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ABSTRACT 

Based on Petri nets as formal language for biomodel engineering, we describe the general concept of a 
modular modelling approach that considers the functional coupling of modules representing compo-
nents of the genome, the transcriptome, and the proteome in the form of an executable model. The 
composable, metadata-containing Petri net modules are organized in a database with version control 
and accessible through a web interface. The effects of genes and their mutated alleles on downstream 
components are modelled by gene modules coupled to protein modules through RNA modules by spe-
cific interfaces designed for the automatic, database-assisted composition. Automatically assembled 
models may integrate forward and reverse engineered modules and consider cell type-specific gene 
expression patterns. Prospects for automatic model generation including its application to systems bi-
ology, synthetic biology, and to functional genomics are discussed.  

1 INTRODUCTION 

Since the One Gene – One Protein Hypothesis has originally been proposed by George Beadle and 
Edward Tatum (Beadle and Tatum 1941) we have learned that the building blocks of life, the genes, 
the RNAs, the proteins, and the metabolites all together form a complex network of regulatory interac-
tions. This network is robust, adaptive, and to some extent self-healing, as it includes multiple regula-
tory feedback loops composed of interacting proteins that often involve other types of biomolecules 
(Figure 1A). The early view that the flow of information within a cell occurs from the genes to the 
proteins has been revisited by many exciting discoveries that have been made during the past decades. 
We meanwhile appreciate that in reality the flow of information, in terms of regulatory interactions, 
occurs back and forth between the components of the different classes of biomolecules (DNA, RNA, 
proteins, small molecules). We also understand that there is extensive information processing mediat-
ed by the network of interacting proteins and that many proteins seem to be just made for fulfilling 
these computational tasks.  

Many qualitative models on molecular mechanisms as well as the corresponding computational 
(kinetic) models exclusively focus on protein-protein interactions. When working with such models 
one should keep in mind that the considered networks are not necessarily hard-wired but may change. 
Alterations in the wiring due to components that may be added, deleted, or modified may be brought 
about by changes in the pattern of expressed genes. The gene expression pattern in general is respon-
sive to environmental (experimental) conditions, it may depend on the considered cell type, or even on 
the history of an individual cell and impact stimulus sensing and responses (see (Otomo et al. 1989) 
for example). Changes in gene expression patterns can be central to regulatory processes. For a given 
process, the importance of gene regulation may differ from species to species. In fission yeast for ex-
ample, the cell cycle is regulated mainly through protein-protein interactions. In mammalian cells, the 
proteins regulating the cell cycle are similar. However, regulation in addition affects changes in the 
gene expression altering the concentration of proteins involved in cell cycle regulation (Lodish et al. 
1996).  

For technical reasons, (high-throughput) experimental techniques often reveal information restrict-
ed to one class of biomolecule at a time (the genome, the transcriptome, the proteome, the metabolome 
etc.) or to one type of molecular interaction (e.g. protein-protein or protein-DNA interactions). For a 
true systems level understanding which systems biology aims at, we have to integrate these data to 
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obtain a comprehensive view of cellular regulation based on dynamic models with predictive power. 
This calls for suitable computational frameworks that can fulfil this task. 

In this context, we promote Petri nets as they offer several features the combination of which 
makes them a versatile framework for modelling and simulation in systems and synthetic biology 
(Fisher and Henzinger 2007; Heiner et al. 2008). 
1. Petri nets are a formal modelling language with a strictly defined syntax and semantics.  
2. There is a number of excellent tools for analysis and simulation of Petri nets provided by an ac-

tive community.  
3. By using an appropriate tool like Snoopy, one can choose to interpret a given Petri net as discrete, 

stochastic, continuous, or hybrid model and perform respective simulations by simply executing 
the model (Rohr et al. 2010).  

4. The graphical representation of the model structure is automatically translated into the mathemati-
cal equations used for simulations. This WYSIWYG feature is especially welcome by biologists 
and helps to avoid misunderstandings between experimentalists and theoreticians. 

5. Because Petri nets as a formal language are mathematically defined, their structure and their dy-
namic behaviour can be  treated mathematically (e.g. (Durzinsky et al. 2012; Durzinsky et al. 
2011; Marwan et al. 2008)).  

