
Proceedings of the 2012 Winter Simulation Conference
C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A. M. Uhrmacher, eds.

A COMPOSITIONAL APPROACH FOR MODELING AND
SIMULATION OF BIO-MOLECULAR SYSTEMS

Fernando J. Barros

Universidade de Coimbra
Departamento de Engenharia Informática

PT-3030 Coimbra, PORTUGAL

ABSTRACT

The simulation of biological systems is a challenge to modeling methodologies. Living entities are supported
by a complex hierarchical network of chemical reactions. The accurate representation of organisms require the
use of stochastic chemical equations (SCE) organized into compartments in order to reflect the organization
into cells, tissues and organs. In this paper we introduce a modeling and simulation framework based on
the Heterogeneous Flow System Specification formalism (HFSS). HFSS provides an hybrid representation
of dynamic systems, being able to describe sampled and discrete event systems. These features enable
a modular representation of stochastic chemical reactions. In particular, we show that SCE require only
two types of HFSS models defined in this paper: molecule holders, and chemical reactors. We provide
a description of a HFSS implementation based on pluggable software units (PUs), a component-based
framework that supports the development of SCE libraries.

1 INTRODUCTION

The simulation of biological systems requires the ability to model at different levels of abstraction. At the
basic level, biological systems are commonly represented by a network of chemical reactions organized into
compartments. Since these compartments have a small number of molecules, the accurate representation
of chemical reactions require the ability to describe each reaction individually, involving the numerical
solution of stochastic chemical equations (SCEs) (Gillespie 1977). Living organisms, like cells, exhibit
a dynamic life-cycle that includes reproduction and death. To faithfully represent this behavior, a sound
modeling and simulation formalism needs to have the ability to modify model topology with the creation
and destruction of components. The ability to represent the activation/inhibition of chemical reactions in
cells can also be achieved with changes of topology.

The Heterogeneous Flow System Specification (HFSS) is a modeling formalism supporting the constructs
to support the representation of hybrid modular systems with a dynamic topology. In this paper we exploit
HFSS capabilities to develop a modular representation of SCEs organized in a network of hierarchical
components with dynamic topology. Modularity is achieved by HFSS capability to represent dynamic
systems based on the combination of discrete events (Zeigler 1976) and generalized sampling. These
features enable a modular representation of molecule holders/bins and chemical reactions. We show that
these two types of components can be employed to define arbitrary networks of chemical stochastic reactions.

We provide here the HFSS description of these two elements along with a formal definition of a small
network of chemical reactions given by Paulsson, Berg, and Ehrenberg (2000).

The HFSS formalism is implemented in the JUSE (Barros 2011), a programming language supporting
reusable components based on independent and pluggable software units (PUs). We describe model
implementation in JUSE and we present preliminary simulation results.

978-1-4673-4780-8/12/$31.00 ©2012 IEEE 2654978-1-4673-4782-2/12/$31.00 ©2012 IEEE

Barros

2 THE HFSS FORMALISM

The Heterogeneous Flow System Specification (HFSS) is a formalism aimed to represent hybrid modular
systems (Barros 2003). HFSS defines two types of models: basic and network. Basic models provide state
representation and state transition functions. Network models are a composition of basic models and/or
other network models. Given its definition, a network provides an abstraction for representing hierarchical
systems. HFSS networks have a dynamic topology that can be modified at runtime.The HFSS uses as
the time base the set of Hyperreals H (Goldblatt 1998), a set that defines the infinitesimal number ε . As
a particular case of topology adaptation, HFSS can also represent the migration of components between
networks (Barros 2005).

2.1 HFSS Basic Model

In this section we describe HFSS basic models and their semantics. We consider B̂ as the set of names
corresponding to basic HFSS models. A HFSS basic model associated with name B ∈ B̂ is defined by:

MB = (X ,Y,P,ρ,ω,δ , Λ̄,λ)

where

X = X̄× Ẍ is the set of input flow values

X̄ is the set of continuous input flow values
Ẍ is the set of discrete input flow values

Y = Ȳ × Ÿ is the set of output flow values
Ȳ is the set of continuous output flow values
Ÿ is the set of discrete output flow values

