for the (DL=High, ILT=Accurate, =0.20) case. The demand level 
setting leads to an average resource utilization of 92%. The overall maximum MAD value of 41.3% is ob-
tained in the first iteration. One can see the continuous decrease of the MAD values in the first five itera-
tions followed by a period of erratic fluctuations for some products. A rather stable level is observed after 
the thirteenth iteration. The maximum deviation from this iteration onwards reaches 10.8% while for the 
majority of the products their MAD values do not cross the 5% threshold. 

Figure 3 plots the rounded product lead times used in RA-MPSC as a function of the iterations. For 
the purpose of this figure, the lead times are averaged across all facilities. The initial setting is four peri-
ods for all products. One sees the refinement of the lead times as a result of the iterative scheme, i.e., 
some product lead times converge to three periods while the others keep the four period setting.  
 

 
Figure 2: MAD in product cycle times for the (DL=High, ILT=Accurate, =0.20) case. 

 
We are interested in the effect of the ILT settings. The case of under-estimated ILT is shown in Fig-

ures 4 and 5. We observe higher MAD values in the first five iterations compared to the accurate case. 
The decrease of the MAD values follows a slower trend. All MAD values fall below the 10% threshold 
after 16 iterations and the average MAD value is slightly below 5%. The last lead time change occurs in 
the sixteenth occurrence. Hence, despite the initial bias of one period the iterative scheme seems to con-
verge. A similar pattern can be observed for the cases with over-estimated ILT.  
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Figure 3: Product lead times for the (DL=High, ILT=Accurate, =0.20) case. 

 
The cases with a low demand level are characterized by lower MAD values at the beginning of the it-

erative scheme and a steep decrease in the first five iterations. The worst case is observed for the 
(DL=Low, ILT=Under-estimated, =0.20) case where the maximum MAD value reaches 18% in the first 
iteration, and the last lead time change occurs at the twelfth iteration. The MAD values are below 4% 
from this iteration onwards. Hence, a convergence pattern is observed as well. This is not surprising since 
the average resource utilization of 54% leaves a certain flexibility to the base system to deal with different 
initial parameters.  
 

 
Figure 4: MAD in product cycle times for the (DL=High, ILT=Under-estimated, =0.20) case. 

 
We analyze the effect of different values for . Figures 6 and 7 show the (DL=High, ILT=Accurate, 

=0.50) case. A higher  value allows for taking more cycle time information from the simulation into 
account. We observe a much steeper decrease in the first three iterations than for the (DL=High, 
ILT=Accurate, =0.20) case. Also the last lead time change occurs much earlier, i.e., in the seventh itera-
tion. We conclude that the =0.50 setting expedites the convergence of the iterative scheme. 
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Figure 5: Product lead times for the (DL=High, ILT=Under-estimated, =0.20) case. 

 
On the other hand, the MAD values obtained for the cases with =1.00 show high fluctuations and no 

convergence pattern. The worst case is obtained for the (DL=High, ILT=Under-estimated, =1.00) case 
where the overall maximum MAD value reaches 48% in the twentieth iteration. Since more information is 
taken from the simulation, the convergence of the scheme is subject to the variability of the base system. 
Hence, it seems to exist a tradeoff between the convergent trend and the convergence speed. 

Besides the convergence of the cycle times, it seems important to investigate the impact of the itera-
tive scheme on the objective function values of RA-MPSC. In this situation, the MAD measure 

as FFFMAD ii  )()( %100:  where )(iF  is the objective function value in iteration i and 



max

1

)(1
:

iter

i

iF
n

F  

is applied. Figure 8 plots the MAD values for the (DL=High, ILT=Accurate, =0.20) case. One sees a 
similar pattern as in Figure 2, i.e., the MAD values decrease in the first six iterations, followed by erratic 
fluctuations between the tenth and the eighteenth iterations. After the twentieth iteration, the MAD value 
stays at a rather  low level. A similar convergence behavior is observed for all other cases.  

 
Figure 6: MAD in product cycle times for the (DL=High, ILT=Accurate, =0.50) case. 

 
To ensure the benefits of the iterative scheme, we investigate the throughput obtained from the simulation 
model as a function of the iterations. We apply the MAD measure described at the beginning of this sub-
section without taking absolute values of the summands. We get for each product and each iteration the 
difference between the realized throughput in all facilities and the average throughput across all iterations. 
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The mean deviations cumulated across the products are showed in Figure 9 for the (DL=High, 
ILT=Accurate, =0.20) case. We observe higher positive deviations towards the last iteration than at the 
beginning of the iterative scheme, i.e., a higher throughput is reached. 

 
Figure 7: Product lead times for the (DL=High, ILT=Accurate, =0.50) case. 

 
Figure 8: MAD in RA-MPSC objective function values for the (DL=High, ILT=Accurate, =0.20) case. 

 
Note that on average up to two percent throughput improvement is reached over all products. The trend 
clearly increases from the nineteenth iteration onwards. We can draw a parallel with Figure 8 that shows 
the lower MAD values starting from the same iteration. The higher throughput can be explained by the 
increasing number of products whose lead time is adjusted from four to three periods as shown in Figure 
3. Lower lead times allow for more production requests being planned by RA-MPSC. 

5 CONCLUSIONS AND FUTURE RESEARCH 

In this paper, we discussed an iterative simulation scheme for master planning in a one-stage scaled-down 
semiconductor supply chain. The scheme alternates between a rather straightforward master planning 
heuristic and a reduced discrete-event simulation model of the supply chain. An AutoSched AP simula-
tion is used that mimics important characteristics of wafer fabs. We demonstrated that the scheme con-
verges after a small number of iterations and that it leads to less variable, more profitable production 
plans compared to planes obtained by the fixed lead time approach. 
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Figure 9: Mean deviation in realized throughput for the (DL=High, ILT=Accurate, =0.20) case. 

 
There are several directions for future research. First of all, we are interested in incorporating more 

sophisticated heuristics for master planning in our iterative scheme. In addition, more empirical testing of 
the approach is necessary. We are also plan to see whether we can use the coarse-grained simulation ap-
proach proposed by Ehm et al. (2011) to replace our current more detailed simulation models or not. Fur-
thermore, it seems challenging to try to use clearing functions in a setting different from linear program-
ming.  
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