6. Coloured Petri nets are an extremely powerful extension as they combine the strengths of the 
various types of Petri nets with the expressive power of a programming language (Liu and 
Heiner 2012). This becomes particularly relevant for building realistic models of complex biosys-
tems at the molecular and the cellular level and their simulation in the continuous, stochastic, or 
hybrid world.  

7. Last but not least, because the graphical representation of Petri nets is very similar to the way 
biologists usually draw molecular interactions and biochemical reactions, Petri nets are easily and 
intuitively accessible to wet lab scientists, even to those that lack any mathematical skills. On the 
other hand, the strictly defined formalism of Petri nets enforces bioscientists to be consistent in 
the description of a biological process in the form of a model.  

Building on these features, we use Petri nets to design a strictly modular approach to biomodel engi-
neering (Breitling et al. 2010). In this article, we assume basic knowledge on Petri nets. Readers not 
familiar with Petri nets or with the application of Petri nets to systems biology may find a brief over-
view in the review by Pinney (Pinney et al. 2003) and tutorial-like introductions elsewhere (Blätke et 
al. 2011a; Marwan et al. 2012). 

2 MOTIVATION AND PREVIOUS WORK 

2.1 Motivation 

Kinetic models of regulatory reaction networks are a core component of systems biology. As the pow-
er of modelling and simulation of biological systems becomes increasingly evident, and the number of 
models describing regulatory networks is growing, some inherent disadvantages of conventional mod-
els, let us call them monolithic models, emerge. The description of molecular mechanisms in terms of 
a model and their implementation in the form of equations should be well documented (Waltemath et 
al. 2011) which often is not the case. Employing formal languages to describe reaction mechanisms 
and causal dependencies in the form of a strict and simple syntax may help to overcome this problem. 
Formal languages like Petri nets can be automatically translated into the corresponding list of equa-
tions, which are used to run simulations.  

At least from our point of view, the formal language alone does not solve the problem completely. 
Especially for non-modellers, still the vast majority among the bioscientists, the structure of complex, 
monolithic models, even in formal language, appears neither obvious nor easily accessible. This may 
be one reason why modelling still is not widely appreciated in the biosciences. Despite from that, 
monolithic models cannot be easily curated, updated, or modified by persons other than the author of a 
model, simply due to the complexity of the overall structure. Moreover, most existing models cannot 
be easily combined with each other without making major adaptations to the model structure.  

Instead of creating monolithic models, we therefore propose to systematically create modules 
made of Petri nets. From the very beginning, these modules are designed for the automatic composi-
tion of biomodels, contain searchable metadata for documentation, and are organised in a database.  
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2.2 Previous Work 

The modular (object-centred) approach is based on three essential components: the definition of mod-
ules, a few and simple rules according to which modules are designed, and the database that organises 
the modules and manages different versions thereof. Initially, we developed the modular approach to 
model signalling networks composed of proteins (Blätke et al. 2012b; Blätke et al. 2011b; Blätke et al. 
2010). More recently, we generalised the concept by the definition of modules representing genes or 
RNAs (Blätke et al. 2012c). This extension allows to consider the impact of gene expression patterns 
and mutations on protein interaction networks and consequently allows to predict phenotype from 
genotype.  
By providing a biochemical example of cellular signalling we will demonstrate how modular Petri net 
modelling in principle works. We will then discuss potential applications of modular models to sys-
tems and synthetic biology, and prospects of their extension by functional genomics data sets. To start 
with, let us briefly explain how modules are composed and which module prototypes are defined in 
order to obtain integrative models.  