P is the set of partial states (p-states)
ρ : P−→H0

+∞ is the time-to-input function
ω : P−→H0

+∞ is the time-to-output function
S = {(p,e)|p ∈ P,0≤ e≤ ν(p)} is the state set

with ν(p) = min{ρ(p),ω(p)}, representing the time to transition function
δ : S×X∅ −→ P is the transition function

where X∅ = X̄× (Ẍ ∪{∅})
and ∅ represents the null value (absence of value)

Λ̄ : S−→ Ȳ is the continuous output function
λ : P−→ Ÿ is the partial discrete output function

HFSS models describe independent entities that can only communicate through input/output interfaces,
defined by sets X and Y, respectively. These sets are structured into continuous and discrete parts since
the corresponding HFSS components can accept and produce hybrid signals. The transition function, δ ,
describes how a component changes from the current p-state to the next one. Transitions can be triggered
by different conditions. A component can change its p-state due the arrival of a discrete flow. A component
can also change the p-state according to its autonomous behavior specified by the time-to-input/output
functions ρ and τ . When the time elapsed in the current p-state reaches a value specified by one of these
time functions, the component changes its p-state. A change can also be triggered by any combination
of the previous conditions. The output function Λ̄ describes the continuous flow output of a component,
while the function λ describes the discrete flow. This latter function can only be non-null when the time
elapsed in the current p-state reaches the time-to-output function τ .

2655

Barros

We briefly describe the semantics of HFSS components, more details can be found in (Barros 2008).
Figure 1 depicts the typical trajectories of a HFSS component. At time t1 the component in p-state p0
samples its input since its elapsed time reaches τ(p0) = ρ(p0) = e. The component changes its p-state to
p1 = δ ((p0,ρ(p0)),(x1,∅)), where x1 is the sampled value and no discrete flow is present.

Figure 1: Basic HFSS component trajectories.

At time t2 the discrete flow xd is received by the component that changes to p-state p2 = δ ((p1,e1),(x2,xd)),
where x2 is the continuous flow at t2. At time t3 the component reaches the time-to-output time limit and
it changes to p-state p3 = δ ((p2,ω(p2)),(x3,∅)). At this time the discrete flow yd = λ (p2) is produced.
Additionally, component continuous output flow is always present and given by Λ̄(p,e). We provide next
the HFSS definition of two basic models: Molecule Holder and Reactor that are used in this paper as
the backbone for chemical reaction representation. These two models enable a hierarchical and modular
definition of arbitrary networks of stochastic chemical equations.

Example I: Molecule Holder

The numerical solution of SCEs requires the computation of propensities, a value based of the number
of molecules involved in each reaction. Modeling chemical reactions require thus the representation of
molecule holders whose main task is to make available the number of molecules of each species. Since
propensity changes with the number of molecules, holders need also to signal changes to all reactions
depending on the corresponding species. A molecule holder is described by:

MH = (X ,Y,P,ρ,ω,δ , Λ̄,λ)

where

X = {}×N+
0 , where N+

0 is the set of positive integer numbers
Y = N×{change}

2656

Barros

P = R×N+
0 , where R is the set of real numbers

ρ(β ,n) = ∞

ω(β ,n) = β

δ (((β ,n),e),(∅,∅)) = (∞,n)
δ (((β ,n),e),(∅,n′)) = (0,n+n′)
Λ̄((β ,n),e) = n
λ (β ,n) = change

Holders receive as input the variation in the number of molecules. After receiving this value, the holder
transmits the current number of molecules as a discrete flow signal. The number of molecules is kept as a
continuous output flow so it can be sampled at arbitrary times by the involved reactions. Typical holder
input and output trajectories are depicted in Figure 2, where molecules are added at times t1 and t2 and
removed at time t3.

Figure 2: Holder discrete input flow and continuous/discrete output flows.

Example II: Reactor

A reactor is the other component required to model bio-molecular SCEs. Reaction time is computed based
on the next reaction time (NRT) algorithm (Gibson and Bruck 2000). A reactor component samples the
propensity and computes the reaction time. The reaction occurs then at the computed time if the propensity
remains unchanged. Otherwise, a new reaction time is computed based on the current propensity and on the
time elapsed since the last reaction instant. When the reaction occurs it issues a discrete flow reaction
so the involved molecule holders can be updated. The reaction then samples the propensity to compute its
next reaction time. A reactor is described by:

MR = (X ,Y,P,ρ,ω,δ , Λ̄,λ)

where

X = R×{change}
Y = {}×{reaction}
P = R×R×R
ρ(α,β , propensity) = α

ω(α,β , propensity) = β

2657

Barros

δ (((α,β , propensity),e),(p,∅)) = (∞,EXPONENTIAL(p), p)
where EXPONENTIAL(p) is an exponential random variate with mean p

δ (((α,β , propensity),e),(p,change)) = (α,(β − e) · propensity/p, p)
Λ̄((α,β , propensity),e) =∅
λ (α,β , propensity) = reaction

The direct method (DM) (Gillespie 1977), an alternative to NRT, is not amenable to a modular and
hierarchical representation since it requires the overall knowledge of all propensities. On the contrary NRT
is based exclusively on local information, enabling a distributed computation. We note that neither HFSS
reactors nor HFSS molecule holders depend on the kind of chemical reaction they are actually involved
in. This feature is based on the generalized sampling supported by HFSS that enables, in this case, the
definition of independent models that can be used in arbitrary SCE networks.

2.2 HFSS Network Model

As mentioned before, HFSS network models are compositions of HFSS models (basic or other HFSS
network models). Let N̂ be the set of names corresponding to HFSS network models, with N̂ ∩ B̂ = {}.
Formally, a HFSS network model associated with name N ∈ N̂ is defined by:

MN = (X ,Y,η)

where

N is the network name
X = X̄× Ẍ is the set of network input flows

X̄ is the set of network continuous input flows
Ẍ is the set of network discrete input flows

Y = Ȳ × Ÿ is the set of network output flows
Ȳ is the set of network continuous output flows
Ÿ is the set of network discrete output flows

η ∈ η̂ is the name of the dynamic topology network executive
with

η ∈ η̂ representing the set of all names associated with HFSS executive models, constrained to
η̂ ∩ B̂ = η̂ ∩ N̂ = {}

Executives are uniquely assigned to network models, i.e.,

∀i, j∈N̂,i6= jηi 6= η j with Mk = (X ,Y,η)k,∀k∈N̂

The model of an executive η ∈ η̂ , is a modified HFSS basic model, defined by:

Mη = (X ,Y,P,ρ,ω,δ , Λ̄,λ , Σ̂,γ)η

where

Σ̂η is the set of network topologies

γη : Pη −→ Σ̂η is the topology function

The network topology Σα ∈ Σ̂η , corresponding to the p-state pα ∈ Pη , is given by the 3-tuple

2658

Barros

Σα = γ(pα) = (Cα ,{Ii,α}∪{Iη ,α , IN,α},Fi,α ∪{Fη ,α ,FN,α})
where

Cα is the set of names associated with the executive state pα

for all i ∈Cα ∪{η}
Ii,α is the sequence of asynchronous influencers of i
Fi,α is the input function of i

IN,α is the sequence of network influencers
FN,α is the network output function

For all i ∈Cα

Mi = (X ,Y,P,ρ,ω,δ , Λ̄,λ)i if i ∈ B̂

Mi = (X ,Y,η)i if i ∈ N̂

Variables are subjected to the following constraints for every pα ∈ Pα

N 6∈Cα ,N 6∈ IN,α ,η 6∈Cα

N 6∈ Ei,α for all i ∈Cα ∪{η ,N}
FN,α :×k∈IN,αYk −→ Y∅

Fi,α :×k∈Ii,αVk −→ X∅
i

where

Vk =

{
Y∅

k if k 6= N
X∅ if k = N

FN,α((v̄k1 ,∅),(v̄k2 ,∅), ...) = (ȳN ,∅)

Fi,α((v̄k1 ,∅),(v̄k2 ,∅), ...) = (x̄i,∅)

These two last constraints are characteristic of discrete systems and impose that non-null discrete flow
values cannot be created from a sequence composed exclusively by null values.

The executive is a special component that controls the network topology. Topology depends on the
current executive p-state and it is established by the topology function γ . Changes in network topology
include the ability to modify composition and coupling through add and delete operations. Although HFSS
relies on a central component to manage the topology of each network, the decision to change this topology
can be made by any arbitrary component or in cooperative manner by several components. However, this
decision needs to be communicated to the executive so it can become effective. HFSS topology management
guarantees well defined and deterministic behavior when changes in topology occur (Barros 2008).

Example III: Reaction Network

Molecules and reactors described in the last section are the basic elements to define stochastic chemical
systems. We proceed now to the description of a simple system of bio-molecular SCEs (Paulsson et al.
2000). This system involves three kinds of molecules I, S and P whose interactions are described in Table
1 where i, s and p represent the number of molecules of product I, S and P, respectively.