3 MODULES: STRUCTURE, COMPOSITION, PROTOTYPES, AND GENERAL 
STRUCTURAL PROPERTIES 

3.1 Structure and Composition 

According to the fundamental definition, a module represents a corresponding biomolecule and its 
direct interactions with other biomolecules. As natural biochemical reaction networks occur through 
the mutual interaction of biomolecules as the natural building blocks of life, executable biomodels are 
composed of interacting Petri net modules. The modularity of any resulting biomodel mirrors the 
modular composition of the living system at the molecular level. As we will show later, modules may 
be used to visualise the molecular evolution of life in terms of families of similar or related modules. 
This is a truly natural approach to the engineering of biomodels. 
 Each module is composed of a Petri net and associated metadata consisting of commented lists of 
places and transitions and of additional documentation like literature citations or links to sequence da-
tabase entries and further material useful to judge the validity of the Petri net (Blätke et al. 2012a; 
Blätke et al. 2012b). The Petri net of a module graphically displays subprocesses clearly arranged and 
spatially well separated from each other. With this clear layout, a module can be easily understood. 
Accordingly, modules adhere to simple and clearly defined design principles (Figure 1B). Because of 
the metadata, a module can also serve as a kind of mini-review on the reaction mechanisms of the rep-
resented biomolecule and its functional interactions with other components. Being publicly accessible 
through a database with web interface, modules may be curated by experts and their approval docu-
mented accordingly. As the database allows different versions of each module, contradicting views on 
mechanisms can be fully represented. By simply exchanging modules with a mouse click the impact 
of contradicting mechanisms on the behaviour of complex systems can be easily evaluated without the 
need of rebuilding monolithic models manually. 
 The database plays a central role in the management of model versions and helps selecting mod-
ules for the automatic composition of biomodels. Automatically evaluating the lists of places and tran-
sitions, the user receives suggestions, which modules may be coupled to each other and alerts if there 
exist alternative modules that may be incorporated. The database is also helpful in creating modules 
representing related proteins by providing templates that can be modified as necessary. The different 
transducer proteins functioning as sensory receptors in photo- and chemotaxis of prokaryotes provide 
an example (see below).  

3.2 Module Prototypes 

Originally, protein modules were defined for modelling and simulation of protein interaction networks 
(Blätke et al. 2012b; Blätke et al. 2011b; Blätke et al. 2010). For creating more comprehensive models 
of regulatory control, we defined additional module prototypes, each centred around one object 
(Blätke et al. 2012c). The object can be a protein, a gene or an RNA (Figure 1B). For those cases 
where a module does not describe known molecular interactions, we define allelic influence modules 
and causal interaction modules. These extensions are made with the notion that the introduction of 
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new module types should be restricted to a minimum to keep the system and the rules for module de-
sign as simple as possible. 
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Figure 1: Major regulatory interactions between biomolecules (A) and structures of the modules proto-
types (B). Panel (B) was taken from (Blätke et al. 2012c). 

Protein modules are centred around one protein molecule as defined by an individual polypeptide 
chain. A protein module represents the binding of and dissociation from other molecules (e.g. the for-
mation of multi-protein complexes), the formation and cleavage of covalent bonds including the catal-
ysis of biochemical reactions (e.g. the phosphorylation of proteins), and conformational changes that 
may alter the activity or the properties of a protein.  

Protein degradation modules represent the degradation of proteins, which may be regulated by 
other factors. Protein degradation modules are kept separate from protein modules so one can choose 
whether or not to consider protein degradation processes within a model. 

Gene modules represent the transcriptional activity of a gene, the regulation of gene activity 
through binding or dissociation of protein factors, and its epigenetic covalent modification.  

RNA modules represent the biosynthesis of RNA by transcription of a gene, the posttranscription-
al modification of RNA including splicing and alternative splicing reactions, the binding and dissocia-
tion of proteins, the translation into the proteins encoded by the mRNA, and the degradation of the 
RNA including its potential control through proteins or RNAs. While gene modules, protein modules, 
and protein degradation modules are strictly centred around one molecule, the RNA module represents 
the primary transcript of a gene but in addition all of its reaction products. The RNA module merges 
the complex processes of transcription, RNA processing and modification, translation of the mRNAs 
(protein biosynthesis), and RNA degradation into single Petri net transitions, respectively. Eukaryotic 
RNAs may be alternatively spliced to form different mature mRNAs derived from a primary tran-
script. Prokaryotic mRNAs may be bicistronic or polycistronic transcripts, i.e. one RNA module is 
translated into two or several proteins, respectively. We currently feel that the comprehensive repre-
sentation of all subsequent reactions of a primary transcript within a RNA module is best for providing 
information at a glance and does not spoil the benefits of the modular modelling approach. 

Causal interaction modules represent causal influences of entities on molecular or cellular pro-
cesses. Causal interaction modules may be required for reverse biomodel engineering approaches or to 
model the experimental addition or removal of factors or stimuli. 

Allelic influence modules represent the effects of alleles (mutated versions of a gene) on molecu-
lar or cellular processes or on the system in general. While a gene module represents known molecular 
interactions, the allelic influence module is used to represent indirect causal influences. This causality 
may be mediated through an unknown and arbitrary number of steps and additional components. For-
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mally, an allelic influence module could be considered as a subtype of a causal interaction module. 
Both, allelic influence modules and causal interaction modules represent dependencies and allow the 
reverse engineering of modules. They are specifically designed to allow the combination of reverse 
engineered modules with the forward engineered molecular-type modules into a composed biomodel.  

4 THE COMPOSITION AND RECOMBINATION OF MOLECULAR MODULES IS A 
BASIC PRINCIPLE IN THE EVOLUTION OF REACTION NETWORKS: 
PROKARYOTIC TAXIS AS EXAMPLE 

Natural proteins are polypeptide chains of amino acids arranged in strictly linear sequence. Consider-
ing the average length of a polypeptide chain of about 300 amino acids and the number of 20 amino 
acids that are found in proteins, the total number of atoms that would by required to synthesize all the 
combinatorially possible sequences is higher than the number of atoms in our universe (Alberts et al. 
2008). However, only a very small fraction of these sequences is found in nature, presumably due to 
the constraint put by evolutionary selection that the polypeptide chain must fold into a stable structure 
in order to give a functional protein. Sequence comparisons show that many proteins are composed of 
modular parts, called domains that have been assembled into proteins during molecular evolution. 
Types of domains found in different proteins are defined by their sequence or structural similarity, 
indicating that functionally important sequences have been conserved through the constraints of struc-
ture-function relationships. The taxis of prokaryotes is a paradigm that convincingly demonstrates this 
principle. 
 Prokaryotes are simple cells that developed before evolution invented the cell nucleus in creating 
the eukaryotes. The prokaryotes are composed of two groups, bacteria and archaea (Elkins et al. 2008; 
Woese et al. 1990). Although bacteria and archaea are very similar in their cellular organisation, ar-
chaea have some molecular features in common with the eukaryotes. Therefore, the comparison of 
bacteria, archaea and eukaryotes gives valuable insights into molecular evolution (Koretke et al. 2003; 
Koretke et al. 2000; Schaller et al. 2011; Schlesner et al. 2009; Stewart 2010). 

Many prokaryotes swim being propelled by flagella or move with the help of other structures 
(Chen et al. 2011; Herzog and Wirth 2012). These cells can move towards or away from environmen-
tal factors by specific sensory receptors that are coupled to the motor organelles via a central signal 
transduction system, a so-called two-component system (Falke et al. 1997; Schaller et al. 2011). This 
phenomenon is called taxis. 

A typical taxis system of a prokaryotic cell is composed of (chemo-) receptors in the form of me-
thyl-accepting taxis proteins: the central kinase CheA, the response regulator, CheY, enzymes (CheR 
and CheB) involved in chemosensory adaptation mediated by reversible methylation of the taxis re-
ceptors, and adapter proteins like CheW. In its phosphorylated form, CheY interacts with the proteins 
of the switch complex of the flagellar motor which control its rotational direction and thereby the 
swimming behaviour of the cell (Figure 2).  
Comparison of the evolutionary related taxis systems of different prokaryotes provides fascinating 
insights into the way of how signal transducing regulatory networks evolved. Although the core sys-
tem is preserved in the different prokaryotic species, the networks may be composed of additional 
nodes. These may emerge from proteins derived by gene duplication and mutation, e.g. like the two 
forms of CheY found in various species ((Schlesner et al. 2009; Szurmant and Ordal 2004) and refe-
rences therein). In some systems, additional proteins essentially contribute to the dynamic function of 
the network like the CheV protein in Bacillus subtilis (Szurmant and Ordal 2004) or CheD in Halo-
bacterium salinarum (Schlesner et al. 2009).  

In addition to the molecular variety of the central signal processing core of the taxis network, there 
is even more variety at the level of the sensory receptors and great divergence at the level of the effec-
tor systems, the motor organelles. One example of gaining new functions by the modular recombina-
tion of proteins at the level of receptors is the sensory rhodopsin-transducer complex of Halobacte-
rium. By combining modified proton pumps with truncated chemoreceptors, nature has created photo-
receptors for colour vision (see below for details). 