The network executive has a single p-state p0 associated with the topology

Σ0 = γ(p0) = (C0,{Ii,0},{Fi,0})

2659

Barros

Table 1: SCE network.

Id Equation Propensity

R1 /0 r1−→ I r1

R2 I,S r2−→ S r2 · i · s
R3 I

r3−→ P r3 · i
R4 P r4−→ /0 r4 · p
R5 /0

r5−→ S r5

R6 S
r6−→ /0 r6 · s

where

C0 = {R1,R2,R3,R4,R5,R6, I,S,P}
II,0 = {R1,R3}, IS,0 = {R5,R6}, IP,0 = {R2}
IR1,0 = IR5,0 = {}, IR2,0 = {I}, IR3,0 = {P}
IR4,0 = {I,S}, IR6,0 = {S}
FR1,0() = (r1,∅)

FR2,0((ic, id),(sc,sd)) = (r2 · ic · sc,md(id ,sd))

FR3,0(ic, id) = (r3 · ic, id)
FR4,0(pc, pd) = (r4 · pc, id)
FR5,0() = (r5,∅)

FR6,0(sc,sd) = (r6 · sc,sd)

FI,0((R1c,R1d),(R2c,R2d),(R3c,R3d)) = (∅,nI)

FS,0((R5c,R5d),(R6c,R6d)) = (∅,nS)

FP,0((R3c,R3d),(R4c,R4d)) = (∅,nP)

with

md(v1, . . . ,vn) =

{
∅ if v1 = . . .= vn =∅
change otherwise

and

nI =

1 if R1d = change

−1 if R2d = change∨R3d = change

∅ otherwise

nP =

1 if R3d = change

−1 if R4d = change

∅ otherwise

nS =

1 if R5d = change

−1 if R6d = change

∅ otherwise

In the network topology we have omitted executive and network influencers and input/output functions.
The topology defines reaction propensity and reaction rates ri, i = 1..6. This definition, enabled by HFSS
generalized sampling, supports model reuse since both reactors and molecule holders defined in the last

2660

Barros

section are completely independent from the context they are inserted. These two models can thus be
reused with no modification to define any arbitrary SCE network.

A graphical representation of the SCE network is depicted in Figure 3, where components are represented
by a rectangle, functions by circles, and the set of influencers of component A is represented by the components
having links to the input function of component A. We note that there is a direct mapping between the
reactions R1, ..., R6, and the network topology. This direct representation make HFSS models of SCEs
very easy to develop and to understand.

Figure 3: SCE network corresponding to chemical reactions defined in Table 1.

3 PRELIMINARY SIMULATION RESULTS

HFSS is currently implemented in JUSE, a language supporting Pluggable software units (Barros 2011).
We have developed a library of basic components for describing bio-molecular systems in JUSE. This
library can support the modeling and simulation of arbitrary SCE networks through the PUs Holder and
Reactor whose HFSS models were defined in previous Sections. Figure 4 represents the partial network
topology defined in Listing 1.

Molecule holders and reactors are modeled by JUSE pluggable software units (PUs) that have gates
as the only mechanism to communicate. The Holder PU issues a signal through output gate change
when its content is modified. Input gates add and remove add/remove molecules to/from the Holder.
The Reactor PU sends a signal through output gate reaction when a reaction occurs. Propensity
is obtained through output gate propensity. In Figure 4, R6 gets the propensity from S. When the
reaction occurs R6 removes a molecule from S. R5 is a creation reaction and it does not depend on any
molecule. When the corresponding reaction occurs it adds a molecule to S. This behavior closely follows
the equations defined in Table 1, being very easy to define and to verify.

JUSE definition of the overall network is given in Listing 1. To help defining the chemical reactions we
have created method defineReaction(left, name, propensity, remove, add). The first
parameter corresponds to the required molecules to enable the chemical reaction. The second parameter
is the reaction name. The reaction propensity is given next and it is given by a closure whose parameters

2661

Barros

Figure 4: JUSE partial representation of the SCE network of Table 1.

correspond to the molecules defined by the left parameter. The next parameter is the list of the molecules
removed by the reaction. Finally, the last parameter defines the molecules created by the reaction.

1public class Cell extends Executive {
2/ / . . .
3addS(Holder , ’ I ’ , {Holder m−> m. set (mi)}) ; / / i n i t i a l number of type I molecules
4addS(Holder , ’S’ , {Holder m−> m. set (ms)}) ; / / i n i t i a l number of type S molecules
5addS(Holder , ’P’ , {Holder m−> m. set (mp)}) ; / / i n i t i a l number of type P molecules
6addS(Reactor , ’R1’) ;
7addS(Reactor , ’R2’) ;
8addS(Reactor , ’R3’) ;
9addS(Reactor , ’R4’) ;
10addS(Reactor , ’R5’) ;
11addS(Reactor , ’R6’) ;
12defineReaction ([] , ’R1’ , ’{r1} ’ , [] , [1 , ’ I ’]) ;
13defineReaction([1 , ’ I ’ , 1, ’S’] , ’R2’ , ’{ Integer i , Integer s −> r2 ∗ i ∗ s} ’ , [1 , ’ I ’] , []) ;
14defineReaction([1 , ’ I ’] , ’R3’ , ’{ Integer i −> r3 ∗ i } ’ , [1 , ’ I ’] , [1 , ’P’]) ;
15defineReaction([1 , ’P’] , ’R4’ , ’{ Integer p−> r4 ∗ p} ’ , [1 , ’P’] , []) ;
16defineReaction ([] , ’R5’ , ’{r5} ’ , [] , [1 , ’S’]) ;
17defineReaction([1 , ’S’] , ’R6’ , ’{ Integer s −> r6 ∗ s} ’ , [1 , ’S’] , []) ;
18/ / . . .
19}

Listing 1: Cell definition in JUSE.

Listing 1 defines the set of SCEs in a declarative form enabling a simple and intuitive creation of
chemical networks.

PUs Holder and Reactor can be (re)used to define any SCE network. Domain dependent information
is declarative and it is expressed through the propensity function and the links between components.

Preliminary simulation results are presented in Figure 5 that displays the plots of variables I, S and P
for a single simulation run.

JUSE supports HFSS capabilities for supporting changes in topology. Given the HFSS ability to
structure systems into compartments it becomes possible to model complex hierarchical bio-molecular
systems. Future work will also address the automatic translation of Systems Biology Markup Language
(SBML) into JUSE. We plan also to exploit HFSS and JUSE as a basis for a graphical formalism to describe
biological systems (Faeder 2011).

4 RELATED WORK

Hierarchical and modular principles have been used as a powerful heuristic for handling complex problems
in many fields. One of the first formal descriptions of modular decomposition have been made in the area of

2662

Barros

Figure 5: Simulation results.

General Systems Theory (Mesarovic and Takahara 1975), (Wymore 1967). An earlier use of modularly in
software was made in (Kahn 1974), where a synchronous programming language was defined. The modular
description of discrete event systems was first developed in (Zeigler 1976). The concept of generalized
sampling was introduced in (Barros 2002). The combination of generalized-sampling and discrete events
was achieved in HFSS (Barros 2003). The concept of dynamic topology general system network was
developed in (Barros 1997).

Modeling and simulation of biological systems is a recent area that has been subject of intense research
(Curti, Degano, and Baldari 2003), (Kleijn and Koutny 2009), (Mao and Resat 2004), (Phillips 2009),
(Priami and Quaglia 2005), (Regev et al. 2004). Most of these approaches are not based upon a general
purpose modeling and simulation formalisms but they develop ad-hoc solutions to solve SCEs, instead.
The Direct Method (DM) (Gillespie 1977) is often used to simulate SCEs. This choice seems to be imposed
by the lack of an explicit topology support that makes it difficult to use other algorithms like, for example,
the Next Reaction Time (NRT) (Gibson and Bruck 2000). A major drawback of the DM is that it is not
amenable to provide a hierarchical and modular representations of SCEs, similar to that enabled by HFSS.
The DM requires a global knowledge of all chemical equations imposing a centralized engine responsible
to choose the next equation and the corresponding reaction time. This kind of algorithm is not easily
represented in a distributed and hierarchical & modular formalism like HFSS. Although the DM could be
represented in HFSS, it would impose a flat (non-hierarchical) model with all the equations.