Comparative research on the chemotaxis system of prokaryotes has shown that the core signal 
transduction machinery with CheY as response regulator can control very diverse effector systems in 
terms of motor organelles. It controls bacterial-type flagellar motors, which in themselves are a group 
of structurally variable ion gradient-driven nano-machines of heterogeneous morphology and protein 
composition (Chen et al. 2011), but also motor structures involved in gliding motility. In archaea, the 
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core machinery controls a completely different type of flagellar rotary motor (Jarrell and Albers 2012), 
driven by ATP and obviously evolved from completely different proteins than the bacterial equivalent 
(Streif et al. 2008).  
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Figure 2: Two-component signalling through the evolutionary (re-) combination of molecular mod-
ules. The molecular model in (A) was taken from (Streif et al. 2010) and the scheme of halobacterial 
phototaxis was redrawn from (Koch and Oesterhelt 2005). 

In addition to those two-component systems that are involved in the taxis of prokaryotes, there are 
many other two component systems involved in sensing environmental or internal factors, many of 
which control the differential expression of genes in order to adapt the organism to a changing envi-
ronment (Jung et al. 2012; Schaller et al. 2011; West and Stock 2001). The two components that gave 
the name consist of a kinase, which is autophosphorylating in response to a stimulus and a response 
regulator, which is phosphorylated by the kinase and mediates the response of the cell, e.g. the differ-
ential expression of a set of genes or the motility response during taxis. There is a tremendous number 
of two-component systems found in bacteria, archaea, and eukaryotes. All of them are evolutionary 
related and function with a similar biochemical mechanism. Representing the function of these sys-
tems and their molecular interactions by protein module-type Petri nets is an optional formal alterna-
tive to the common verbal description of this biological variety and to the representation of these mol-
ecules in sequence databases. Such Petri net modules can be organised in the database which we re-
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cently implemented (Blätke et al. 2012b) and linked to corresponding sequence data files. In addition 
to a comparative systematics of reaction mechanisms such modules are seeds for computational mod-
els of the many different, but still related molecular processes found in diverse organisms. Systemati-
cally creating such modules would provide in the medium term a valuable resource for systems and 
synthetic biology applications.  
 This excursus to the evolution and the modular nature of regulatory networks may demonstrate 
that Petri nets designed as modules indeed do reflect the natural modularity of regulatory networks in 
the form of graphically displayed computational models. 

5 COMPOSING AN EXECUTABLE MODEL FROM MODULES: THE 
HALOBACTERIAL PHOTOTAXIS RECEPTOR SRI-HTRI-COMPLEX AS EXAMPLE 

We will give the receptors mediating halobacterial phototaxis as example to briefly demonstrate the 
design of Petri net modules (Figure 3) and their composition into an executable model. We will not 
present a complete model of the phototaxis system as this would go far beyond the scope of this paper. 
 The cell membrane of Halobacterium salinarum contains four retinal proteins, bacteriorhodopsin 
(BR), halorhodopsin (HR), sensory rhodopsin I (SRI), and sensory rhodopsin II (SRII). These archaeal 
rhodopsins are evolutionary closely related as evident by their highly similar amino acid sequences. 
Through their covalently bound retinal chromophore, these proteins can absorb light of the visible or 
near uv range of the spectrum. Upon light absorption, the retinal chromophore photoisomerises from 
all-trans to 13-cis conformation and each of the four proteins proceeds through a so-called photocycle, 
a sequence of intermediate conformational states. Re-isomerisation of the chromophore to all-trans 
retinal is catalysed by the protein moiety and the directionality of the photocycle is thermodynamically 
driven by part of the energy of the absorbed photon, which is transiently stored in tensed protein con-
formational states. Because these photocycle intermediates absorb light of different wavelength, they 
can be detected by optical spectroscopy with high time resolution.  
 Bacteriorhodopsin and halorhodpsin are light-driven ion pumps that power the metabolism by en-
ergising the cell membrane, while sensory rhodopsin I and sensory rhodopsin II act as light sensors in 
conjunction with their cognate transducers. Let us first consider the reactions of the sensory rhodop-
sins and return to the ion pumps later.  