The most common formalisms to represent SCEs are based on the π-calculus (Priami and Quaglia
2005), (Phillips 2009), (Versari 2007). Other process algebras formalisms have also been developed like, for
example, Bio-PEPA (Ciocchetta and Hillston 2009), and sCCP (Bortolussi and Policriti 2008). However,
these approaches provide mainly support for the DM that tends to blend models and simulation algorithms.
We found no evidence that the representation of SCEs based on reactors and molecule holders models, as
defined in Section 2.1, can be achieved using these process algebras. We also found that the analysed process
algebras make no provisions for representing dynamic topologies in general and component mobility in
particular, as supported by HFSS (Barros 2005).

We have focused on the representation of chemical reactions using SCSs. Other types of models
based, for example, on ODEs (ordinary differential equations), have been developed (Galpin, Bortolussi,
and Hillston 2009). However, these models provide only a good approximation when a large number of
molecules is involved which is not often the case when describing cellular models. The HFSS formalism
can also describe numerical solvers to represent systems of ODEs (Barros 2003).

The HFSS formalism offers a unique SCEs representation by enabling chemical equations to be
described by only two kinds of models: molecules holders and reactors as shown in this paper. Since HFSS
is a modeling and simulation formalism it offers full support for time advance mechanisms. HFSS also
guarantees a deterministic execution of simulation models and the closure under the composition operation.
The formalism is also able to represent a plethora of models, including, for example, digital controllers and
ODEs (Barros 2003). Given the explicit and dynamic nature of HFSS network topologies, the formalism
can seamlessly support the representation of chemical reactions in dynamic compartments. These features
enable an intuitive and and expressive representation of large and complex SCEs networks, necessary to

2663

Barros

model cells and their organization. Other approaches require the use of explicit components to define timed
behavior, and they seem not to be amenable to support the definition of general purpose components to
support SCEs (Kuttler and Niehren 2006). The support for declarative definitions of SCE networks seems
also limited in these approaches (Kuttler and Niehren 2006).

HFSS explicit topology representation makes it trivial to use the Next Reaction Method (Gibson and
Bruck 2000), a very efficient algorithm to solve SCEs (Mauch and Stalzer 2011). HFSS provides also an
intuitive representation for SCEs enabling a easy development of SCEs networks.

The validation of HFSS models, in particular network models requiring changes in topology, will
benefit from the case studies reported in the literature (Uhrmacher et al. 2011).

5 CONCLUSIONS AND FUTURE WORK

The simulation of biological systems is a challenge to modeling methodologies. We have shown that HFSS
offers key features that are fundamental to represent such systems. HFSS enables a modular description of
biological systems enabling a seamless representation of chemical reaction in compartments. This modular
partitioning can be directly mapped into the organization of living entities into cells. The hierarchical
nature of HFSS enables also the division of cells into other compartments, like the nucleus, enabling the
direct mapping of cell organization. Living entities poses another challenge to modeling methodologies
by exhibiting a dynamic creation and destruction of cells. HFSS provides support for arbitrary dynamic
topologies, including model mobility, (Barros 2005), and we plan to exploit these capabilities to represent
cell division, cell dead and virus attack. Rule-based topology transformation (Michel, Spicher, and Giavitto
2008), will be considered as an extension to the HFSS formalism. Future work will address the development
of libraries to represent actual molecular pathways that can support accurate cell modeling.

ACKNOWLEDGEMENTS

This work was partially supported by the Portuguese Foundation for Science and Technology under project
PTDC/EIA-EIA/100752/2008.

REFERENCES

Barros, F. 1997. “Modeling Formalisms for Dynamic Structure Systems”. ACM Transactions on Modeling
and Computer Simulation 7 (12): 505–515.

Barros, F. 2002. “Towards a Theory of Continuous Flow Models”. International Journal of General
Systems 31 (1): 29–39.

Barros, F. 2003. “Dynamic Structure Multiparadigm Modeling and Simulation”. ACM Transactions on
Modeling and Computer Simulation 13 (3): 259–275.

Barros, F. 2005. “A Formal Representation of Mobile Hybrid Components”. SIMULATION: Transactions
on the SCS 13 (3): 259–275.

Barros, F. 2008. “Semantics of Discrete Event Systems”. In Distributed Event-Based Systems, 252–258.
Barros, F. 2011. Achieving Reuse with Pluggable Software Units, 183–191. Number 6727 in LNCS. Springer.
Bortolussi, L., and A. Policriti. 2008. “Modeling Biological Systems in Stochastic Concurrent Constraint

Programming”. Constraints 13 (1): 66–90.
Ciocchetta, F., and J. Hillston. 2009. “Bio-PEPA: A framework for the modelling and analysis of biological

systems”. Theoretical Computer Science 410 (33–34): 3065–3084.
Curti, M., P. Degano, and C. Baldari. 2003. “Causal π-Calculus for Biochemical Modelling”. In Compu-

tational Methods in Systems Biology, Volume LNCS 2602, 21–34.
Faeder, J. 2011. “Toward a Comprehensive Language for Biological Systems”. BMC Biology 9 (68).
Galpin, V., L. Bortolussi, and J. Hillston. 2009. “HYPE: A Process Algebra for Compositional Flows and

Emergent Behaviour”. In Proceedings of the 20th International Conference on Concurrency Theory,
305–320.

2664

Barros

Gibson, A., and J. Bruck. 2000. “Efficient Exact Stochastic Simulation of Chemical Systems with many
Species and many Channels”. Journal of Physical Chemistry 104:1876–1889.

Gillespie, D. 1977. “Exact Stochastic Simulation of Coupled Chemical Reactions”. Journal of Physical
Chemistry 25:2340–2361.

Goldblatt, R. 1998. Lectures on the Hyperreals: An Introduction to Nonstandard Analysis. New York:
Springer.

Kahn, G. 1974. “The Semantics of a Simple Language for Parallel Programming”. In IFIP Congress,
471–475.

Kleijn, J., and M. Koutny. 2009. “A Petri Net Model for Membrane Systems with Dynamic Structure”.
Natural Computation 8:781–796.

Kuttler, C., and J. Niehren. 2006. “Gene Regulation in the Pi Calculus: Simulating Cooperativity in the
Lambda Switch”. Transactions on Computational Systems Biology vol. 4230, VII:24–55.

Mao, L., and H. Resat. 2004. “Probabilistic Representation of Gene Regulatory Networks”. Bioinformatics 20
(14): 2258–2269.

Mauch, S., and M. Stalzer. 2011. “Efficient Formulations for Exact Stochastic Simulation of Chemical
Systems”. IEEE/ACM Transactions on Computational Biology and Bioinformatics 8 (1): 27–35.

Mesarovic, M., and Y. Takahara. 1975. General Systems Theory: A Mathematical Foundation. Academic
Press.

Michel, O., A. Spicher, and J.-L. Giavitto. 2008. “Rule-Based Programming for Integrative Biological
Modeling”. Natural Computing 8 (4): 865–889.

Paulsson, J., O. Berg, and M. Ehrenberg. 2000. “Stochastic Focusing: Fluctuation-Enhanced Sensitivity of
Intracellular Regulation”. Proceedings of the National Academy of Sciences 97 (13): 7148–7153.

Phillips, A. 2009. “An Abstract Machine for the Stochastic Bioambient Calculus”. Electronic Notes on
Theoretical Computer Science 227:143–159.

Priami, C., and P. Quaglia. 2005. “Beta Binders for Biological Interaction”. In Computational Methods in
Systems Biology, Volume LNBI 3082, 20–33.

Regev, A., E. Panina, W. Silverman, L. Cardelli, and E. Shapiro. 2004. “BioAmbients: An Abstraction for
Biological Compartments”. Theoretical Computer Science 325:141–167.

Uhrmacher, A., J. Himmelspach, and R. Ewald. 2011. Discrete-Event Modeling and Simulation: Theory and
Applications, Chapter Effective and Efficient Modeling and Simulation with DEVS Variants, 139–176.
CRC Press.

Versari, C. 2007. “Encoding Catalytic P Systems in π@”. Electronic Notes in Theoretical Computer
Science 171 (2): 171–186.

Wymore, A. 1967. A Mathematical Theory of Systems Engineering: The Elements. Krieger.
Zeigler, B. 1976. Theory of Modeling and Simulation. Kluwer.

AUTHOR BIOGRAPHY

Fernando J. Barros is an assistant professor at the University of Coimbra. His research interests include
Theory of Modeling and Simulation, Self-Adaptive Systems and Software Reuse. Fernando Barros has
organized several conference and workshops on Modeling and Simulation and he has served in the editorial
board of SIMULATION and the International Journal of Simulation & Process Modelling. He has published
more than 60 scientific papers. Fernando Barros has received the best paper award in the Summer Computer
Simulation Conference 2011.

2665