 In its initial state, SRI maximally absorbs orange light of 587 nm wavelength (Figure 3C). The 
metastable SRI373 photointermediate can return to the SRI587 initial state through two alternative ways. 
It may return through the relatively slow light-independent thermal re-isomerisation of the retinal 
chromophore or by a fast photochemical re-isomerisation through the SRI510 intermediate if  the SR373 
intermediate absorbs an ultraviolet photon. These alternative photochemical pathways antagonistically 
control the switch complex at the flagellar motor in suppressing (orange light alone) or by activating 
(orange together with uv light) motor reversals resulting in the attraction of the cell towards or the re-
pulsion away from the stimulus, respectively.  
 In living cells, SRI forms a stable complex with its cognate transducer HtrI (Krah et al. 1994). 
Based on sequence similarity, HtrI is closely related to methyl-accepting chemotaxis protein-like 
chemoreceptors. However in contrast to chemoreceptors, HtrI (likewise HtrII) lacks any domain at the 
extracellular side that could bind the chemoattractant as it is the case in corresponding chemoreceptors 
(Ferrando-May et al. 1993; Yao and Spudich 1992). Binding of the transducer HtrI increases the rates 
of the photochemical reaction cycle, as indicated by the introduction of respective transitions in the 
SRI protein module. In the HtrI module, the photoreactions of SRI are also considered as they change 
the activity of the cytoplasmic domain of HtrI in modulating the activity of the CheA kinase. In addi-
tion, the module contains reversible methylation reactions of the transducer that mediate sensory adap-
tation to the stimulus background (not shown).  
 In normal (wild-type) cells, the expression of the genes sopI and htrI encoding SRI and HtrI, re-
spectively, are controlled by the same operon (Yao and Spudich 1992). The activity of the gene de-
pends on the oxygen tension in the growth medium and accordingly on the density of the culture 
(Otomo et al. 1989). Cells of freshly inoculated cultures express the SRI-HtrI complex only at low 
amount. During growth of the culture, the expression then increases drastically. In the gene module 
this is indicated by the oxygen tension influencing the probability that the gene is in its active state 
(Figure 3A). In the wild-type the two genes are transcribed together in the form of a single RNA mol-
ecule, a so-called bicistronic message, which is translated into the two proteins, SopI and HtrI (Fig-
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ure 3B, upper part). Expression of the sopI gene from the plasmid yields a monocistronic mRNA 
which is transduced into the protein (Figure 3B, lower part). 

 

 

Figure 3: The halobacterial phototaxis receptor and its biosynthesis represented as Petri net modules. 
The composed modules form a coherent model through the logical places shaded in grey. 

By overexpression of SRI as compared to HtrI it has been shown that SRI and HtrI form a stable 
complex (Krah et al. 1994). In these experiments, SRI was overexpressed five-fold as compared to the 
wild-type level from the sopI gene which was put under the control of a strong promoter and artificial-
ly introduced into the cell (Krah et al. 1994). As HtrI was expressed together with SRI from its natural 
gene through translation of the bicistronic message, there was a 5- to 6-fold excess of SRI as com-
pared to HtrI. Measuring light-induced absorbance changes in the membrane fraction of the overex-
pressing strain revealed that the 587 nm absorbance signal of SRI587 decayed with a bi-exponential 
kinetic where the slow component corresponded to the overexpressed SRI. This indicated that (1) HtrI 
accelerates the photocycle of SRI five-fold and that (2) the two molecules form a stable complex. If 
HtrI would simply catalyse the decay of the SRI373 molecules by transiently forming enzyme substrate 
complexes, a mono-exponential kinetic would be observed.  

Two separate gene modules are used to model the wild-type sopI gene and the artificially intro-
duced sopI gene with its strong promoter (Figure 3A). These two different gene modules of the sopI 
gene use different RNA modules as the mRNA transcribed from the wild type sopI gene is bicistronic 
while the mRNA transcribed from the artificially introduced sopI gene is monocistronic (Figure 3B). 
As the protein molecules of SopI expressed from the wild type gene and the artificially introduced 
gene have the same amino acid sequence, only one protein module is required (Figure 3C). The bi-
exponential decay observed in the spectroscopic experiments results from the fact that the relative 
amount of HtrI is limiting as indicated by the number of tokens in the respective HtrI places.  

In addition to HtrI, Halobacterium salinarum has 15 other related transducer molecules with high-
ly similar cytoplasmic signalling domain (Pfeiffer et al. 2008). Due to the modular composition of 
these Htr orthologs, these proteins are able to sense diverse stimuli (chemical, temperature, pH, mem-
brane potential, oxygen, cytoplasmic arginine level and others). One of this group, HtrII, forms a 
complex with SRII (Wang et al. 2012) and thereby relays the light signal to the flagellar motor. Repre-
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senting these 16 transducers in the form of Petri net protein modules can be performed by re-using a 
once designed module by copy/paste, as the biochemistry of receptor modification through reversible 
methylation of glutamate residues and the control of CheA activation through the cytoplasmic domain 
is the same in all transducers. In order to create a specific module for each of the transducers, only the 
part of the module concerned with the sensing of the specific stimulus has to be adapted accordingly 
and the number of methylation sites has to be taken into account. Adhering to templates in creating 
analogous modules (also in modelling the transducers of other species) not only saves time, but -more 
importantly- makes modules easily readable by adding a recognition value.  

6 MODELS FROM MODULES: PROSPECTS OF AUTOMATIC MODEL GENERATION 
AND ITS APPLICATION TO SYSTEMS BIOLOGY, SYNTHETIC BIOLOGY, AND TO 
FUNCTIONAL GENOMICS 

Petri net modules are specifically designed for automatic composition in variable combination and 
may be executed as continuous, stochastic, or hybrid models or merely be used to qualitatively simu-
late a causal sequence of discrete events. By choosing from the database which modules are to be 
composed allows to create desired models from a repertoire of pre-existing, exchangeable, re-useable, 
and curated (approved) modules (Figure 4). The different module prototypes (Figure 1B) provide ex-
tensive flexibility in considering components of the proteome, the transcriptome, and the genome. Fol-
lowing the pattern of a prototype as a template helps to create new modules that are easily readable 
when the underlying pattern of the prototype can be recognised. 
 

Model 1 Model 2 Model 3 

Modules with Metadata Organised in a Database 

A U T O M A T I C  C O M P O S I T I O N  

FORWARD ENGINEERING REVERSE ENGINEERING 

Known 
Biochemical 

Reactions 

Standard 
Experimental 

Data 

High-Throughput 
Experimental 

Data 
 

Figure 4: Composition of models through variable combination of modules 

In building a model from modules, one may choose interactively and from case to case which bi-
omolecules to include, whether or not to consider protein degradation, RNA stability, or the regulation 
of gene expression. During interactive model composition one may also choose whether or not to con-
sider alternative regulatory mechanisms that are suggested by the database in the form of submitted 
alternative versions of a module.  

Beyond this state of the art, modular modelling opens exciting prospects regarding algorithmic  
generation of new modules, the Petri net places of which may in turn be initialised by importing high-
throughput data sets. The conserved prototype structure of gene and RNA modules supports the auto-
matic generation of modules, which can be helpful when thousands of genes are to be considered in a 
model. By importing gene expression data for example, one may be able to generate models that spe-
cifically consider the protein composition of different cell types under given physiological condition. 
Gene expression patterns revealing the presence or absence of certain proteins can have a direct im-
pact on structure and function of regulatory networks. Automatically generated models may provide a 
formal framework to systematically evaluate correlations between transcript and protein abundance on 
a global scale (Schwanhäusser et al. 2011). As a long-term prospect, such approaches may also have 
some relevance for personalised medicine, for example by evaluating consequences of changed gene 
expression patterns.  
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The automatic generation of models by combining modules from different organisms from a large 
repertoire may provide a powerful way to systematically search for synthetically created networks 
with desired properties. This could be an ongoing effort combining the steadily increasing biological 
knowledge with the steadily increasing (distributed) computing power. Upon incorporating known 
mechanisms of molecular evolution (including gene shuffling, etc.) one might be able to perform evo-
lution of molecular networks in silico by setting selection criteria. For this purpose, the metadata of 
the modules are essential for recombining modules in the form of biochemically realistic scenarios.  
Finally, automatic generation of models from modules may be used for in silico mutant screens. Types 
of mutations could be deletions or hyperactivations. Making essential use of the metadata of the mod-
ules, in silico mutations might even consider changes in the specificity of molecular interactions. In 
model organisms, in silico mutagenesis might complement experimental random mutagenesis screens 
to reveal how complex phenotypes may alternatively occur. For multicellular organisms, in silico mu-
tagenesis might be employed to understand the consequences of somatic mutations or to overcome the 
restrictions of embryonic lethality.  
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